CONSTRAINED PHASE MONTE CARLO
AND FINITE SIZE EFFECTS IN
FERMION SIMULATIONS

J. E. Gubernatis

Theoretical Division
Los Alamos National Laboratory

Collaborators

J. Carlson (LANL)
M. Guerrero (LANL)
G. Ortiz (LANL)
H.-Q. Lin (CUHK)
J. Bon&a (1JS)

Outline

Introduction: |

Constrained Phase Monte Carlo Method
Introduction: |l

Finite Size Effects



INTRODUCTION: |

Objective

Simulate the ground-state properties of fermion lattice models in
the presence of an applied magnetic field.

e The National High Magnetic Field Laboratory at Los Alamos.

Approach

Constrained-Phase Monte Carlo method (new)

e An applied magnetic field explicitly breaks time-reversal in-
variance which requires the ground-state wave-functions to be
complex valued.

e Monte Carlo methods need to sample from a complex-valued
distribution function.

> Sign problem is replaced by a phase problem.

e The approach is extendible to quantum chemistry and nuclear
shell model calculations.



Hubbard Model

e [he tU Hubbard Hamiltonian

H=— Z t; CZUCJU—{—UanTnu
(ij).0

e The negative U model means U < 0.

e The presence of an externally applied magnetic field means
e i
tij=1t— texp<%/i A . dl)

where A is the vector potential.

With no field and at zero temperature, the two-dimensional negative
U Hubbard model in the thermodynamic limit is believed to be a
gapless s-wave superconductor.

e What does the Meissner effect look like in a fermion lattice
model?

e How does one define a penetration depth?

e FEtc.



Initial Issues

e Accuracy of the constrained-phase method.

e Behavior of the model’'s superconducting properties in the ab-
sence of an applied field.

Troublesome Questions

e How accurate is the BCS approximation?
e How smooth is the scaling from finite-size to the bulk?

> At what system size do we see “true” superconducting
behavior?



CONSTRAINED PHASE MONTE CARLO

Background

An applied magnetic field explicitly breaks time-reversal symmetry
and requires the ground-state wavefunction necessarily to be com-
plex valued.

Problem

Projector Monte Carlo (T=0) methods now need to sample from
complex-valued “probability distributions.”

e The sign problem is replaced by a phase problem.

e Propagator and wave functions are complex valued.

Solution

Instead of fixing nodes or constraining paths, one constrains phases
(or fixes phases?).

1G. Ortiz, D.M. Ceperley, and R.M. Martin, Phys. Rev. Lett.
71, 2777 (1993).



Sign Problem: CPMC method (real-valued states)

Main Features

e Projects the ground-state from some |¥y)

e Proceeds via a branched random walk in a space of Slater
determinants |¢)

> A type of stochastic configuration interaction method

¢ The ground state
[%o) = 2(,5: col9)

where cy > 0.

o The Monte Carlo methods samples from the distribu-
tion defined by {c,}.

e Removes at any Monte Carlo step any |¢) that violates
(Ur|p) >0

e Becomes exact if |¥Uy) is exact

Key Characteristics

e Eliminates the exponential growth in variance due to the “sign”
problem

e Produces excellent estimates of the energy

e Produces very good estimates of correlation functions



Method Summary

Generally, in a QMC method projector method, one iterates

|¢I> — e—ATle)
after using a Trotter approximation (H=K+V)

e—ATH ~ e—ATK/Ze—ATVe—ATK/2 ~ e—ATV/Ze—ATKe—ATV/2

and a Hubbard-Stratonovich transformation

_1m?

1 5
e 2 :E/dxe_%m w0

to convert
e — [ d& P(&)B(7)
where

[d#P(z) =1

and B(Z) is the product of exponentials of one-body operators.

In the CPMC method, one iterates
|¢') = [ d# P(#)0(%)B(%)|¢)
where the constraining operator

O(f) :{ 1, if <¢T|¢> >0

0, otherwise



Phase Problem: C¢MC method (complex-valued states)

As before one iterates
|¢) = [ d P(2)0(2)B(2)|9)

but now

(vr|p)”
(Ur|d)

0@) =51+

1 .
— -1 —210]
2[ te

Consequences

e If |¢r) = |1bg), then the method is exact.

e If there is no phase problem, then the method is exact.

e Imaginary-time “Schrodinger’s” equation becomes
Olte)
37_ — effld)c)

where H Is a non-Hermitian operator.

Mixed estimator

(Or|H|pe) | (r|Hes|[e)
Re{ (orlibe) }— (or|ie)

= Ee

Unresolved
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INTRODUCTION: I

Condensed-Matter Physics

e Of secondary interest — energy

e Of primary interest — correlation functions

Broken Symmetry in Many-Body Ground States

e Broken symmetry means the many-body ground state has lower
symmetry than the Hamiltonian H

e Broken symmetry implies long-range order (LRO).

Long-Range Order
If O is the Fourier transform of some local order parameter O(7)
and h is the symmetry breaking field, then LRO exists

o if H, = H — hOq and

lim lim N™YOq(h, N))g, # 0

h—0t N—oo

e or else if

lim lim (O()OT(4))g # 0

li—j|—00 N—oo
When a continuous symmetry is broken, LRO can exist only at

T=0ifd<3.

To study LRO by QMC, one needs to simulate systems of succes-
sively increasing size.



Shell Behavior
2D Positive U Hubbard Model
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FINITE-SIZE EFFECTS

Characteristic of finite-sized fermions systems are shell effects. These
are seem in numerical simulations.

Numerical Evidence

e Quantum Monte Carlo: CPMC and/or AFQMC Also
seen in
> tU Hubbard model contin-
> tt'U Hubbard Model i
models,
> periodic Anderson model (a 2 band Hubbard model) e.g., the
electron

> cuprate model (a 3 band Hubbard model)

gas!

e Exact Diagonalization

> tU Hubbard model
> tt'U Hubbard Model

> tJ model (strong-coupling approximation to tU Hubbard
model)

Fact
Quantum Monte Carlo and especially exact diagonalization are lim-
ited to relatively small system sizes.

Issues

e Absence of monotonic size dependence for some properties
e Presence of improper signatures for LRO

e Absence of proper signatures for LRO
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Negative U Hubbard Model with No Field

BCS Approximation

e quantitatively useful at weak and strong coupling and at dilute
electron densities

e overestimates the magnitude of the order parameter
> On site, s-wave order parameter: Ay(7) = circj)
e shows significant finite-size effects

e always shows ODLRO

QMC Results

e obtained with no sign problem
e establish BCS approximation estimates energies reasonably

e restrict the utility of the BCS approximation at (n) = 1/4 to
~1.0<U <00

e have yet established ODLRO; i.e.,

li_l;lrgoo Z\lfl—Igo P(|i — j|) = positive constant

where Py(|i — j|) = (A,(¢)Al(4))

> significant finite-size effects

o 4dm x dm/(4m + 2) X (4m + 2) effects?
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SUMMARY

The Constrained Phase method appears promising.

e presently being benchmarked for larger sizes against DMRG
predictions

From comparisons with exact QMC results, the physics of the 2D
negative U Hubbard model is in general only qualitatively described
by the BCS wavefunction.

In general this physics shows
e significant finite-size effects

which are inhibiting seeing ODLRO.?

Exhibition of superconducting properties requires the spac-
ing in the energy levels near the “Fermi surface” to be
smaller than the superconducting energy gap (Anderson,

1959).

2cf. Scalettar, et al. PRL 62, 1407 (1989).



