Transformation of Germanium Dioxide to Microporous Germanate 4-Connected Nets

Hailian Li and O. M. Yaghi*

Department of Chemistry and Biochemistry
Arizona State University, Tempe, Arizona 85287-1604

Received July 7, 1998

Extensive research efforts worldwide continue to aim for new compositions and framework topologies of zeolites and related microporous crystalline materials due to their current widespread applications in catalysis and separation technologies1–3 and the advantages they present as platforms for the assembly of spatially organized molecular recognition systems.4,5 Although, 4-connected nets of zeolitic silicates and aluminosilicates represent a vast, well-established, and useful class of materials,6 the analogous germanates remain conspicuously absent and largely unexplored. We have employed a synthetic route similar to that employed for zeolites in the conversion of GeO2 to previously unknown, microporous germanate 4-connected nets. Here, two crystalline materials of GeO2 composition will be reported, namely, [GeO2]10-(DMA)(H2O), ASU-7, (DMA = dimethylamine), and [GeO2]10-(DABCO)(H2O), ASU-9, (DABCO = 1,4-diazabicyclo[2.2.2]-octane), with the first possessing a remarkable new zeolite-type net containing 1-D channels and the second adopting an octacasil net with large cages.

At the outset of this study, germanate framework structures have been limited to those constructed from combinations of tetrahedral GeO4, trigonal bipyramidal GeO5, and/or octahedral GeO6 centers7–10 with no 4-connected microporous structures based solely on the GeO2 tetrahedron reported yet. GeO2 (150 mg, 1.434 mmol) was dissolved in a 40% aqueous DMA (1.26 mL, 10.04 mmol) followed by the addition of pyridine (3.20 mL, 39.78 mmol) and 48 mg (0.478 mmol) was heated to 160 °C for 4 days and then cooled to room temperature to give 90 mg (56% yield based on GeO2) of ASU-7 as rodlike crystals (shown in Figure 1 for a selected sample). Octahedrally shaped crystals of ASU-9 (Figure 1) were obtained by a similar procedure. Here, GeO2 (50 mg, 0.478 mmol) and DABCO (250 mg, 2.232 mmol) were dissolved in water (0.45 mL) followed by the addition of pyridine (1.60 mL, 13.99 mmol) and 48–51% aqueous HF (0.02 mL, 0.572 mmol) and then the solution (pH = 10.6) was heated by a Teflon-lined vessel to 165 °C for 2 days and then cooled to room temperature to give 6 mg product (10% unoptimized yield based on GeO2).

Elemental microanalysis11 and single-crystal X-ray studies12 on the two crystals confirmed that these conditions are ideal for transforming the original condensed structure of GeO2 into 4-connected microporous nets having cubes and tetrahedra as building blocks (shown below). In both structures, the cubes are bridged by tetrahedral units that connect each of the eight corners, resulting in larger building units with distinct stereochemistry having the cubes either rotated by 45° or identically oriented with respect to other cubes along the same direction. The first arrangement belonging to ASU-7 yields a 4-connected net containing extended 1-D channels running along the crystallographic c-axis, where a single water molecule occupies the center of each cube and the DMA guest molecules reside in the channels (Figure 2). This is a new type of microporous net having the vertex symbols, 6+6+6+6 (vertex 1) and 4+6+4+6+4+6 (vertex 2, on cube).13a

To examine the stability of this network in the absence of the DMA guests, a sample (39.9 mg) of ASU-7 was heated in a thermal gravimetric apparatus to reveal a weight loss of 5.2% at 420–540 °C corresponding to the removal of DMA and water (5.7% calculated per formula unit). Decomposition of DMA

Figure 1. SEM images showing the morphology of as-synthesized crystals of ASU-7 and ASU-9.

Figure 2. The crystal structure of [GeO2]10-(DMA)(H2O), (ASU-7), shown along the crystallographic c-axis: green, O; blue, Ge. Four channels are shown with the DMA guests, and water molecules (within the germanate cubes) are omitted for clarity.

guests from the channels was further confirmed by comparison of the FT-IR and 13C CPMAS NMR spectra of the material before and after calcination (parts a and b of Figure 3), which showed a clear reduction in the v(N=H) IR band and the absence of any NMR resonances in the expected chemical-shift range for DMA. The crystalline nature of the calcined germanate framework and its structural stability was confirmed by the close coincidence observed between the XRPD patterns of the as-synthesized solid and that of the calcined solid.

To produce an extended cage framework, DABCO, which is a spherically shaped organic guest was used in an identical reaction mixture instead of DMA to yield ASU-9. Single-crystal X-ray analysis on this material reveals a germanate open octadecasil net topology as shown in Figure 4, where the DABCO guest molecules reside in the center of the octadecahedra, and a single water molecule occupies the center of each cube. DABCO cannot be removed from the cages without the destruction of the framework; at 250 °C, this material begins to decompose. The germanate net observed for ASU-9 is analogous to that found in the structure of AlPO$_4$-16.

It is worth noting that the typical Ge–O–Ge angle (ca. 130°) observed in these compounds is lower than that found in microporous silicates for Si–O–Si (ca. 146°), which points to the possibility of yielding microporous germanates with 3-ring secondary units, a structural property predicted to impart higher stability on open frameworks and seen as essential to the achievement of very porous nets but as yet found to be rare in zeolitic networks. Given that the synthetic strategy developed for producing ASU-7 and ASU-9 produces a germanate gel prior to applying the heating program and the facility with which the ultimate structure can be modulated by addition of the appropriate organic guest coupled to the accessibility of favorable angles for open nets, the full-development of this area is anticipated.

Acknowledgment. This work was supported by the National Science Foundation [CHE-9702131]. We thank Dr. Fred Hollander for the crystallography and Professor M. O’Keeffe for invaluable discussions.

Supporting Information Available: Crystallographic data for ASU-7 and ASU-9, including crystal structure analysis report, positional parameters, thermal parameters, and interatomic distances and angles (28 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA982384N

Figure 4. A fragment of crystal structure of [GeO$_2$]$_{10}$(DABCO)(H$_2$O), ASU-9, showing how the germanate octadecahedron is filled with disordered DABCO guests (gray): green; O; blue, Ge. Water molecules within the germanate cubes are omitted for clarity.