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Abstract

Symmetrical charge-delocalized intervalence radical ions should not be described by the traditional two-state model that has been so
successful for their localized counterparts. If they lack direct overlap between their charge-bearing units (M), their diabatic orbitals have
an equal energy pair of symmetrized M-centered combination orbitals that are symmetric (S) or antisymmetric (A) with respect to a sym-
metry element at the center of the molecule. The M combination orbitals will mix separately with bridge orbitals of the same symmetry. We
call the simplest useful model for this situation the neighboring orbital model, which uses the S and A bridge orbitals of high overlap that
lie closest in energy to the M orbital pair, resulting in two two-state models that have a common energy for one pair. This model is devel-
oped quantitatively, and examples having 1, 3, 5, and 7 electrons in the neighboring orbitals are illustrated.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Marcus-Hush; Electronic coupling; Koopmans’ theorem; Radical ions; Intervalence compounds; Neighboring orbital model
1. Introduction

Two-state theory was first applied by Hush to localized
symmetrical intervalence compounds [1], which may be
characterized as having two charge-bearing units M

attached symmetrically to a bridge B, and being at an oxi-
dation level for which the M units might have different
charges, that is +1 or �1 for neutral M and B groups.
Robin-Day Class II [2] compounds may be usefully
described as M+/�–B–M systems, with one oxidized or
reduced M group, and two-state theory is extremely suc-
cessful for interpreting their optical spectra. Two-state the-
ory predicts that the transition energy for the intervalence
band of a delocalized (Class III) intervalence compound,
a compound usefully described as M+/�1/2–B–M+/�1/2, will
be equal to twice the electronic coupling (off-diagonal
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matrix coupling element), called Vab here. We believe that
this was first explicitly pointed out in the 1983 review
of intervalence compounds by Creutz [3]. Ratner stated
in 1990 that ‘‘half the splitting between the lowest empty
and highest occupied molecular orbitals’’ is what is
implied for Vab by the ‘‘simple two-site Hückel-type
model’’, and that it would only apply if Vab were large
[4]. The use of Koopmans’ theorem to evaluate the Vab

of electron-transfer theory was independently employed
for H2N–ðCH2Þn–NHþ2 by Broo and Larsson [5] and for
bond-linked alkenes by Paddon-Row and Wong in 1990
[6]. It has been used extensively to calculate electronic
couplings, for example by the groups of Larsson [7–12],
Paddon-Row and Jordan [13–17], Newton [18–20], Curtiss
[21–23], Li [24–27], Brèdas [28], and Nelsen [29–33].

We recently became aware of a problem with equating
the transition energy for a Class III intervalence compound
with Vab. It is not numerically correct because the simple
two-state model does not apply unaltered to any delocalized
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intervalence compound. A symmetric delocalized interva-
lence compound has all its orbitals either symmetric or anti-
symmetric (S or A) with respect to a symmetry element at
the center of the molecule. The charge-bearing unit (M) S

and A symmetrized diabatic orbitals will be isoenergetic
when they do not overlap significantly with each other,
which is typically the case. The bridge diabatic S and A

orbitals that are closest in energy to the M orbitals (so that
their interactions with them will be the largest) will lie at
quite different energies, and the S and A M and B diabatic
orbitals will interact separately with each other to produce
four adiabatic orbitals. Thus the simplest realistic model
for a Class III intervalence compound has two interpene-
trating two-state models that may contain one, three, five,
or seven electrons (using a ROHF model that employs
two electron orbitals). This situation is clearly shown, for
instance, in Fig. 2 of Joachim, Launay, and Woitellier’s
paper on bridged ruthenium pentamine intervalence com-
pounds [34]. They label the energy separation between the
highest doubly filled and the singly-occupied adiabatic orbi-
tals as 2Vab, although some qualifying phrases that both the
effects of interaction with the bridge highest occupied and
lowest unoccupied molecular orbitals (homo and lumo) are
present are also given in the text. The equation of the inter-
valence transition energy with 2Vab has also been accepted
by the authors of Refs. [3–34].
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In this paper we emphasize that because the intervalence
transition is between orbitals of different symmetry, both
diabatic energy differences and electronic couplings con-
tribute to the ‘‘intervalence’’ transition energy of delocal-
ized compounds, which should not be considered as
being ‘‘2Vab’’ in any quantitative sense. We also illustrate
the 1–7 electron neighboring orbital cases with examples,
show a method for extracting V values from calculated dia-
batic energies of the neighboring orbitals, and briefly dis-
cuss systems for which two-state diabatic displaced
parabola models are useful for excited states instead of
ground states.
2. Results: one- to seven-electron neighboring orbital systems

As noted above, the S and A bridge combination
orbitals will mix separately with various S and A bridge
orbitals. The mixing will be largest for the diabatic
bridge orbitals that are closest in energy to the diabatic
M combination orbitals, which will be at the same
energy if there is negligible direct overlap between the
M orbitals, as is often the case. We will call these four
diabatic orbitals the neighboring orbital system. The sim-
plest reasonable analysis to extract electronic coupling
will therefore involve two separate two-state systems,
each having its own electronic coupling, that are related
by the diabatic M combination orbitals having the same
energy. It seems easiest to consider that the charge and
hence the unshared electron is on the M groups,
although the charge is shared by the M groups and the
bridge in all delocalized cases. The two bridge neighbor-
ing orbitals can therefore have zero, two or four elec-
trons, depending upon whether its orbitals that are
closest in energy to the M pair are both virtual, one vir-
tual and one occupied, or both occupied. Similarly, the
pair of diabatic M orbitals has an odd number of elec-
trons, either one or three. The four diabatic neighboring
orbitals will mix to produce four adiabatic neighboring
orbitals, that we label E1 to E4 in order of increasing
energy. These neighboring orbitals can hold one, three,
five, or seven electrons for the Class III intervalence
compounds under discussion. We will first illustrate
examples of these four possibilities, which can be done
using benzene-1,4-diyl and biphenyl-4,4 0-diyl bridges,
and M = NO2 radical anions and NMe2 radical cations,
compounds 1�� to 4�+.
The optical spectra of several dinitroaromatic com-
pounds have been recently discussed in detail, first in terms
of a two-state analysis [33], and later using a neighboring
orbital analysis [35]. Since nitro groups are far more easily
reduced than aromatic rings, the odd electron goes into the



Fig. 1. Orbital drawings for 1��, a one-electron neighboring orbital
system.

Fig. 2. Neighboring orbital drawings for 2��, a three-electron neighboring
orbital system.
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lowest unoccupied nitro group combination orbital, as
indicated on the left of Figs. 1 and 2. These drawings show
the adiabatic orbitals obtained using UB3LYP/6-31G* cal-
culations in the center. The M diabatic combination orbital
energies are indicated on the left, and the bridge diabatic
orbitals that interact with them on the right (drawings of
the corresponding orbitals for benzene and untwisted
biphenyl are used for the pictures). The diabatic orbital
energies were calculated by the method described in detail
below. For 1��, the energies of two adiabatic orbitals that
occur in the same general region as E3 are given, with small
drawings of these orbitals to the left of their energy posi-
tion. They are not part of the neighboring orbital system
because of the nodes passing through the C4–N positions,
so there is no overlap with the nitro group lumo combina-
tion that bears the odd electron. The lowest adiabatic
energy orbital shown in Fig. 1 is also not part of the neigh-
boring orbital system. It has strong C4N overlap, but there
is not a corresponding orbital having C4N nodes using the
same biphenylene orbital as this C4N bonding orbital. The
neighboring orbital system has bonding/antibonding pairs
that use the same bridge orbital, indicated as E1 and E3

(shown connected in blue throughout this paper) and E2

and E4 (shown connected in red). Both the biphenylene
orbitals used in the neighboring orbital system are virtual,
so there is only one neighboring orbital electron in 1��.
Fig. 2 shows the corresponding diagram for 2��. For it
the antisymmetric virtual bridge orbital that can interact
with the dinitro radical anion diabatic orbital lies so high
in energy that the filled antisymmetric orbital shown has
a larger interaction, although the energy difference between
these orbitals is so great that the lower energy combination
is very much concentrated on the bridge and the upper
energy one is very much concentrated on the nitro groups.
Because one filled bridge orbital has been used, the neigh-
boring orbital system has three electrons for 2��.

Five and seven-electron neighboring orbital systems
having the same bridges with M = NMe2 and a +1 molec-
ular charge are shown in Figs. 3 and 4. A resonance Raman
study of a protected tetraalkyl p-phenylenediamine was dis-
cussed in terms of the two-state model [32], and the spectra
of a protected version of 4�+ and six compounds having
ortho, ortho’ bridging are considered using the neighboring
orbital model elsewhere [36]. Two orbitals that have 1,
4-nodes and thus are not part of the neighboring orbital
system are also shown for 3�+ in Fig. 3. 3�+ uses one filled
p-phenylene orbital and one virtual one, which has a large
energy gap from the three-quarters filled diabatic N-p orbi-
tal centered pair of orbitals, and hence very little electronic
coupling. The only bridge p orbital that could interact with
the N-centered orbitals is the very stabilized no node one.



Fig. 3. Orbital drawings for 3�+, a five-electron neighboring orbital
system.

Fig. 4. Neighboring orbital drawings for 4�+, a seven-electron neighboring
orbital system.
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Because there are three electrons in the diabatic NMe2 p
orbital pair (considering the charge-bearing units as bear-
ing the charge), there are five neighboring orbital electrons
for 3�+. Going to the 4,4 0-biphenyl bridge of 4�+ provides a
much less stabilized symmetric orbital for interaction with
the diabatic NMe2 p orbital pair, and this system has seven
neighboring orbital electrons.

3. Results: obtaining diabatic orbital energies

The low energy transitions in radical ions are dominated
by either Type A transitions, filled orbital to singly-occu-
pied molecular orbital (somo) or Type B transitions, somo

to virtual orbital transitions (using the two electron orbital
nomenclature of this paper, which although not quite cor-
rect because there are no two electron orbitals in radical
ions, is convenient), as pointed out long ago by Hoijtink
[37,38]. Thus all three optical transitions that could deter-
mine the energies of the neighboring orbitals are Type B
for 1-e systems, but they are both type A and type B for
3-e and 5-e systems, and all are type A for 7-e systems.
However, there are seemingly insurmountable problems
in determining the energies of the neighboring orbitals
experimentally. In each case, one of the necessary transi-
tions is between orbitals of the same symmetry and thus
forbidden, so its intensity will be vanishingly small. Fur-
thermore, configuration interaction is known to be signifi-
cant for many optical transitions, so the experimental
transition energies do not directly correspond to the orbital
energy differences anyway. We therefore use Koopmans-
based methods to determine the neighboring orbital energy
gaps. We pointed out long ago that the orbital energy gap
between the homo-1 and the homo orbitals for a hydrazine
radical cation calculated with no charge (neutral in cation
geometry) is an excellent approximation to the transition
energy calculated by more sophisticated methods [39],
and energy gaps calculated in this way correspond to Type
A transitions. We only recently realized that calculating the
dication at cation geometry for a radical cation produces
the Type B transition energies, in the context of calculating
the neutral in radical anion geometry for dinitroaromatic
systems [40]. These calculations do not include configura-
tion interaction effects, so they can be argued to actually
be better for the purpose of obtaining the true diabatic
energies than using real transition energies, which are
unquestionably affected by configuration interaction. We
are currently testing a variety of systems to see how well
these Koopmans-based calculations do at predicting opti-
cal spectra, and shall not go into this aspect in detail here,
because different systems will obviously be calculated with
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different degrees of success. For the present paper, we will
simply assume that Koopmans-based calculations give a
good enough description of the adiabatic orbital positions
to warrant analyzing them, which we believe we have estab-
lished experimentally for both dinitro-substituted [35] and
dialkylamino-substituted [36] Class III compounds. It will
be noted that the adiabatic orbital separations are only
obtained relative to the somo, so that comparison of neigh-
boring orbital systems with different numbers of electrons
is difficult, and we shall not attempt to do it here.

4. Neighboring orbital model

A simple physical representation that is relevant to M–
B–M type molecules called the neighboring orbital model
is shown in Fig. 5.

The coupling between the M units is mediated by neigh-
boring orbitals from the intervening bridge unit. Because
the though-bond coupling occurs via p interactions for
the molecules addressed in this paper, this analysis focuses
on the mixing of M unit p molecular orbitals with the
appropriate p orbitals of the bridge. The most important
of those orbitals are those closest in energy to the M unit
orbitals because mixing will be greatest. The two M unit
orbitals are degenerate because direct overlap between
them is negligible, and in the absence of coupling they
can be represented either by the p system of M on the left
and that of M on the right, or by linear combinations of the
left and right p systems. The linear combinations are in
phase pM + pM or out of phase pM � pM. The bridge orbi-
tals of interest are the p bonding and the p antibonding
orbitals with the same symmetries and similar energies as
the M p systems. These bridge p orbitals must have non-
zero overlap with the M p systems for mixing to occur.
The bridge p bonding orbital has the appropriate symmetry
to mix with the in-phase combination, pM + pM and the
bridge p antibonding orbital has the appropriate symmetry
to mix with the out-of-phase combination, pM � pM. When
the orbitals of the same symmetry mix, the degeneracy of
the linear combinations, pM + pM and pM � pM is
removed.

The energies of the orbitals in Fig. 5 can be represented
by the following energy matrix:
Hbb

HU
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Fig. 5. Diagrammatic representation of neighboring orbital model.
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Diabatic energy HL belongs to the p bonding bridge orbital
and energy HU is associated with the p antibonding orbital
of the bridge. In this unsymmetrized basis, the energy Hbb

in column 2 belongs to the pM orbital on the left and the
energy Hbb in column 3 belongs to the pM orbital on the
right. In the phase convention used here, both orbitals
intrinsically have the same phase. In the diabatic basis,
the phase of the p bonding bridge orbital is the same as that
of the pM orbitals. In other words, the all-positive linear
combination of these orbitals results in the node-less bond-
ing molecular orbital. Because orbital mixing involves the
symmetric and asymmetric linear combinations of the pM

orbitals, it is more convenient to transform the diabatic en-
ergy matrix to the symmetrized form, T�1HunsymT = Hsym

H sym ¼

HL V L 0 0

V L Hbb 0 0

0 0 H bb V U

0 0 V U HU

0
BBB@

1
CCCA ð2Þ

using the transformation matrix

T�1 ¼

1 0 0 0

0 1ffiffi
2
p � 1ffiffi

2
p 0

0 1ffiffi
2
p 1ffiffi

2
p 0

0 0 0 1

0
BBB@

1
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Now the energy Hbb in column 2 belongs to the symmetric
combination of pM orbitals with the same phase as p bond-
ing bridge orbital and the energy Hbb in column 3 belongs to
the asymmetric combination (see Fig. 5 for relative phase).
The off diagonal VL terms effectively mix HL with Hbb and
the VU mixes Hbb with HU. The transformation to the adi-
abatic basis U�1HsymU = E uses the transformation matrix

U�1 ¼

cos h sin h 0 0

� sin h cos h 0 0

0 0 cos / sin /

0 0 � sin / cos /

0
BBB@

1
CCCA ð4Þ

where tan 2h ¼ 2V L

Hbb�HL and tan / ¼ 2V U

HU�Hbb
. The wavefunc-

tions after transformation into the adiabatic basis are

W1 ¼ cosðhÞwa þ
1ffiffiffi
2
p sinðhÞðwL

b þ wR
b Þ ð5Þ

W2 ¼ sinðhÞwc þ
1ffiffiffi
2
p cosðhÞð�wL

b þ wR
b Þ ð6Þ

W3 ¼ � sinð/Þwa þ
1ffiffiffi
2
p cosð/ÞðwL

b þ wR
b Þ ð7Þ

W4 ¼ cosð/Þwc þ
1ffiffiffi
2
p sinð/ÞðwL

b � wR
b Þ ð8Þ
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where wa and wc represent the NN bonding and antibond-
ing orbitals, respectively, and wL

b and wR
b represent the p

system on the left and right, respectively. The eigenvalues
or adiabatic energies associated with these wavefunctions
are as follows:

E1 ¼ 1=2ðHL þ H bb � ½ðDELÞ2 þ 4ðV LÞ2�1=2Þ ð9Þ
E3 ¼ 1=2ðHL þ H bb þ ½ðDELÞ2 þ 4ðV LÞ2�1=2Þ ð10Þ
E2 ¼ 1=2ðHbb þ H U � ½ðDEU Þ2 þ 4ðV UÞ2�1=2Þ ð11Þ
E4 ¼ 1=2ðHbb þ H U þ ½ðDEU Þ2 þ 4ðV UÞ2�1=2Þ ð12Þ

where DEU = HU � Hbb and DEL = Hbb � HL. It is impor-
tant to note that energies E1 and E3 are associated with the
top block diagonalized part of Hsym whereas energies E2

and E4 pertain to the bottom block.
The trace and determinant of a matrix are invariant

when undergoing a similarity transform. Using these
matrix properties, the diabatic orbital energies can be
derived from Eqs. (9)–(12) giving

HL ¼ 1=2ðE1 þ E3 � ½ðE1 þ E3Þ2 � 4ððV LÞ2 þ E1E3Þ�1=2Þ
ð13Þ

Hbb ¼ E1 þ E3 � H L ð14Þ
Hbb ¼ E2 þ E4 � H U ð15Þ
HU ¼ 1=2ðE2 þ E4 � ½ðE2 þ E4Þ2 � 4ððV UÞ2 þ E2E4Þ�1=2Þ

ð16Þ

These can be solved if the relationship between VL and
VU is known. The approximation made for this work is
that the coupling is inversely proportional to the difference
in energy between the two diabatic orbitals that are mixing,
i.e.

V L

V U ¼
DEU

DEL ð17Þ

The adiabatic state energies, E1 � E4 lie in the opposite or-
der of the orbital energies. Relating the resulting adiabatic
state energies derived using the neighboring orbital analysis
to the two-state model, it is easy to see that ‘‘2Vab’’ in the
two-state model is equal to the difference between the E3

and E2, which in turn can be expressed in terms of the three
diabatic orbital energies, HL, Hbb, HU, and the off-diagonal
orbital mixing terms, VU and VL (see (18)).

H eff ¼ E3 � E2

¼ 1=2ðH L � HU þ ½ðDELÞ2 þ 4ðV LÞ2�1=2

þ ½ðDEUÞ2 þ 4ðV U Þ2�1=2Þ ð18Þ

This quantity should not be referred to simply as an elec-
tronic coupling.

5. Ground versus excited state mixed valence

Mixed valence can occur in either the ground state or
the excited state. Tetramethyl p-phenylenediamine radical
cation 3�+ is the classical organic example of ground state
mixed valence (GMV). Amines are much easier to oxidize
than aromatic rings, so the charge can be considered to
mostly reside on the dimethylamino M groups, although
some is also delocalized onto the bridge. 3�+ is a Class III
compound, so both of the M-centered resonance structures
shown are necessary to properly represent the charge distri-
bution. 2,3-diphenyl-2,3-diazabicyclo[2.2.2]octane radical
cation, 5�+, is an example of an excited state mixed valence
(EMV) compound that uses similar building blocks in
inverted order. The hydrazine bridge of 5�+ is much more
easily oxidized than its M group phenyl rings, so the single
resonance structure shown provides a reasonable descrip-
tion of the radical cation, although there is obviously some
charge delocalization onto the aryl groups. The phenyl
group filled orbitals interacting with the NN p electrons
are significantly lower in energy than the antibonding
NN p bond orbital bearing the unpaired electron, so 5�+

is a seven-electron neighboring orbital system. Electronic
excitation of 5�+ causes charge-transfer from the phenyl
groups to the bridge, which results in a useful Marcus-
Hush type displaced double well diabatic surface descrip-
tion for the excited state, resulting in a splitting of the
excited state compared to a monophenyl analogue, as we
have described in detail elsewhere [41]. The relative
amounts of charge on the M groups and bridge for a class
III compound will obviously vary with M and B, and
intermediate cases would require quantitative knowledge
of the diabatic energy levels to classify as GMV, EMV,
or intermediate.
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MeMe
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N

+
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EMV can also occur for other electron counts in neigh-
boring orbital systems. This is conceptually easy to imagine
as involving photo-electron-transfer from either nitro
group of a dinitro radical anion to the bridge. We have also
shown that EMV occurs for the non-intervalence oxidation
levels of aromatic-bridged bis(hydrazines), both in their
neutral [42] and dication [43] oxidation levels.
6. Conclusions

The neighboring orbital model provides a simple and
economical way of estimating the electronic couplings for
delocalized intervalence compounds. Our numerical results
for aromatic bridged dinitro radical anions [35] and com-
pounds related to benzidine [36] are discussed in detail else-
where. Applying the two-state model to such systems
substantially underestimates the larger coupling of the
two involved in the neighboring orbital model.
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It is obviously important to be able to predict when
intervalence systems will localize their charge. This is triv-
ial using the two-state model – it is when k/2 exceeds Vab.
Relating the VU, VL, DEU and DEU of the neighboring
orbital model to the Vab and k of the two-state model is
not simple, and we do not yet know how to do it. It pres-
ently appears that neither of the neighboring orbital cou-
plings can be directly related to charge localization. We
hope to approach this problem experimentally by using
intervalence systems that are so delicately balanced at
the Class II, Class III borderline that the Class II spec-
trum (for which Hush’s familiar Eop = k and intensity
successfully predict Vab) is observed in high ks solvents,
and the Class III spectrum (for which the neighboring
orbital analysis may be used) is observed in low ks sol-
vents. We recently reported the first system to show this
behavior in collaboration with J. P. Telo, pseudo-para
dinitro[2.2]paracyclophane radical anion [44]. This system
clearly has direct overlap between the charge-bearing
units, making a basic assumption of the neighboring orbi-
tal model presented here invalid. We hope to report stud-
ies on systems which allow quantitative comparisons in
the future.
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