Organic chemistry just now is enough to drive one mad. It gives me the impression of a primeval forest full of the most remarkable things, a monstrous and boundless thicket, with no way of escape, into which one may well dread to enter.” – Friedrich Wöhler (1835)
Q1. Using the appropriate reagents and conditions, 2,2-dimethylbutane (A) can be transformed into compound B, which, in turn, can be converted into compound C. Three constitutionally isomeric alcohols (D, E, and F) can then be made separately from compound C, depending upon what reaction conditions are chosen. Draw appropriate structures for compounds B and C, and suggest the reagents and conditions that are necessary for each transformation shown on the page (boxes 1 through 5). Note: some boxes require two-step reactions, and the reagents and conditions you choose must yield the desired compound as the MAJOR product. (20 points)
Q2. Propose a reasonable mechanism that accounts for the transformation of 2-cyclobutylpropene (A) into 1-chloro-1,2-dimethylcyclopentane (B) as depicted in the box below – SHOW ALL STEPS AND EXPLAIN EACH ONE WITH A FEW WORDS. (15 points)
Q3. Consider the reactions (A and B) of trans- and cis-1-chloro-2-thiophenylcyclohexane with water in ethanolic solution. The reaction (A) of the trans isomer is a million times faster than the reaction (B) of the cis isomer, and perhaps somewhat surprisingly, both reactions give the same product, namely a racemic mixture of the trans-diastereoisomer of 1-thiophenylcyclohexan-2-ol – in neither reaction is any of the cis-diastereoisomer formed.

\[\text{trans} \quad \text{(A)} \quad \text{cis} \quad \text{(B)} \]

\[
\begin{align*}
\text{trans} & \quad \text{cis} \\
\text{Cl} & \quad \text{Cl} \\
\text{Ph} & \quad \text{Ph} \\
\end{align*}
\]

\[\text{H}_2\text{O} \quad \text{EtOH} \quad \text{EtOH} \]

\[k_{\text{rel}} = 10^6 \quad k_{\text{rel}} = 1 \]

(a) From the significant difference in reaction rate, it is apparent that reactions A and B proceed through different mechanisms, DESPITE THE FACT THAT THEY SHARE A COMMON INTERMEDIATE. In the box to the right, draw the structure of the intermediate that is common to both pathways. (3 points)

(b) Starting from the MOST STABLE CHAIR CONFORMATION of trans-1-chloro-2-thiophenylcyclohexane, draw a mechanism showing how reaction A arrives at the reaction intermediate you drew above. Briefly explain each step with a few words. (8 points)

Question 3 is continued on the next page...
(c) Starting from a simple flat representation of cis-1-chloro-2-thiophenylcyclohexane (as drawn in the reactions at the top of the previous page), draw a mechanism showing how reaction B arrives at the reaction intermediate you drew above. Briefly explain each step with a few words. (8 points)

(d) Draw a mechanism showing how the intermediate common to reactions A and B is converted into a racemic mixture of trans-1-thiophenylcyclohexan-2-ol. (6 points)

(e) Using words and illustrations as appropriate, explain why reaction A is a million times faster than reaction B, i.e., why can't the cis-isomer of the starting material react via the same mechanism as the trans-isomer? (5 points)
Q4. Answer the following questions about ELIMINATION REACTIONS: (4 + 1 points each)

(a) For each of the three reactions shown below, predict the MAJOR ELIMINATION PRODUCT. In each case, indicate if the reaction proceeds via an E1 or E2 mechanism in the small box to the right.

![Reaction 1 Diagram]

![Reaction 2 Diagram]

![Reaction 3 Diagram]

(b) For both of the reactions shown below, predict the MAJOR ELIMINATION PRODUCT – carefully indicating the position of the deuterium atom (if present). In each case, indicate if the reaction proceeds with SYN, ANTI, or NO stereospecificity in the small box to the right.

![Reaction 4 Diagram]

![Reaction 5 Diagram]
Q5. You are given a sample vial that is labeled “achiral alkyl halide A” and are told to determine the identity of the compound and some of its derivatives. A combustion analysis of A shows the molecular formula to be C_{10}H_{17}Br. (20 points)

— Treatment of A with ethanolic potassium hydroxide gives two different compounds (B and C) each with the formula C_{10}H_{16}.

\[
\begin{align*}
A & \xrightarrow{\text{KOH}} B + C \\
\text{C}_{10}\text{H}_{17}\text{Br} & \text{C}_{10}\text{H}_{16} \quad \text{C}_{10}\text{H}_{16}
\end{align*}
\]

— Ozonolysis of A gives a product mixture containing some 2-propanone (acetone)

\[
\begin{align*}
A & \xrightarrow{(i) \text{O}_3} \text{Unidentified halogen} \\
& \xrightarrow{(ii) \text{Me}_2\text{S}} \text{containing material}
\end{align*}
\]

— Dissolving A in H_2O/EtOH rapidly gives an acidic solution that contains bromide ions (AgBr precipitates upon addition of AgNO_3)

— Bromination of A (Br_2/CCl_4) gives two compounds (D and E) that can be separated, and each shown to be achiral

— Catalytic hydrogenation of either B or C, results in a mixture of cis- and trans-1-methyl-4-isopropylcyclohexane

\[
\begin{align*}
\text{B or C} & \xrightarrow{\text{H}_2 \text{Pt}} \text{cis-1-methyl-4-isopropylcyclohexane} \quad + \\
& \text{trans-1-methyl-4-isopropylcyclohexane}
\end{align*}
\]

— Ozonolysis of B gives a product mixture containing some 1,4-cyclohexanedione, but ozonolysis of C gives a mixture of products that DOES NOT contain any of this compound

\[
\begin{align*}
B & \xrightarrow{(i) \text{O}_3} \text{1,4-cyclohexanedione} \quad + \quad \text{Other products} \\
& \xrightarrow{(ii) \text{Me}_2\text{S}} \text{Other products}
\end{align*}
\]

\[
\begin{align*}
C & \xrightarrow{(i) \text{O}_3} \text{1,4-cyclohexanedione} \quad + \quad \text{Other products} \\
& \xrightarrow{(ii) \text{Me}_2\text{S}} \text{Other products}
\end{align*}
\]

— What are the structures of compounds A, B, C, D, and E?
Q6. For each of the reactions shown below draw the MAJOR PRODUCT (paying particular attention to any appropriate stereochemical relationships) in the boxes provided. Note: for two-step reactions, just give the final product, DO NOT draw intermediates. Some of these reactions may yield a pair of enantiomers, and in these cases, draw both of them. If a reaction produces a single enantiomer, assign its configuration as either R or S, depending upon which enantiomer is formed. (40 points)

(a) \[\text{Heat} \]

(b) \[\text{HBr} \text{ ether} \]

(c) \[\text{(i) HBr / ether} \] \[\text{(ii) NaOEt / EtOH} \]

(d) \[\text{(i) BH}_3\cdot\text{THF} \] \[\text{(ii) NaOH / H}_2\text{O}_2 \]

(e) \[\text{NaSMe} \text{ DMSO} \]

Question 6 is continued on the next page...
(f) \[\text{excess } \text{D}_2 \]

(g) \[\text{Pt} \]

(h) \[\text{Product contains } \text{C=C} \]

(i) \[\text{osmium tetroxide (OsO}_4\text{)} \]

(j) \[\text{Mercuric sulfate (HgSO}_4\text{)} \]

\[\text{H}_2\text{SO}_4 / \text{H}_2\text{O} \]
Q7. Answer the following questions about SUBSTITUTION REACTIONS: (30 points)

(a) The rates of the S_N1 solvolysis reactions of the three alkyl bromides shown below (A, B, and C) differ dramatically – C reacts a million times faster than B, which, in turn, reacts a million times faster than A (which reacts so slowly, it essentially doesn’t happen at all). Explain this trend in the box below.

(b) Tertiary amines (R$_3$N) react with ethyl iodide in S_N2 reactions to form quaternary ammonium iodide salts. The two tertiary amines shown below (D and E) react at substantially different rates – E reacts about 250 times faster than D. Explain this trend in the box below.

Question 7 is continued on the next page...
(c) The rates of the $\text{S}_\text{N}2$ reactions of certain cycloalkyl bromides with NaCN in DMSO are shown below – cyclopropyl bromide reacts 100 times slower than cyclobutyl bromide, which in turn reacts 100 times slower than cyclopentyl bromide. Explain this trend in the box below.

\[
\begin{array}{c}
\text{R—Br} & \xrightarrow{\text{NaCN}} & \text{R—CN} \\
\text{DMSO} & & \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{F} & \text{G} & \text{H} \\
\text{Br} & \text{10}^{-2} & \text{1} \\
\end{array}
\]

(d) The rates of the $\text{S}_\text{N}1$ solvolysis reactions of the four benzyl chlorides shown below (I, J, K, and L) differ significantly – as the steric bulk of the alkyl side chain increases (methyl, ethyl, isopropyl, tert-butyl), the rate of the reaction decreases. Explain this trend in the box below. (Note: the inductive effect of each of these four alkyl groups is approximately the same).

\[
\begin{array}{c}
\text{R—Br} & \xrightarrow{\text{H}_2\text{O}} & \text{R—OH} \\
\text{EtOH} & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{I} & \text{J} & \text{K} & \text{L} \\
\text{Me} & \text{Et} & \text{Pr} & \text{Bu} \\
\text{Cl} & \text{Cl} & \text{Cl} & \text{Cl} \\
\text{540} & \text{125} & \text{27} & \text{1} \\
\end{array}
\]
Q8. Consider the reactions of cis- and trans-2-butene with Br₂ in water. (20 points)

(a) The reaction of cis-2-butene with Br₂ in water results in the formation of TWO stereoisomeric bromohydrins. Complete the Fischer projections that have been provided for you by filling in the circles with the necessary groups (CH₃ or H). Each stereocenter in each compound is labeled with a shaded box in which you should denote the configuration (R or S) of that particular stereocenter.

(b) The reaction of trans-2-butene with Br₂ in water results in the formation of TWO stereoisomeric bromohydrins. Complete the Fischer projections that have been provided for you by filling in the circles with the necessary groups (CH₃ or H). Each stereocenter in each compound is labeled with a shaded box in which you should denote the configuration (R or S) of that particular stereocenter.
Q9. (BONUS). The oxymercuration/reduction reaction sequence when applied to 1,5-cyclooctadiene results in the formation of two isomeric bicyclic ether compounds. Propose a reasonable mechanism that accounts for this transformation – SHOW ALL NECESSARY STEPS AND EXPLAIN EACH ONE WITH A FEW WORDS. Note: you do not need to show any arrow pushing for the sodium borohydride reduction, i.e., step (ii) – just draw an arrow and write “NaBH₄” above it when you get to that point in the mechanism. (15 points)
Q10. **(BONUS)**. In 1975, it was reported in the chemical literature that the reaction of cis-1-bromo-4-ethoxy-cyclobutane (cis-A) with sodium iodide in acetone gives a mixture of the cis- and trans-iodo products (cis-B and trans-B), with the MAJOR PRODUCT observed to be cis-B. (15 points)

![Chemical Reaction Diagram]

(a) This reaction caused quite a stir at the time, and seemed to challenge many years of accepted wisdom – briefly explain why.

(b) The result was so controversial, it was soon reinvestigated by other research groups. When the reaction mixture was sampled after only 10 hours, it was discovered that the product was almost entirely trans-B, and that samples taken over the next four days, showed the amount of trans-B present in the reaction mixture to be dwindling, with a concomitant increase in the amount of cis-B, until after five days, the 25:75 ratio is reached, which does not change any further. Moreover, when the reaction of trans-A was investigated using the same conditions, it was found that after 10 hours, the product was almost entirely cis-B, but after 5 days, the same 75:25 ratio of cis-B to trans-B was observed. It does not matter which isomer you start with, the product distribution after five days is the same! Using words and illustrations as necessary, explain what is going on.

Question 10 is continued on the next page...
(c) Suggest why \textit{cis-B} is the MAJOR product – i.e., why is its formation favored over \textit{trans-B}?