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Mixed quantum/classical (MQC) molecular dynamics simulation has become the method of choice for
simulating the dynamics of quantum mechanical objects that interact with condensed-phase systems. There
are many MQC algorithms available, however, and in cases where nonadiabatic coupling is important, different
algorithms may lead to different results. Thus, it has been difficult to reach definitive conclusions about
relaxation dynamics using nonadiabatic MQC methods because one is never certain whether any given algorithm
includes enough of the necessary physics. In this paper, we explore the physics underlying different nonadiabatic
MQC algorithms by comparing and contrasting the excited-state relaxation dynamics of the prototypical
condensed-phase MQC system, the hydrated electron, calculated using different algorithms, including: fewest-
switches surface hopping, stationary-phase surface hopping, and mean-field dynamics with surface hopping.
We also describe in detail how a new nonadiabatic algorithm, mean-field dynamics with stochastic decoherence
(MF-SD), is to be implemented for condensed-phase problems, and we apply MF-SD to the excited-state
relaxation of the hydrated electron. Our discussion emphasizes the different ways quantum decoherence is
treated in each algorithm and the resulting implications for hydrated-electron relaxation dynamics. We find
that for three MQC methods that use Tully's fewest-switches criterion to determine surface hopping
probabilities, the excited-state lifetime of the electron is the same. Moreover, the nonequilibrium solvent
response function of the excited hydrated electron is the same with all of the nonadiabatic MQC algorithms
discussed here, so that all of the algorithms would produce similar agreement with experiment. Despite the
identical solvent response predicted by each MQC algorithm, we find that MF-SD allows much more mixing
of multiple basis states into the quantum wave function than do other methods. This leads to an excited-state
lifetime that is longer with MF-SD than with any method that incorporates nonadiabatic effects with the
fewest-switches surface hopping criterion.

I. Introduction (although there are important exceptith$), there have been
For over 40 years, molecular dynamics (MD) simulation WO major approachtzes to the art of MQC simulation: quantum
based on classical dynamics has been the method of choice fol-iouville_method$™27 and  explicitly wave function-based
developing a molecular-level understanding of solution-phase Methods:™* Quantum Liouville methods map the time evolu-
chemical dynamics. More recently, MD simulation techniques tion of some degrees of freedom onto the evolution of phase
have been developed that propagate some degrees of freedorfiPace distributions, whose time dependence is then treated
(e.g., heavy nuclei) according to the rules of classical mechanicsclassically or semiclassically. Explicit wave function methods
and other degrees of freedom (e.g., electrons) according to thetake the classical limit of the time-dependent Hartree approxi-
rules of quantum mechaniés?’ thus allowing the simulation ~ Mmation?*> which assumes that the full wave function of the
of processes that depend completely on quantum mechanicssystem factors into a product of wave functions for the classical
such as electron transfer. Because classical mechanics an@nd quantum degrees of freedom, such that when the classical
quantum mechanics are fundamentally incompatible, however, limit is taken the classical degrees of freedom evolve in time
such mixed quantum/classical (MQC) MD simulation methods according to Newton’s laws of motion.
require assumptions about how the classical and quantum |n this paper, we will clarify some of the issues involved in
dynamics are coupled together, particularly for systems in which choosing a nonadiabatic MQC algorithm by using several
the classical and quantum motions occur on the same time scalgjifferent methods to simulate the excited-state relaxation
(i.e., when the adiabatic, or BortOppenheimer, approximation  gynamics of the prototypical condensed-phase quantum solute,
fails). This _has led to the de_velopment of many nonaql|a_1bat|c the hydrated electroh®10.28-34 The relaxation of the excited
MQC algorithms based on different assumptions, and it is not pyqrated electron to the ground state involves a nonradiative
always clear which algorithm, if any, produces accurate dynam- yransition, so nonadiabatic dynamics are essential for a correct
ics for any given system. Thus, the need to choose amongyescription of the relaxation of this system. As we are unaware
nonadiabatic MQC algorithms, each of which may give different ¢ 5.y applications of quantum Liouville methods to the
dynamics, means that the application of MQC simulation iS 4 giahatic relaxation of the hydrated electron, here we
currently as much an art as a science. Broadly speaking consider only MQC algorithms that start from the time-
*To whom correspondence should be addressed. E-mail: schwartz@ deépendent Hartee approximation. These methods all assume that
chem.ucla.edu. the wave function of the quantum sub-system evolves according
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to the time-dependent Scldioger equation (TDSE), but each  which may be adiabatic states that satisfy the time-independent
algorithm uses different approximations to describe the break- Schralinger equation

down of the Borr-Oppenheimer approximation. We will com- .

pare and discuss these approximations in terms of quantum H(R)I9n(R)= €,lpn(R)T 3)
decoherence and see how altering the way that decoherence is

treated affects the relaxation dynamics of the hydrated electron.or any other well-defined set of basis states. We will refer to
In addition to discussing the results of applying several well- [L&s the mean-field wave function of the quantum sub-system.
established algorithms to hydrated-electron relaxation dynamics, Inserting eq 2 into eq 1 leads to a set of coupled differential
such as fewest-switches surface hopping (FSSH, also knownequations for the expansion coefficierts, if the |¢,Lare chosen

as molecular dynamics with electronic transitiohsjationary- to be the adiabatic states and these equations are rewritten in
phase surface hopping (SPSHjand mean-field dynamics with ~ terms of the elements of the density matyiyg, = bih;, then the
surface hopping (MFSH)8 we also will apply a new nonadia- TDSE become’s

batic MQC algorithm that we have recently introduced, the

mean-field dynamics with stochastic decoherence (MF-SD) | dpkj . . .
algorithm?2 This will be the first application of MF-SD to a ih— = (g — Ej)ij(t) —ih Z [Plj | g - Pk@ﬂ ol
condensed-phase system, so we will also spend considerable 4)
time discussing how to implement MF-SD in the condensed

phase. wherelg| s the nonadiabatic coupling between stdtesid

The rest of this paper is organized as follows. In section Il.A, | and the overdot denotes a partial derivative with respect to
we outline the basic features of all MQC algorithms, and in time3® The nonadiabatic coupling often is rewritten using the
section 1I.B, we describe the additional approximations to chain rule asg)|gl= SR n°[di| VaguI= ¥ Rn-df, whereR,
account for the breakdown of the Borppenheimer ap- s the velocity of classical particle, V, is the gradient with
proximation that are made by different nonadiabatic MQC respect to classical partictés position, andif; is the nonadia-
methods’®1%3%In section I1.C, we discuss the MF-SD algo-  patic coupling vector. In adiabatic MQC algorithms, the quantum
rithrﬂ,l3 and we eXpIain in detail in section 11.D how to calculate Sub_system is propagated on a Single basis state and the
the parameter needed to apply MF-SD to condensed-phasenonadiabatic coupling terms are neglected, so phat dwd;
systems such as the hydrated electron. Section Ill describes thgor a chosen at all times. Such adiabatic dynamics cannot
numerical methods used for all of the MQC calculations in this describe the relaxation of a particle from an excited state to the
paper. In section IV, we examine the relaxation dynamics of ground state, so we do not discuss it further.
excited hydrated electrons calculated using all of the nonadia- * The classical degrees of freedom obey Newton's laws of
batic MQC methods described in section II, including MF-SD. ' motion, and because the classical and quantum sub-systems
We conclude in section V with a discussion of the results and interact with each other, the classical degrees of freedom feel a
the implications for how the disparate treatment of decoherenceforce from the quantum degrees of freedom. This force may be
in the djfferent algorithms affects condensed-phase nonadiabaticgetermined using the stationary-phase approximation to the
dynamics. semiclassical propagat®®>37-39 or it may be taken from the

. . _ ) Hellmann-Feynman (HF) theorefn
Il. Overview of Nonadiabatic MQC Algorithms

A. Fundamental Equations Common to all MQC Algo- Fo= =Vl Hiyp= -V V(R)yO Q)
rithms. In MQC MD simulations, a subset of degrees of ) . . .
freedom is taken to be quantum mechanical and the remainingVNereFn is the force on theith classical particle andl is the
degrees of freedom are taken to be classical. Throughout thisintéraction potential between the classical and quantum sub-
paper, we shall refer to the quantum degrees of freedom asSYStéms. In combination, Newton's laws, the HF force, and eq
“electronic” and the classical ones as “nuclear” even though 4_Ieaq to MQC dynqmlcs that_ conserves the sum (_)f the classical
the quantum degrees of freedom need not be electtéris. kinetic and potential energies 6and the mean-field quantum
we discussed in the Introduction, formally one can derive various €N€roy.evr = WIHIYL= 53 pje.>
MQC dynamics algorithms by writing the wave function of the Al Of the algorithms we have applied in this paper propagate
combined nuclear and electronic system as a product of nuclearth® nuclear degrees of freedom in time according to Newton's
and electronic wave functions (the Hartree approximation), and 12ws using the HF force, eq 5. Thus, the nonadiabatic MQC
taking the classical limit for the nuclear degrees of freed@m, ~agorithms are distinguished by how the quantum evolution is
although methods such as full multiple spawning use frozen allowed to proceed. One choice is to integrate eq 1 or eq 4
Gaussians for the nuclei to include some quantum aspects ofic9éther with Newton's laws and the HF force,r%q 5, in what
their dynamicg5160nce the classical limit has been taken, the @S been called Ehrenfest or mean-field dynarfiost first
nuclear degrees of freedom obey Newton's laws and the glance, Ehrenfest dynamics seems to contain the essential

electronic degrees of freedom ought to evolve according to the PNYSICS because nuclear motions allow the wave function to
TDSE build amplitude on multiple potential energy surfaces, but further

consideration reveals that MF dynamics produces unphysical
dy®0O - long-time result$. As the “paradox” of Schidinger's cat
a H(R) [y (D (1) illustrates?! any quantum system interacting with a classical
bath must eventually collapse to a single basis state instead of
where|yOs the wave function of the quantum sub-system with remaining in a superposition. It has been proposed that these
HamiltonianH(R), which depends parametrically on the posi- collapses occur because the quantum system interacts with many
tions of all of the classical particle®. In practice, the wave degrees of freedom and these extra degrees of freedom destroy

ih

function is written as a linear combination of basis states superpositions through a process knowrmasoherencas the
classical limit is approache@.In the context of MQC dynamics,
ly= Z b, lo,0 (2) decoherence means that the wave functions that are being
m neglected in the classical limit (i.e., those of the nuclei) rapidly
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lose overlap in time, leading to the destruction of superpositions switching. Prezhdo and Rossky addressed this objection with a
in the quantum sub-systeth3* Thus, nonadiabatic MQC  generalization of the FSSH method, called mean-field dynamics
dynamics must take decoherence into account to preventwith surface hopping (MFSH)that allows the wave function
unphysical superpositions from arising. The most popular to evolve according to the TDSE. In MFSH,two density
approach to removing infinitely long-lived superpositions has matrices are propagated, one associated with the mean-field
been to use surface hoppiRéd+® With surface hopping, wave function of the system (with energy) and the other
superpositions are either forbidden or the superposition wave associated with the reference state that is used to determine when
function is collapsed every so often to a single basis state, surface hops should occur according to Tully’s fewest-switches
usually an adiabatic state. criterion. When a surface hop to stgtéwhich cannot be the

B. Summary of Commonly Used Nonadiabatic MQC reference state) is allowed, the mean-field wave function (and
Algorithms. There are several different algorithms for nona- hence the mean-field density matrix) is collapsed to the new
diabatic MQC dynamics that are commonly used: fewest- reference state by settipg = J;J;. In addition to surface hops,
switches surface hopping (FSSHinean-field dynamics with in MFSH, the mixed wave function also may collapse onto the
surface hopping (MFSH),and stationary phase with surface current reference state, a so-called mean-field rescaling, when-
hopping (SPSHY® Below, we give a brief description of each  ever the wave function has become “too mixed”, as defined by
of these methods, as well as a related method designed to testhe divergence of theclassical trajectory from a similar
the limits of decoherence, which we call Ehrenfest dynamics “reference trajectory” associated with the un-mixed reference
with surface hopping (EDSHY.An overview of these and other  state. Thus, by combining Ehrenfest dynamics with mean-field
nonadiabatic MQC methods also may be found in the Ap- rescaling and fewest-switches surface hopping, MFSH allows

pendices of ref 13. the gquantum sub-system to propagate coherently for short times
The most widely used surface hopping method is Tully’s but to collapse to a single adiabatic state on longer time scales.
fewest-switches surface hopping (FSSH) algorithmhich Two later modifications of MFSH also allow decoherence to

propagates the classical dynamics with the wave function in a occur continuously through decay of the off-diagonal elements
single basis state, referred to as the reference state, with energpf the density matrix used to determine surface Hoidut
€ref; the wave function of the system is never allowed to mix we shall not discuss these refinements in detail here.
with other basis states. In FSSH, however, after each time step, In the limit that MFSH undergoes mean-field rescalings at
the reference state may switch with a probability determined nearly every time step (i.e., in the rapid decoherence limit), the
by the rate of change of a fully coherent density matrix that is wave function would always be a single adiabatic state because
propagated via eq 4; such a switch of the reference state is callecbnly the small amount of mixing allowed in a single time step
a surface hop. In FSSH, when a surface hop to gtfteth could occur before a collapse. For small enough classical time
energyej) occurs, energy conservation is maintained by adding steps, MFSH would then reduce to the FSSH algorithm without
the energy differenceer — ¢; to the classical particles’ kinetic  trajectory swarms. To test the importance of mean-field res-
energy. The particles’ velocities are modified only along their calings, in this paper, we also explore the opposite limit: We
projection onto the nonadiabatic coupling vector associated with assume that the wave function evolves coherently according to
the transition in questiof* For wave function collapses that the TDSE, eq 1, unless there is a surface hop according to the
would increase the energy of the quantum sub-systeft; ¢; FSSH criterion. We call this approach, which is just MFSH with
< 0, the collapse is allowed only if there is enough kinetic no mean-field rescalings, Ehrenfest dynamics with surface
energy available in the velocities as projected along the hopping (EDSH). Without surface hops, EDSH would produce
nonadiabatic coupling vector. (A similar prescription is used in the already-discredited Ehrenfest dynamics, but it is always
essentially all nonadiabatic MQC methods.) If a surface hop is possible that there are systems that can support long-lived
allowed, then the classical velocities are rescaled and thesuperpositions (with eventual collapse) that might be well-
simulation proceeds to the next time step; if the hop is forbidden, described by EDSH.
then no change is made to the classical velodtiesd the Another approach that allows fully coherent propagation of
propagation continues. We note that Truhlar and co-workers the quantum sub-system can be found in the stationary phase
have introduced an alternative version of surface hopping, calledwith surface hopping (SPSH) algorithth®In SPSH, the wave
self-consistent decay of mixing, that switches states accordingfunction evolves according to the TDSE, eq 1, but the forces
to Tully’s fewest-switches criterion but smoothly evolves the on the classical particles are determined self-consistently from
density matrix to the new state rather than collapsing it the so-called Pechukas force instead of the HF f&é&n most
instantaneously1112 applications, the mixed wave function is collapsed to a single
Originally, it was envisioned that the full wave function of state after each time step, although longer coherence times have
the guantum sub-system being described by FSSH could bebeen used? and the state to which the wave function is
constructed by adding together the results of a swarm of runscollapsed is determined stochastically with a probability pro-
started with the same classical initial conditions but with portional to the square of the amplitude of that state in the mixed
different random number seeds for the switching probabilities; wave function. Thus, when the nuclear dynamics induces very
weighting the members of the swarm with an amplitude little mixing, the occupied adiabatic state is unlikely to change,
determined by the fully coherent density matrix for each run but with more mixing (e.g., near adiabatic avoided crossings)
would give the full wave functiod.In practice, the sum over a  the occupied adiabatic state can change. Even though the
swarm of trajectories is not always performed, an approximation criterion for hops in SPSH is distinct from the fewest-switches
that effectively assumes that differences caused by different criterion, in the limit of small simulation time steps, the two
switching times are not important. In other words, use of the criteria become identicaf
FSSH algorithm without a swarm of trajectories assumes that All of the FSSH-based methods discussed above rely on
there is sufficient decoherence that the system’s properties carselecting one particular basis state as special: the “reference
be determined by adding probabilities (separate runs) insteadstate”. By employing different criteria for hopping to or from
of amplitudes. the reference state, these algorithms assume that mean-field
One objection to using FSSH for nonadiabiatic dynamics has rescaling and/or surface hopping are not necessarily caused by
been that it incorporates the TDSE only indirectly, via the the same underlying physics. We have argued that wave function
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collapse should only occur if the classical degrees of freedom ously}2 this time scale is based om@omentum criterion The
make a measurement on the quantum sub-system, so that it doewave function collapses when the momenta of the classical
not make sense for collapses to different states to be caused byarticles propagated with mean-field forces diverge sufficiently
wholly distinct physical processé%.Our recently introduced  from the momenta propagated on a single adiabatic state. MF-
MF-SD algorithm!3 described in the next subsection, avoids SD uses both this criterion and the population in sfate
this difficulty. MF-SD does away with the idea of a reference determine the probability®;, of collapsing the wave function
state altogether and thus treats all wave function collapses onto statej during a time stept
the same footing regardless of whether other algorithms would
have treated the collapses with different criteria (e.g. as mean- P
field rescalings or surface hops). P= T ot (8)

C. MF-SD Algorithm. The mean field with stochastic !

decoherence (MF-SD) algorithm has been described in detail g ¢jjapse probability depends on the widths chosen for the
in ref 13. For several one-dimensional scattering problems, MF- 55 ssian wave packets,, so choosinga, is crucial in

SD has been shoyvn to give r_esult_s at least as accurate as 8MYetermining how rapidly decoherence causes the wave function
of the MQC algorithms described in the previous subsection. ;, collapse. We defer discussion of how to determgneo the
Because MF-SD has never before been applied to a condensedF

h h his subsecti ide 2 bri Subsequent subsection.
phase system, however, we use this subsection to provide a brief' 5.4 an appropriate choice af has been made, in MF-SD
review of the method.

. . . . . . the MQC dynamics proceeds according to eq 4 for the quantum
MF-SD s designed to simulate nonadiabatic MQC dynamics, g, system and the classical particles obey Newton's laws. After
but it differs from the MQC algorithms mentioned above in o6 time step, the probability to collapse the wave function
several |mp9rtant ways. Ir_1 MF-Sall co_IIapses 9f the_ quantum  on14'each adiabatic state is calculated using eq 8 with the forces
sub-system’s wave functlon onto a single adiabatic elgenstatan(o) and Fi(0) calculated at the previous time step, and
are assumed to be induced by decoherence among the nucle n

: - hether a collapse occurs is determined stochasically. For
Thus, collapses can be onto the adiabatic state that has the large%ollapses to statiefrom a MF state, the appropriate “effective”
amplitude, analogous to mean-field rescalings in MFSH, or onto '

a minimally occupied adiabatic state, in what other algorithms nonadiabatic coupling vector for rescaling the classical velocities

would call a surface hop. Thus, in MF-SD, decoherence (or 's taken to be

wave function collapses) can occur to any pure state, as in SPSH, —n n
except that in MF-SD the collapse need not happen after every dj - Z Pk dik
time step. Instead, MF-SD posits that collapses of the wave
function are needed because approximating some degrees o
freedom as classical removes information about how the wave
functions of those degrees of freedom would spread and dephasg,
over time. MF-SD asserts thidtthe classical particles can tell

Lhetr?lfferenc? IID detweenf mottllon or:ja p?tentlal surf?ce ge?neg the wave function to collapse is governed by the widtla)/
y the meéan-field wave function and motion on a surtace delin€d v, ot e choose to ascribe to the classical particles’ fictitious

by one of the adiabatic basis states, then the classical SUb'SySter@aussian wave functions. In our previous paiere found
will “make a measurement” and collapse the quantum wave that the Gaussian width, B{Y2 is determined bo,th by the

functio_n; this is similar in spirit to the criterion for mean-field speed of the particle and by the spatial extent of the nonadiabatic
rescalings used by MFSH. coupling,w, so that

In practice, for MF-SD, we imagine that prior to taking the
classical limit, each classical particle can be described by a Wian?\2
Gaussian wave packet with spatial extenadX2 Making a a(t) = (( 2) ) (10)
short-time approximation for the motion of these wave packets, 225(t)
one finds that the overlap between a nuclear wave function
propagated with the quantum system in stajtand one whereip = h/my, is the instantaneous deBroglie wavelength,
propagated with the quantum sub-system in the mixed stateay is the Bohr radius, and, is the speed of the classical particle

9)

gs explained in ref 13.

D. Determining the Width of the Frozen Gaussians for
F-SD in the Condensed PhaseOur discussion above made
clear that the MF-SD probability that decoherence will cause

decays in time &8 at time t. The dependence on the spatial extent of the
) nonadiabatic coupling was discovered empirically by applying
(F.,(0) — F(0))° MF-SD to a set of one-dimensional scattering problems with
exg—|y ————|¢ (6) known solutions$:12 The empirical relationship was tested by
n 4a,ﬁ2 changing the spatial extent of the nonadiabatic coupling and

_ using eq 10, and good agreement was found with the exact
where F,(0) is the HF force, eq 5¢1(0) is the adiabatic HF results. At present, we have no good theoretical justification
force with |y [replaced by¢;C)and the zero-time arguments of ~ for why thew parameter must be included in the width of the
the forces indicate that they are to be evaluated at whicheverfrozen Gaussians; we have argued that decoherence must be
time is taken to have initially perfect overlap. This Gaussian determined by how nonadiabatic coupling varies over the extent
overlap decay suggests that the wave function should collapsesampled by the particles being approximated as classical, but

onto statg with a characteristic time scakg the precisew-dependence has not been justified from first
, principles!s
(F,(0) — FJn(O))2 In the one-dimensional test problems described above, the
rjfz = z _— @) nonadiabatic coupling was assumed to be either exponential,
m 4aﬂh2 exp(—x/D), or Gaussian, exp{x?/D?), in form, so it was easy

to setw ~ D. In the condensed phase, however, the nonadiabatic
that we take as the rate at which the classical bath attempts tocoupling is determined by how classical molecular motions
collapse the wave functio®. As we have pointed out previ- modify the adiabatic eigenstates and thus has no simple
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no coupling at small separations. The coupling turns on abruptly
at~1.5 A, rises to a maximum at3 A, and falls off roughly
exponentially with a decay length of2.7 A. One could
therefore estimate the length scale of the nonadiabatic coupling
simply asw = 1.5 + 2.7 = 4.2 A. Similarly, the distance
between the turn-on at1.5 A and the point at which the
function has fallen to half of its maximum value-is3.8 A. If
we instead think ofna(r) as a distribution function, then we
find that twice the root-mean-squared deviatiom &f ~4.5 A.
Whichever of the methods we choose suggests that the ap-
propriate value fow is ~4 A. In the Appendix, we explore
how the nonadiabatic relaxation of the hydrated electron
calculated with MF-SD varies wittwy and we show that small
L1 changes iw make little difference in the dynamics: Choosing
01 2 3 456 7 8 910 w anywhere in the range-5 A gives essentially the same
A results, but significantly larger or smaller valuesvoiead to
I'( ) very different relaxation dynamics.

1 T T T T T T T T T

o o
o ™
T T

g(n (arb. units)
o
D

O
N
T

Figure 1. Nonadiabatic-coupling-weighted radial distribution function
with N = 5, eq 12, for the hydrated electron. I11. Numerical Methods

functional form. To arrive at a spatial extent of coupling between I all of the calculations presented here, we performed
states andj, we must split the nonadiabatic couplirigh|¢;C] microcanonical molecula_r dynamics S|mulat|on_s of a S|_ngle
into contributions from each classical particle. The coupling €xcess electron in a cubic box 18.17 A on a side containing
between statesandj produced by atornm is proportional to 200 classical, flexible water molecules. The water molecules
the nonadiabatic coupling vectod], so on average the interacted according to the SPC-Flex poterffi@nd the electron
nonadiabatic coupling will be characterized by the magnitude interacted with each water molecule through the pseudopotential
of d” as a function of the distance between atorand the ~ ©Of Schnitker and Rossk. Although there are other choices,
quarjnum solute. We propose that the spatial extent of the We chose this pseudopotential to facilitate comparison with the
nonadiabatic coupling between stateandj should be deter- large body of literature on nonadiabatic hydrated-electron

mined from the weighted radial distribution function relaxation that uses this potentfat?2%-32 All of the interactions
were computed using minimum-image periodic boundary condi-
m 76 — [roy — R |)D tions2 and were tapered smoothly to zero at half the box
) ! Q " length53 The positions and velocities of the classical water
gya(n) = (112) molecules were propagated using the velocity Verlet algorfthm,
E o — Irom — Rnl)D with a time stepit = 0.5 fs. The average temperature w&300
a K at the beginning of the runs and315 K after the excited

electron had fully relaxed and reequilibrated, with root-mean-
where the angled brackets denote an equilibrium ensemblesquared deviations o9 K.
averager gwm is the location of the quantum sub-system, defined At each time step of the simulation, the lowest four adiabatic
below, and we divide by the ordinary radial distribution function eigenvectorsign{n=1, 2, 3, 4), were computed at the vertices
to remove oscillations caused by the classical solvation shell of a 16 x 16 x 16 cubic lattice with an iterative-and-block
structure. We note that, in a study of which solvent degrees of Lanczos algorithni® The nonadiabatic coupling at tintet- ot
freedom contribute to nonadiabatic transitions of the hydrated was computed using a finite-difference approximation
electron, Prezhdo and Rossky formed a similar quantity for
con(faigurations at the moment of a surface hop to the ground [¢(t + ot)| <}>j(t + ot)O=
state!’ In general, nonadiabatic coupling may arise between any _ _ _ _
pair of states, so we form an effective spatial extent of the B19,(E+ YT [t + YO0
nonadiabatic coupling by averaging tgg,(r) over pairs of 20t
states

(13)

The nonadiabatic coupling vectors needed for most of the
N algorithms were calculated using the relafion
Ona() =——— Z ala(r) (12)

_n.L vV V|0
NN =D Vb= —@'e'ki :’)k (14)

2

whereN is the number of states included in each sum aver
andj. Once the adiabatic eigenstates and nonadiabatic couplings at
For the hydrated electron, the center of mass of the groundtimet + ot were calculated, the density matrix was propagated
state and the lowest three excited states are nearly coincidentfrom timet to t + 4t in 500 intermediate steps, with each step
as discussed in section IV, so we have takep to be the propagated by a fourth-order Rungutta algorithm; during
center-of-mass position of the hydrated electron’s ground4tate. the Runge-Kutta integration, the adiabatic energies and nona-
Using this definition, we have calculategya from two diabatic couplings were linearly interpolated between their
statistically independent 5-ps equilibrium adiabatic runs with values at timet and their values at time+ 6t.
the electron confined to its quasispherical ground state, uising For the simulations using the MF-SD algorithm, all of the
i=1,2,..5i=]. Figure 1 displays the averaged weighted averages reported in this paper were taken from 50 nonequi-
distribution function,gna(r), eq 12, for the hydrated electron. librium trajectories in which the electron was excited at time
The hydrated electron repels the water molecules, so there is= 0 by 2.27+4+ 0.01 eV to either the first or second excited
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state. The 50 runs began with 25 initial water configurations (A) FSSH (B) MESH
and velocities taken from a 10-ps ground-state equilibrium 1L '
simulation; half of the runs used the initial velocities from the —~
equilibrium simulation and the remaining half used the same i 0
initial configurations but with the velocities reversed. For the > _q
simulations using the MFSH, FSSH, and EDSH algorithms, the g
averages were taken from the same 25 initial conditions whose,5 ~
velocities were not reversed. The random numbers used to -3
determine whether a surface hop or wave function collapse
occurred in all of these algorithms were generated using the 1
ran2 routine from Numerical Recipes. For the MFSH simula- _ [
tions, the parameters needed to determine when mean-fields 0 |

rescalings take place are the same as those used by Wong an‘S'-._1
Rossky in ref 9. The SPSH results reported in this paper were
taken from the 20 excited-state runs reported in ref 29. 5 -2

-3

1 1 1 1 1 [ +|+ +I+ L + * + 1
0 200 400 600 800 1000 200 400 600 800 1000
Time (fs) Time (fs)

The hydrated electron is a solvent-supported species with anrigure 2. Representative dynamical histories of the excited hydrated
optical absorption spectrum in the visible and near-infrafed. electron’s adiabatic (alternating thin solid and dashed gray curves) and
The most common view is that the hydrated electron is trapped mean-field (thick solid curve) energies calculated with FSSH (panel
in a roughly spherical cavity with the water polarized around A), MFSH (panel B), EDSH (panel C), and MF-S@ ¢ 4.0 A, panel
it.50.515559 The low-lying adiabatic eigenstates of the hydrated D). The crosses show times at whlt_:h the mean-field wave function
electron resemble those of a particle in an attractive sphericalWas collapsed onto a single adiabatic state.
box: The ground state is approximatelike and centered in
the cavity, and there are thrpdike bound states also centered
in the cavity, with higher-lying continuum states delocalized in
the liquid. Previous nonadiabatic studies of the excited-state
relaxation of the hydrated electron using the SPSH algofithm

have revealed that, when the spherically symmetric electron is_ . ) . . e :
P y Sy With EDSH dynamics, there is minimal mixing in the excited

excited into gp-like excited state, the energy of the excited state o

does not change on average throughout the relaxation proces §tate and.the transition to.the ground state occurs at 'th same
The ground state, in contrast, is rapidly destabilized as water IMme as with FSSH dynamics (at _the onset of str_ong mixing of
molecules in the first solvation shell move so as to bring the ground state into the mean-field wave function). After the

hydrogen atoms into the node of the excited orbital. The energy "OP 10 the ground state, the EDSH mean-field wave function
of the ground state continues to rise as the first solvent shell continually remixes amplitude with the first excited state until
rearranges to accommodate the two lobes of charge until, after®S much as 90% of the wave function consists of the first excited

a few hundred femtoseconds, the ground-state energy reacheStat€; in the presence of this much mixing, the system undergoes
a quasi-equilibrium several tenths of an electron volt below the & Surface hop to the first excited state (not shown) followed
occupied excited-state ener@yPrior to the establishment of ~ Within 50 fs by a hop back to the ground state. We note that
this quasi-equilibrated excited state, there are very few surfaceth® particular ordering of the relaxation lifetimes seen for the
hops, and even after the system reaches quasi equilibrium, jttr@jectories in Figure 2 is not unique: For_other_mltlal cond|t|on_s,
must wait several hundred femtoseconds for an opportunity to the electron rgaches the ground state first with EDSH or with
hop to the ground state. Thus, with SPSH, the electron collapsesMFSH dynamics, or all three FSSH-based methods perform a
to the ground state on averag@30 fs after the initial excitation. ~ Surface hop at almost the same time. Thus, no matter how wave
Using a new quantum mechanical projection formalism, we function mixing is described, the fewest-switches criterion for
recently have shown that the physical picture of the ground stateSurface hops causes the transition to occur immediately after
being destabilized by solvent librations holds when the relaxation the onset of significant nonadiabatic coupling between the
dynamics is computed with MF-S#9.n this section, we will ground and first excited state; the subsequent return to equi-
exp|0re how this picture changes when the dynamics is librium then thwarts any additional mixing (except for EDSH)
computed with each of the nonadiabatic MQC algorithms  In contrast, there is significant mixing of several basis states
described in section II. into the mean-field wave function of the electron with MF-SD
A. Population Dynamics and Excited-state Lifetimes. dynamics, because unlike the FSSH-based methods, the transi-
Figure 2 displays dynamical histories of the adiabatic and mean-tion of the system to the ground state is not necessarily induced
field energies for a representative single hydrated-electron at the onset of rapid mixing. Furthermore, in MF-SD, there is
relaxation run as calculated using the FSSH (panel A), MFSH a good chance that a strongly mixed state can collapse back to
(panel B), EDSH (panel C), and MF-SD (panel D) algorithms; the excited state, a possibility not allowed by FSSH and seldom
each run began with the same initial conditions and random achieved with MFSH because strong mixing does not occur
number seed. For the first250 fs, the dynamics computed without inducing a surface hop. In the MF-SD trajectory for
via all four simulation methods appear identical, characterized the electron shown in Figure 2, the mixed MF wave function
primarily by ground-state destabilization, as discussed above,did in fact collapse back onto the first excited state, at lbeth
after which small deviations begin to appear. When the 361 fs andt = 450 fs. The first collapse to the ground state
dynamics for this trajectory are computed with FSSH, the takes place at time= 931.5 fs, only after the mean-field wave
hydrated electron makes a transition to the ground state at timefunction has built up nearly 50% population on the ground state.

IV. Excited-state Relaxation of the Hydrated Electron
with Different MQC Algorithms

t = 362.5 fs, and thereafter, its trajectory is distinct from the
other three nonadiabatic MQC methods. With MFSH dynamics,
there is little mixing (less than 1%) of multiple adiabatic states
and the hydrated electron remains largely in the excited state
until the time of the nonadiabatic transition tat= 452.5 fs.
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1 =~ is defined as the time at which the reference state switches to
- . the ground staté& Thus, the average lifetime fd¥ excited-
M T MF-SD — state runs would be= 3, t,/N, wheret, is the lifetime for run
0.8 - N\ i MESH - - - numbero. With EDSH, we taket, to be the time of first
o) b, MR transition to the ground state, although the fact that Ehrenfest
B;.’ 0.6 - ') SPSH ----- dynamics allows the continuous build-up of amplitude in the
- P - excited state means that the excited-state lifetime of hydrated
) 1 electrons probably should be considered to be infinite. In MF-
:Q 04 . , SD, because the population evolves continuously, there is no
v . . clear-cut excited-state lifetime in any given run, but a lifetime
o 02 - - LEEL TR : can be defined by analogy to the lifetime computed with a
. to- - reference state. It is straightforward to show that the average
I a . lifetime for systems with a reference state can be calculated
0 L Ty L. from p(t)
0 500 1000 1500 2000 .
Time (fs) - Jo deteniey w
Figure 3. Average excited-state probability of the hydrated electron ’ﬁ) “ ot (dpy(t)/dt)

calculated with with MF-SD Rex(t), solid curve, eq 16) and excited-

state survival probabilityp(t), eq 15) with MFSH (dashed curve) and . .

SPSH (dotted curve). FSSH and EDSH excited-state survival prob- FOr the case of continuous population transfer, each decrease
abilities are not shown because they are indistinguishable from the i Pexc may be thought of as the loss of a single member of a
MFSH result. large ensemble, so we define the MF-SD mean lifetime by

analogy to eq 17
Figure 3 displays the averaged excited-state survival prob-

abilities ﬁ)‘” dt t (dP,,(t)/dl)
M=
P =5 O(t, — N (15) 7 dt (AP, (t)/dl)

(18)

Although taking the derivative of a function contaminated by
simulation noise is numerically unstable, a simple integration
by parts converts eq 18 to the easily evaluable

computed with SPSH (dotted curve) and MFSH (dashed curve)
dynamics, wheré@(t) is a step functiont, is the time of the
first transition to the ground state, ahids the number of runs.
The averaged EDSH and FSSH results are not shown because o
they are essentially identical to those produced with MFSH. In = ﬁ) dt Pexd) (19)
MF-SD, the population evolves continuously, so in any given
run there is no clear-cut excited-state survival probability. Where we have used the facts tRa{0) = 1 andPex{«) = 0.
Because MF-SD does not assume the existence of a well-defined! he averaged squared lifetime may be defined analogously, with
reference state, as is done in surface hopping methods, ondhe final result that
cannot say that the hydrated electron occupies a single state -
except immediately following collapses. For example, if the = ZL dt t P, (1) (20)
wave function has acquired 70% ground-state character before
any collapse, then the electron should neither be considered fullyWe will use eq 20 to calculate the statistical uncertainty in the
excited nor should it be considered fully relaxed. One way an mean MF-SD lifetime from the standard deviatiofif?((— [{4)/
average excited-state population can be determined, however(N — 1))¥2
is by defining the average fractional excited-state population Table 1 displays the average excited-state lifetime for the
hydrated electron computed using eqs 17 or 18 for the five
P ) =1 — pyy(D) (16) different nonadiabatic MQC methods. The table makes it clear
that the hydrated-electron lifetime,is essentially the same for
where the overbar represents an average over all nonequilibriumMFSH, FSSH, and EDSH (although as discussed above EDSH
runs®! This fractional excited-state population is precisely should properly be considered to give an infinite lifetime). Thus,
analogous to the excited-state survival probability for systems if surface hops take place according to the fewest-switches
with a reference stat@y(t), andPexdt) computed with MF-SD criterion, it makes no difference in the average lifetime whether
also is displayed in Figure 3 (solid curve). The excited-state the wave function is propagated with complete decoherence
survival probability falls off fastest with MFSH dynamics and (FSSH), complete coherence (EDSH), or something between
slowest with SPSH dynamics; the mean excited-state population(MFSH). This result suggests that changes in the excited-state
calculated with MF-SD dynamics lies somewhere between the lifetime must come from changes in the evolution of the density
other two curves. Note also that the greater mixing allowed in matrix used to determine hopping probabilities. In fact, Tully
MF-SD (cf. Figure 5B, below) is manifest in the fact that suggested that decoherence could be incorporated into FSSH
Pexdt) decays smoothly and continuously instead of in discrete by continuously damping the off-diagonal elements of the
jumps at surface hopping events pa@) does for FSSH, MFSH,  density matrix and such damping terms have been included
EDSH, and SPSH. by Wong and Rossky in two variants of MFSHC but is not
Figures 2 and 3 make it evident that the extra mixing allowed clear precisely how the damping affects the average excited-
by MF-SD can alter the dynamics in individual trajectories and state lifetime of hydrated electrof$Similarly, we anticipate
thus the average excited-state lifetime for the electron. For that the modifications of FSSH introduced by Truhlar and co-
methods based on surface hopping, the lifetime of a single runworkers?1-12which use fewest-switches probabilities to com-
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TABLE 1: Average Excited-state Lifetime of the Hydrated 1
Electron Computed via Different Nonadiabatic MQC
Algorithms?2

MQC algorithm lifetime (fs) 0.8

MF-SD* 632+ 116 0.6
SPSH 731+ 217 *
MFSHe 4454 111
FSSH 4094+ 112
EDSH 532+ 144

@ The uncertainties are two standard deviations, where one standard 0.2
deviation is calculated as described in the text from the root-mean-
squared deviation divided byN(— 1)“2, whereN is the number of 0
runs.” The lifetimes were calculated using eq 19 for MF-SD and using
er? 17 for thg otlher mhethods; the integrations were performed using 0.2 . . |
the trapezoid rule with a time step of 0.5 fdViean-field dynamics Ve
with stochastic decoherence (ref 13 and this work), computed with the 0 200 400 600
Gaussian width parameter= 4.0 A and 50 runs, as described in the Time (fS)
text. 4 Stationary phase with surface hopping (refs 5 and 35), taken o . .
from the 20 runs reported in ref 26Mean-field dynamics with surface ~ Figure 4. Nonequilibrium solvation response, eq 21, of the excited
hopping (refs 6 and 8) with 25 runsFewest-switches surface hopping ~ hydrated electron, computed with MF-SD (solid curve), FSSH (dashed
(ref 3) with 25 runs. As described in the text, these runs used a single curve), and MFSH (dotted curvey(t) computed with EDSH is not
trajectory for each initial condition rather than the swarm of trajectories Shown because it is indistinguishable from the FSSH and MFSH results.

required by the original formulation of the methddEhrenfest dynamics ~ S(t) was computed using 25 trajectories started from the same initial
with surface hopping (this work) with 25 runsAs discussed in the ~ conditions for MF-SD as for FSSH and MFSH.

text, it may be more appropriate to consider the excited-state lifetime . ) _— .
to be infinite with EDSH dynamics. Figure 4 displays the nonequilibrium solvation response

functions for the excited hydrated electron calculated with FSSH,

pute surface hops, but which continuously damp the density MFSH, and MF-SD; the EDSH result is not shown for clarity
matrix elements to complete the hop, will give essentially the because it is nearly identical to the FSSH and MFSH results.
same lifetime for the hydrated electron. All three FSSH-based Clearly, there is essentially no difference in the energy relaxation
methods discussed in this work result in a much shorter excited-predicted by the different methods, except perhaps for SPSH
state lifetime than MF-SD. SPSH, which allows coherent (notshown)*We find it surprising that MF-SD gives the same
propagation between time steps but forces the wave functionsolvent response function as the various fewest-switches based
to collapse after each classical time step, yields a longer lifetime algorithms, because the excited-state lifetime is significantly
than MF-SD?° but we do not believe the difference is statisti- longer with MF-SD than with these other methods and because
cally significant. we expected the extra mixing with MF-SD to lower the gap

In the above discussion, we compai@d eq 18, from MF- relative to the other algorithms. We believe that the explanation
SD tot, eq 17, for the other methods because we beli@de  for this is thatS(t) is ill-suited to detect differences in the excited-
provides the closest analogttaBut [fCis not the only possible  state dynamics for this system. As discussed above, Schwartz
definition one could use to define the lifetime with MF-SD  and Rossky have showh(and we have confirmég) that most
dynamics. Although MF-SD does not incorporate the idea of a of the dynamics inherent in the electror) comes from
reference state, one could calculate a versionmMF-SD by destabilization of theground state as the solvent rearranges
taking the relaxation time for a run to be the time at which the around the excited electron. The extra mixing allowed with MF-
wave function first collapses to the ground state. We would SD only affects the energy gap near the transition to the ground
expect this to overestimate the lifetime because it does notstate, and this has little effect on the shap&ofbecause most
include reductions in excited-state character caused by signifi- of the dynamics comes from the large shift in the ground-state
cant mixing into the ground state that can occur before the energy. Apparently, solvent migration into the node of the
transition®® For MF-SD withw = 4.0 A, calculatingt in this excited electron is unaffected by whether there is a few percent
fashion gived = 660+ 116 fs, where the error is two standard of another state mixed into the wave function, so the ground-
deviations. As expected, this lifetime exceeds the lifetime state destabilization that dominat&) is insensitive to the
calculated with[d(] see eq 18 (Table 1). differences in population dynamics.

B. Nonequilibrium Solvation Response Function.The
nonequilibrium solvation response for the hydrated electron V. Discussion: The Effects of Decoherence on
typically is studied by examining how the energy gap between Condensed-phase Nonadiabatic Dynamics

the occupied and ground stateHt) = emr(t) — €o(t), evolves In this paper, we have compared the excited-state relaxation
after the electron is excited. In principle(t) is simply related  gynamics of the hydrated electron calculated by five different
to the fluorescence Stokes sHifiput it is often more convenient  ponagdiabatic MQC algorithms. Most of the algorithms use the
to examine the normalized nonequilibrium solvent response igea of a “reference state”, with a rule for switching the reference

S(t)

04

function state in what is called a surface hop. Three of the methods,
_ _ FSSH, MFSH, and EDSH, are based on Tully’s fewest-switches

St = U(t) — U(w) 1) method for computing the probability of a surface hop; in our
U(0) — U() interpretation, they represent, respectively, the rapid, intermedi-

ate, and minimal decoherence regimes. The hopping criterion
where the overbar indicates a nonequilibrium average over thein SPSH resembles the fewest-switches prescription in the limit
ensemble of excited-state runs. When we compute this non-of a small time step, whereas MF-SD uses a fundamentally
equilibrium average, we remove runs from the ensemble at thedifferent decoherence criterion. We have found, however, that
instant the wave function first collapses onto the ground state. with fewest-switches hops, the amount of decoherence has no
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effect on the excited-state lifetime of the hydrated electron. Having now applied this method to hydrated-electron relaxation,
Instead, the lifetime appears to be controlled entirely by the a problem whose exact solution is not known, we find that MF-
fewest-switches criterion, suggesting that FSSH (and its siblings SD dynamics differs in several important ways from FSSH and
MFSH and EDSH) do not properly include the effects of its siblings. First, in MF-SD, the wave function of the system
decoherence for the hydrated electron. This suggests that, foris allowed to mix much more than in FSSH or MFSH. Near a
FSSH, decoherence should be included either through a sumtransition to the ground state, MF-SD vyields an electronic
of amplitudes over a swarm of trajectories or by damping of structure that is a superposition of the ground and excited states
elements of the density matr#®:1°The similarity of the FSSH  for tens of femtoseconds. Fewest-switches-based algorithms, in
and MFSH results also suggests that MFSH is merely a more contrast, hop to the ground state as soon as mixing begins to
expensive way to do FSSH; this is consistent with the fact that occur, so that far less mixing actually takes place near the
MFSH and FSSH gave the same answers for the one-transition. Second, the criteria used to decide when to collapse
dimensional single avoided crossing probleth,which has  the wave function are very different for the two methods. With
similar physics to the hydrated electron’s relaxation. fewest-switches, strong mixing causes a surface hop, whereas
Our results for EDSH relaxation also showed an interesting in MF-SD a wave function collapse only occurs if the mixing
difference from what would be expected with purely Ehrenfest would lead to a loss of overlap among the Gaussians that
dynamics. Parandekar and Tully have shown thatNdevel represent the classical particles. We already have shown that
systems true Ehrenfest dynamics leads to nearly equal populatiorthis difference allows MF-SD dynamics to correctly predict
of all states for reasonable choices of paraméfemsd we have  reflection and transmission probabilities without spuriouctu
confirmed this result for the hydrated elect®nhe presence elberg oscillations for Tully’s extended-coupling mo@étand
of surface hops, however, seems to bias the system toward theye saw here that this difference also leads the hydrated electron

occupying either the ground or first excited state, and We {5 maintain excited-state character on avera@®0 fs longer
speculate that EDSH may yield average populations intermediatef, ME-SD than for FSSH or MESH.

between the infinite-temperature (Ehrenfest dynamics) and
properly Boltzmann weighted (FSSH dynamfédmits.

Despite the differences in excited-state dynamics and lifetimes
with the different nonadiabatic MQC algorithms, we found that
all of the methods we tested produced identical nonequilibrium
solvation response function§(t). This is because the dynamics
underlying St) for the hydrated electron are dominated by
solvent motions that depend only weakly on details of the
excited-state wave function.

Because the calculat&ft) for the hydrated electron is similar
for all methods, each would produce dynamics that compare
equally well with experiment. Thus, the question is which
nonadiabatic MQC algorithm incorporates the most intuitively
correct physics. Our preference is for MF-SD for two main
reasons. First, MF-SD allows the time-dependent Stihger
equation to govern evolution of the wave function until
decoherence induces changes in the dynamics. Second, MF-
- ) ) SD allows mixed states to exist so long as the classical particles

In addition to FSSH-based algorithms, we also applied the ¢5nnot distinguish mixed from unmixed states, so that collapses
MF-SD algorithm to the relaxation of the hydrated electron, o the \wave function are induced by the classical particles
the first time MF-SD has been applied to a condensed-phasenmaking a measurement” on the quantum sub-system and not
probl_em. As far as we are aware, MF'S.D 1S the_ _only MQC by the rate of change of the quantum system’s density matrix
algorithm that considers all nonadiabatic transitions to be which in our view should have little to do with whether the
induced by decoherence instead of imposing a separate transitio lassical bath will attempt to collapse the wave function). As a

criterion based on the time evoluthn of the guantum wave consequence, wave function collapses need not occur at the onset
function. The decoherence time scale is set by the effective width T o . )
fof rapid mixing, and our intuition suggests that this may provide

of Gaussians that are imagined to model quantum aspects Oa more correct description of the quantum dynamics for systems
the classical degrees of freedom, and we described in detail how P q y Y

one goes about finding the Gaussian width parameter that;V'Ttg:'je;l;tggngdﬁbzgCthceoﬁpg?iezeg\;?;;hsvgrggpg ea?r?at
determines decoherence in MF-SD. In the Appendix, we show xcl » Su Y ) eV

that small changes in the width parameterhave little effect f[h(_are is room for considerably more_dlscussmn of exqctly_ how
on the overall relaxation dynamics but that large changes Iead't is that decoherence controls excited-state relaxation in the

to drastically different excited-state lifetimes. In either the rapid condensed phase, particularly because we cannot rely on
or slow decoherence limit, the lifetime of the excited-state EXPeriments on hydrated-electron relaxation to decide among

diverges: With rapid decoherence, the divergence arises dugtn® nonadiabatic MQC algorithms. One area that we believe
to the quantum Zeno effe€twherein an unstable state is unable c0uld be particularly fruitful is to investigate how to bridge the
to decay so long as it is observed continuously. With slow 9aP between quantum Llouyll_le methods, wh|ch_ can explicitly
decoherence, the divergence results from the fact that Ehrenfestréat decoherence, and explicit MQC wave function approaches
dynamics never leads to a fully populated ground stafeor (such as those discussed here), in which decoherence is treated
decoherence in the intermediate regimvey 2—5, we find that in a more ad hoc fashion. We hope that the detailed examination
the lifetime does not change appreciably, so one only needs togiven here has clarified some of the issues involved in choosing
estimatew to apply MF-SD to a condensed-phase problem. In @ nonadiabatic MQC algorithm, and that these questions, whose
the Appendix, we also point out that the range fothat we answers we have only been able to hint at, will provide the
believe to be correct produces the smallest excited-stateimpetus for further research into how decoherence should
lifetimes, and we speculate that this minimum is not coinci- properly be included in MQC dynamics.
dental: ldentifying such a minimum could provide an (albeit
expensive) alternative method for determining Acknowledgment. Funding for this research was provided
When we originally introduced MF-SD, we showed that for by NSF Grant No. CHE-0204776. B.J.S. is a Camille Dreyfus
three standard, one-dimensional model problems MF-SD is at Teacher-Scholar. We gratefully acknowledge the use of the
least as accurate as methods based on fewest-switches surfadgalifornia Nano Systems Institute Beowulf cluster for many of
hopping and that for some problems it is much more acciéfate. the calculations described in this paper.
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Appendix: w-dependence of the Excited-state Lifetime of 1 w
the Hydrated Electron ( A) 1 ~
In the one-dimensional problems for which we previously € 0.8 o}
tested MF-SD, we found that small changes in the width S 06 - 8
parameterw (defined in eq 10), made little difference in the @5
MQC dynamicsi® Changingw by a factor of 2 or more did, 5 0.4 | 0740 730‘ 78L0
however, cause significant differences in the nonadiabatic Q- Time (fs)
transition probabilities. In this Appendix, we examine the 8 0.2
dynamics of excited hydrated electrons calculated with MF-
SD as a function ofv, and we discuss in detail what changing 0 | il L L L '
w implies for the resulting dynamics. Each of the average (B) ‘ 1 ==\
lifetimes reported here for the 15 different choices wof 0.8 - ! . \
represents between 75 and 250 dedicated hours on a single AMD ¢ 8—
Opteron 248 processor; we were able to perform the calculations O 06 L = ‘\— -
in days rather than months through the use of many such "5 : + + 0 - N
processors on a large Beowulf cluster. S 0.4 340 360 380
Figure 5 shows, for the same initial condition, the populations, Q_ =" [ Time (fs)

pii, as a function of time after resonant excitation of a hydrated 8
electron by 2.26 eV to the first excited state for several different 0.2
choices ofw. Panel A shows that setting = 0.1 A, much
smaller than ta 4 A suggested by the discussion in section I1.D, 0
causes the wave function to collapse at nearly every time step
(on average, after 99.7% of the time steps). Such frequent 0.8
collapses are expected because a small valus whplies a cC
large decoherence rate; L. Over the short time between O 0.6
collapses, very little mixing with the ground state can occur, ";U‘ )
so by eq 8 there is almost no chance for the electronic wave = 0.4
function to collapse to the ground state; the collapse to the @ ™~
ground state = 767 fs occurred only after a chance reduction Q
in the energy difference between the ground and first excited 0.2
states allowed significant mixing into the ground state in a single
0.5-fs time step. Panel B displays the evolution of the popula- 0
tions with our presumptive choice @f = 4 A. This Gaussian 0 400 800 1200 1600
width allows significantly more mixing to take place, so that Time (fs)
there are only three wave function collapses over the entire run, gjg re 5. Time evolution of the state populations calculated with MF-
as indicated by the crosses in panel B. As the inset she®50 SD following excitation of a hydrated electron for different choices of
fs after the initial excitation, population builds up on the ground the width parametew (eq 10): w= 0.1 A (panel A)w = 4.0 A (panel
state, reaching a plateau withi70% population on the ground  B), andw = 10.0 A (panel C). The insets in panels A and B show the
state and only~30% on the first excited state. After onty15 times near the first wave function collapse to the ground state on an
fs as a strongly mixed state, decoherence induces a wavetXxpanded scal_e. The crosses in pa_nelqundC_mdmate times atw_hlch
function collapse to the ground state. After the ground state the wave function _col_lapsed_to a single adiabatic state; wave function
has been reached, solvation quickly reduces the ground-stat collapses are not indicated in panel A because wiien 0.1 A the.

v . e - Svave function collapses at almost every time step, as discussed in the
energy so that there is very little further mixing. Finally, panel text.
C shows the population dynamics with= 10 A. The largew
value implies very broad Gaussians in momentum space, soijn connection with Figure 5. This figure shows that on average
there should be very few wave function collapses. As indicated p,,(t) decays fastest fow = 4 A, whereas fonv = 10 A, it
by the crosses in panel C, over the 1.6 ps of this simulation, decays more slowly but varies continuously, as expected for
there were only two decoherence events, one that caused avhat is largely mean-field dynamics with only a few wave
collapse back to the first excited state~880 fs and the other  function collapses. Faw = 0.1 A, Pe,((t) differs markedly from
that caused a collapse to the ground state870 fs. The lack  the other two average excited-state populations. The population
of decoherence events over a relatively long time means thatdecreases in a stepwise fashion because the density matrix is
the calculated dynamics is very nearly Ehrenfest in character, constantly being collapsed to one of the excited states, as in
with the wave function remaining mixed for excessively long the quantum Zeno effeét.In this rapid decoherence limit, the
periods. It recently has been shown that such mean-field steps inPet) correspond to the times when the essentially
dynamics leads on average to nearly equal populations in all adiabatic dynamics of an excited-state switches to become
states?” so that asv — oo the electron will never be confined  adiabatic dynamics on the ground electronic state. Thus,
solely to a single state; in this limit, MF-SD should approach p,,(t) for w = 0.1 A is closely analogous to the excited-state
purely Ehrenfest dynamics. survival probability calculated in other surface hopping tech-

Figure 5 showed that either with very large or very small niques3® albeit with a different (and quite artificial) criterion

values ofw, the electron remains in the excited state for for the hops.
significantly longer than we saw with the intermediate value, = We have seen that different values wflead to distinct
w =4 A. Thus, in Figure 6, we study the-dependence of the  dynamics for the density matrix. How do these differences
average excited-state lifetime of the hydrated electron. The uppertranslate into a lifetime for the excited hydrated electron? Figure
panel of Figure 6A shows the average excited-state population,6B displays the mean lifetime as a functionwefor Gaussian
Pexdt) (eq 16), for the same three width parameters discussedwidths ranging from 0.1 up to 20 A, where each point is
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