
Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

Stepper Motor Controllers
8SMCC PCI1 and 8SMCC PCI3

Note: Information in this manual is believed to be accurate and reliable. However no responsibility is assumed for the consequences of its use nor for any
infringement of patents or other right of third parties which may result from it use. Specifications are subject to change without notice.

Note: Windows are registered trademark of Microsoft Corporation, QLIB is registered trademark of QUANCOM Informationssysteme GmbH, LabVIEW is
registered trademark of National Instruments Inc., and MatLAB is registered trademark of The MathWorks Inc. All other products and corporate names appearing
in this manual may or may not be registered or copyrights of their respective companies, and are used only for identification or explanation and to the owner’s
benefit, without intent to infringe.

ver. 1.0.5 Page 1 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

Index

1 General Information.. 4

1.1 Applications.. 4
1.2 Features .. 4
1.3 Compatibility.. 4

1.3.1 Connectivity.. 4
1.3.2 Version .. 4
1.3.3 Stepper motors ... 5

1.4 Technical specifications... 5
1.5 Precautions ... 5
1.6 Number of controller cards in one computer.. 5
1.7 Power supply .. 5
1.8 Operation.. 6

1.8.1 Reset .. 6
1.8.2 Independent operation .. 6

1.9 Waranty .. 6
1.10 Wiring ... 6

2 Installation.. 10
2.1 Installation of PCI card on computer .. 10
2.2 Installation of QLIB driver and library .. 10

2.2.1 Installing the QLIB and the drivers under Windows XP / 2000 10
2.2.2 Installing the QLIB and the drivers under Windows ME / 98 / 95 11
2.2.3 Installing the QLIB and the drivers under Windows NT .. 12

2.3 Installation of 8SMCC PCI1/PCI3 library.. 13
3 Software layers... 14
4 Command protocol .. 15

4.1 Command “Set acceleration” (code 01) ... 15
4.2 Command “Set speed” (code 02) .. 15
4.3 Command “Set steps” (code 03) ... 15
4.4 Command “Set division factor” (code 04) ... 15
4.5 Command “Set synchronization mode” (code 05) .. 15
4.6 Command “Set direction” (code 06) .. 16
4.7 Command “Set switch mode” (code 07) .. 16
4.8 Command “Go” (code 08)... 17
4.9 Command “Soft stop” (code 09) ... 17
4.10 Command “Get switch info” (code 10) .. 17
4.11 Command “Set motor status” (code 11) .. 18

5 QLIB library .. 19
5.1 General information .. 19
5.2 QLIB functions... 19

5.2.1 Function QAPIExtOpenCard... 19
5.2.2 Function QAPIExtCloseCard... 19
5.2.3 Function QAPIExtSpecial... 19

5.3 Working with 8SMCC PCI1/PCI3 card over QLIB functions.. 20
5.3.1 Opening communication channel with 8SMCC PCI1/PCI3.. 20
5.3.2 Sending command to 8SMCC PCI1/PCI3... 20
5.3.3 Reading data from 8SMCC PCI1/PCI3 .. 21
5.3.4 Closing communication channel with 8SMCC PCI1/PCI3 ... 21

6 8SMCC PCI1/PCI3 library... 22
6.1 General information .. 22

ver. 1.0.5 Page 2 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

6.2 8SMCC PCI1/PCI3 functions ... 22
6.2.1 Function SMCC_InitPCILibrary... 22
6.2.2 Function SMCC_OpenDevice... 22
6.2.3 Function SMCC_CloseDevice... 23
6.2.4 Function SMCC_SetAcceleration .. 23
6.2.5 Function SMCC_SetSpeed.. 23
6.2.6 Function SMCC_SetSteps... 23
6.2.7 Function SMCC_SetDivision .. 23
6.2.8 Function SMCC_SetDirection .. 24
6.2.9 Function SMCC_SetSwitchConfig... 24
6.2.10 Function SMCC_SetSynchronization .. 24
6.2.11 Function SMCC_Move.. 25
6.2.12 Function SMCC_Stop ... 25
6.2.13 Function SMCC_GetSwitchStatus... 25
6.2.14 Function SMCC_GetPositionCheckStatus.. 25
6.2.15 Function SMCC_GetRotationCheckStatus... 26
6.2.16 Function SMCC_SetMotorStatus .. 26

6.3 Working with 8SMCC PCI1/PCI3 card over 8SMCC2 functions .. 26
6.4 Translator.exe application .. 27

6.4.1 Using Translator.exe.. 27
6.4.2 Using Translator.exe as network server .. 29
6.4.3 Using Translator.exe as network client ... 32

7 Using 8SMCC2.dll over LabVIEW.. 33
7.1 Virtual instrument “SMCC_InitPCILibrary”.. 33
7.2 Virtual instrument “SMCC_OpenDevice”.. 33
7.3 Virtual instrument “SMCC_CloseDevice”.. 33
7.4 Virtual instrument “SMCC_SetAcceleration” ... 34
7.5 Virtual instrument “SMCC_SetSpeed”... 34
7.6 Virtual instrument “SMCC_SetSteps”.. 34
7.7 Virtual instrument “SMCC_SetDivision” ... 34
7.8 Virtual instrument “SMCC_SetDirection” ... 34
7.9 Virtual instrument “SMCC_SetSwitchConfig”.. 34
7.10 Virtual instrument “SMCC_SetSynchronization” ... 35
7.11 Virtual instrument “SMCC_Move”... 35
7.12 Virtual instrument “SMCC_Stop” .. 35
7.13 Virtual instrument “SMCC_GetSwitchStatus”.. 35
7.14 Virtual instrument “SMCC_GetPositionCheckStatus”... 35
7.15 Virtual instrument “SMCC_GetRotationCheckStatus”.. 35
7.16 Virtual instrument “SMCC_SetMotorStatus” ... 36
7.17 Using LabVIEW virtual instrument library 8SMCC2.llb ... 36

8 Using 8SMCC2.dll over MatLAB .. 37

ver. 1.0.5 Page 3 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

1 General Information

1.1 Applications

The 8SMCC PCI1/PCI3 is a single/triple axis 2-phase bipolar stepper motor motion control module. It is
designed to work on PCI bus of computer.
STANDA manufactures lots of motorized devices such as translation stages, rotation stages, attenuators and
other equipment. All stepper motors used in STANDA's motorized devices can be controlled by 8SMCC
PCI1/PCI1/PCI3 controller.
Controller can be used to drive motorizes positioners of other manufacturers if stepper motor parameters
mach specifications for 8SMCC PCI1/PCI1/PCI3.

1.2 Features

1. Module controls all parameters of motion: velocity, acceleration, deceleration, amount of steps (or
micro steps) and direction.

2. Controller supports three synchronization modes:
 Starts motion after external sync pulse is received,
 Generates sync pulse when motion is finished,
 Periodically generates sync pulses starting from defined step with defined period.

3. Controller supports step division up to 1/8 steps (1, 1/2, 1/4, 1/8 step).
4. Two end switches and one rotation switch can be connected to the controller.

Rotational switch operates in two modes:
 Rotational switch is ignored
 Controller counts amount of steps (micro steps) until switch will be pressed the first time and

between all other presses and sends this information to computer.
End switches are independent and each can operate in three modes:

 End switch is ignored,
 Emergency stop, when end switch is pressed,
 “Check position” mode (computer receives information that switch was pressed and motion

continues).
5. Controller is capable to stop motor with deceleration in motion mode (“soft stop”).
6. Information about status of end switches can be read from controller.
7. Motor current can be switch off or on to disconnect motor safely.
8. Controller turns of power when signal from one of two emergency switches is received.

1.3 Compatibility

1.3.1 Connectivity

Controller is designed to work with IBM AT compatible computer systems (with 80486, Pentium or better
processors). The only requirement is presence of PCI slots on motherboard.

1.3.2 Version

Version of current controller card is 1.0. Version of firmware is 1.0.

ver. 1.0.5 Page 4 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

1.3.3 Stepper motors

Controller can operate with stepper motors accordingly technical specification and wiring requirements.

1.4 Technical specifications

Microcontroller: PIC16F874-C20
Command protocol: version 1.0
Maximum amount of steps: 65535
Limit switches: 2
Emergency switches: 2
Rotational switch: 1
Logic powering: 5V DC
Powering of stepper motors from internal PC power supply: 5V DC or 12 DC
Powering of stepper motors from external power supply: 5- 40V DC, up to 5A
Step division: 1; 1/2; 1/4; 1/8 of step
Operating temperature: Accordingly requirements to PC
Output connector: DB-15 (8SMCC PCI1)

DВ-37 (8SMCC PCI3)
Power dissipation: 4W for one axis

1.5 Precautions

Reasons that might cause the 8SMCC PCI1/PCI3 card to malfunction

 The controller card was replaced in the computer while the computer was switched on.
 Any motorized device was connected to, or disconnected from the controller card, while the

controller card keeps currents in the motor windings. Please avoid reconnecting the motor while a
current is turned on.

 While reinstalling the card, you touched the contacts of PCI connector, or of some elements on
the card.

 The microprocessor chip was taken out from its slot on the card and then reinserted in reverse
(accidentally rotated 180 degrees).

 It would be better, if the controller doesn’t share power-input cable with any other internal device
of a computer.

1.6 Number of controller cards in one computer

Number of controller cards in one computer is limited only by amount of PCI slots on the motherboard.

1.7 Power supply

Logic is always powered from 5V on PCI bus. Powering for stepper motors can be realized in two ways:

 From internal power supply of PC (Standard configuration provides 12V powering for stepper
motors, but system can be adopted to provide 5V powering accordingly customer needs). Every card
is provided with a power extension lead and a group of cards can be connected to the one lead of
internal power supply.

 5-40V powering can be received from external power supply. External power supply connects
directly to the connector located on the front panel of PCI card. Additional power supply can be used

ver. 1.0.5 Page 5 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

if stepper motor needs a greater power than PC power supply can supply or operating voltage is not 5
and 12V.

1.8 Operation

1.8.1 Reset

Special reset button is placed on the front panel of controller card. Reset operation is performed for all three
controllers together. After reset button is pressed controller stops motion and sets values of all parameters to
default. Reset operation can be used when software fails to communicate with controller card and controller
stays in undefined communicate stage.

1.8.2 Independent operation

The card doesn’t use any resources of logic of your computer. All other programs of your multitasking
environment will proceed unhindered. The card will continue operating the attached device, even after your
computer reboots. The card stops operating, when computer is turned off.

1.9 Waranty

Standa warrants the controller card 8SMCC1 PCI1/PCI3 for the period of 1 year from the date of sale.

1.10 Wiring

Pass through connector
to other devices in your PC

PCI connector

Connector to the PC's
power supply (internal)

Hot wire
and ground

177

12
0

21,5

Motor
connector

Reset

External power
supply socket

externalpower
supplyplug

Re
d

co
lo

ur
LE

D

Caution!
Theplughasexposedterminals
withelectricpotential.
Avoidshortcircuitthroughcomputer
Casing or other conductors..

Plugtoa220Voutlet

24Volt
direct
current
power
supply10

0x
14

0x
70

m
m

8S
TR

M
01

8STRM01 isdesigned
Tosupport onemotor.

is
an

ov
er

lo
ad

in
di

ca
to

r

Figure 1. Wiring for the controller card 8SMCC PCI1 with 24Vdc optional external power supply

ver. 1.0.5 Page 6 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

externalpower
supplyplug

Re
d

co
lo

ur
LE

D

Caution!
Theplughasexposedterminals
withelectricpotential.
Avoidshortcircuitthroughcomputer
Casing or other conductors..

Plugtoa220Voutlet

24Volt
direct
current
power
supply10

0x
14

0x
70

m
m

8S
TR

M
01

8STRM01 isdesigned
Tosupport onemotor.

is
an

ov
er

lo
ad

in
di

ca
to

r

Pass through connector
to other devices in your PC

PCI connector

Connector to the PC's
power supply (internal)

Hot wire
and ground

192

12
7

21,5

Motor
connector

Reset

External power
supply socket

Figure 2. Wiring for the controller card 8SMCC PCI3 with 24Vdc optional external power supply

Figures 1 and 2 present wiring for 8SMCC PCI1 and 8SMCC PCI3 cards respectively.
Wiring diagram for cards connectors DB15 (for 8SMCC PCI1) and DB37 (for 8SMCC PCI3) are presented
in figures 5 and 6.
The card can have up-to 40 Volts (direct current) power supply either on internal or external connector.
When you plug in the external power supply, it automatically disconnects the internal hot wire from the PC
power supply. Please take care to switch on the power supply or computer only after the motor and power
cables are connected.
Our latest cards have optical isolation on each limit switch/synch wire. It is disables by default. Contact us
for details on how to enable it.
Note. Synchronization (sync) wires are not provided by default. They should be soldered on by the user at
one’s convenience. Usually they are soldered onto cable.
All STANDA motorized translation stages are provided with DB9 connector to connect stepper motor and
end switches. Wiring diagram is presented in figure 3.

ver. 1.0.5 Page 7 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

A

A`

B` B

M 5

4

3

2

8

7

9

SW1

SW2

9 pin subD
connector

Cable
(cablewiresarenotshown)

Motor

SynchIn/Out

Common

Figure 3. Motor DB9 connector wiring diagram.

SW1

330
0

SW1SW1 SW2

8MT173, 8MT167

S 1W

S 2W

Figure 4. Some of the devices that may be driven by the card 8SMCC PCI1/PCI3.

Nb Function
1 sin2in
2 swcom
3 +w1
4 -w2
5 +w2
6 -w2
7 GND
8 VCC
9 GND

11 sin out

13 -sw1
14 -sw2

12 Enc

15 GND

J1

UCC2 DB9.2
DB9.3
DB9.4
DB9.5

outside +5V J1-off

DB9.1/1
W

DB9.9

10 sin out

DB9.7
DB9.8
DB9.6

Figure 5. 8SMCC PCI1 connector DB-15 wiring diagram.

ver. 1.0.5 Page 8 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

Nb Function
1 sin2in
2 swcom
3 +w2.1
4 -w2.1
5 +w2.2
6 -w2.2
7 sin1in
8 GND
9 +w1.1
10 -w1.1
11 +w1.2
12 -w1.2
13 sin3in
14 VCC3
15 +w3.1
16 -w3.1
17 +w3.2
18 -w3.2
19 GND
20 GND
21 sin2out
22
23 Enc2
24 sw2.1
25 sw2.2
26 GND
27 sin1out
28
29 Enc1
30 sw1.1
31 sw1.2
32 GND
33 sin3out
34
35 Enc3
36 sw3.1
37 sw3.2

J1

UCC2

DB9.2/2
DB9.2/3
DB9.2/4
DB9.2/5

DB9.1/2
DB9.1/3
DB9.1/4
DB9.1/5

outside
DB9.3/2
DB9.3/3
DB9.3/4
DB9.3/5
DB9.3/9

DB9.2/8
DB9.2/7
DB9.2/9

DB9.1/8
DB9.1/7
DB9.1/9

DB9.3/8
DB9.3/7

+5V J1-off

DB9.2/1
W W W

DB9.1/1

DB9.3/1

W
W

W
W
DB9.1/6

W
W
DB9.3/6

DB9.2/6

Figure 6. 8SMCC PCI3 connector DB-37 wiring diagram.

ver. 1.0.5 Page 9 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

2 Installation

Installation procedure consists of several steps:

1. Installation of PCI card on computer.
2. Installation of QLIB driver and library (QLIB stands for QUANCOM driver library).
3. Installation of 8SMCC PCI1/PCI3 library and additional software.

2.1 Installation of PCI card on computer

 Turn of a computer. Disconnect all power leads and other cables.
 Remove cover to access top side of a motherboard. Computer motherboards and components contain

very delicate integrated circuit (IC) chips. To protect them against damage from static electricity, you
must follow some precautions whenever you work on your computer. Use a grounded wrist strap before
handling computer components. If you don’t have one, touch both of your hands to a safely grounded
object or to a metal object, such as the power supply case

 Locate a free PCI slot. The slots are positioned at the backside of your computer. The back wall of
unused slots is covered by small metal plates. Search for a free slot, detach its holding screw and remove
the small metal plate belonging to it.

 Gently push 8SMCC PCI1/PCI3 PCI card to a free PCI slot. Hold components by the edges and try not
to touch the integrated circuit chips, leads or circuitry.

 Use screw to fix a PCI card to the case of a computer.
 Locate free power lead from a computer’s internal power supply and connect it to an extension power

lead attached to a PCI card. If there is not a free power lead from internal power supply, disconnect for
example power lead from a hard disc, connect it to an extension power lead attached to a PCI card and
connect another connector of an extension lead back to a hard disc.

 Put cover back.
 Connect all power leads and other cables, including DB37 cable to the 8SMCC PCI1/PCI3 controller

card.
 Turn on a computer.

2.2 Installation of QLIB driver and library

2.2.1 Installing the QLIB and the drivers under Windows XP / 2000

After you inserted the 8SMCC PCI1/PCI3 board in your system it will be recognized automatically by
Windows during system restart.

2.2.1.1 Driver installation under Windows XP / 2000

The system detects the new hardware device and opens a dialog box „Found New Hardware Wizard“.

 Insert the CD-ROM labeled “8SMCC PCI1/PCI3” in your CD-ROM drive.
 Press the “Next” button to continue the installation.
 Select the option “Search for a suitable driver for my equipment (recommended)”. Press the “Next”

button to continue the installation.
 The next dialog is for the selection of the driver files location. Select “Specify a location” and press the

“Next” button to continue the installation.

ver. 1.0.5 Page 10 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

 Windows opens a dialog to search for the manufacturer’s installation disk. Click on button “Browse” to
open the directory where the drivers can be found. To do this, choose to the CD-ROM drive and change
to the directory QLIB\Win2000 or QLIB\WinXP, depending on the operating system you are using.
Select the file QLIBXDRV.INF and click on “Open” to continue the installation. Click again on “OK” to
continue the installation.

 In the next window click “OK” to continue the installation of the driver.
 In the next dialog Windows tells you that it has found a driver for this device. Press the “Next” button to

continue the installation.
 Press the “Finish” button to end the installation of the drivers.

2.2.1.2 QLIB installation under Windows XP / 2000

After the driver installation you have to run the QLIB Software Setup.

 Run the quancom.exe program on the CD-ROM drive. Click on Start | Run. Type
drive:\QLIB\quancom.exe and click on “OK”. (Replace the string drive with the letter for you CD-ROM
drive, i.e. d:\QLIB\quancom.exe).

 Depending on the system configuration and the software version of your installer the setup may asks you
to reboot the system. Click “Yes” if the install asks you to reboot the system (after the system has
rebooted the installer will continue the interrupted installation).

 In the next step click “OK” to continue the installation of the QLIB.
 Accept the license agreement with the “I accept the license agreement” option button and press the

“Next” button to continue the installation.
 Enter your data (Name; Organization) and choose whether you want to install the software solely for the

current user or for all users of the system (you need administrative rights for this option). Press the
“Next” button to continue the installation.

 To change the installation directory click on the “Browse” button or press the “Next” button to continue
the installation in the default directory.

 Select the installation type and press the “Next” button to continue the installation. There are three types
of installation available:

 Typical (This option installs all drivers and the API but no samples and help files),
 Complete (This option installs all the drivers, the API, all samples and the help files),
 Custom (Customize your installation with this option and select which parts to install).

Only drivers and API are necessary for 8SMCC PCI1/PCI3 library. Samples and help files are optional.
 After the installer has copied all files to the destination directory press the “Finish” button to end the

installation.
 The installer asks whether you want to restart the PC. Select “YES” to restart the PC and “NO” to restart

the PC later.

2.2.2 Installing the QLIB and the drivers under Windows ME / 98 / 95

After you inserted the 8SMCC PCI1/PCI3 board in your system it will be recognized automatically by
Windows during system restart.

2.2.2.1 Driver installation under Windows ME / 98 / 95

Windows should automatically detect your hardware and display one or more New Hardware Found dialog
boxes.

 Insert the CD-ROM labeled “8SMCC PCI1/PCI3” in your CD-ROM drive.

ver. 1.0.5 Page 11 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

 Press button “Next” to continue the installation.
 Select the option “Search for the best driver for your device (recommended)” and press the “Next”

button to continue the installation.
 Select the option “Search location” and press “Next”.
 In the new dialog box press the button “Browse”. Change the drive and directory to the CD-ROM drive

and the directory to WinME, Win98 or Win95, depending on the operating system you are using. Select
the file “QUANCOM.INF” and then press the “OK” button.

 In the next window press button “Next” to continue with the installation.
 Press the “Finish” button to end the installation.

2.2.2.2 QLIB installation under Windows ME / 98 / 95

After installing the drivers you have to run the QLIB Software Setup.

 Run the quancom.exe program on the CD-ROM drive. Click on Start | Run. Type
drive:\QLIB\quancom.exe and click on “OK”. (Replace the string drive with the letter for you CD-Rom
drive, i.e. d:\QLIB\quancom.exe).

 Depending on the system configuration and the software version of your installer the setup may asks you
to reboot the system. Click “Yes” if the install asks you to reboot the system (after the system has
rebooted the installer will continue the interrupted installation).

 In the next step click “OK” to continue the installation of the QLIB.
 Accept the license agreement with the “I accept the license agreement” option button and press the

“Next” button to continue the installation.
 Enter your data (Name; Organization) and choose whether you want to install the software solely for the

current user or for all users of the system (you need administrative rights for this option). Press the
“Next” button to continue the installation.

 To change the installation directory click on the “Browse” button or press the “Next” button to continue
the installation in the default directory.

 Select the installation type and press the “Next” button to continue the installation. There are three types
of installation available:

 Typical (This option installs all drivers and the API but no samples and help files),
 Complete (This option installs all the drivers, the API, all samples and the help files),
 Custom (Customize your installation with this option and select which parts to install).

Only drivers and API are necessary for 8SMCC PCI1/PCI3 library. Samples and help files are optional.
 After the installer has copied all files to the destination directory press the “Finish” button to end the

installation.
 The installer asks you whether you want to restart the PC. Select “YES” to restart the PC and “NO” to

restart the PC later.

2.2.3 Installing the QLIB and the drivers under Windows NT

Under Windows NT 4 the drivers for a PCI card are installed with the QLIB Software Setup.

 Insert the CD-ROM labeled “8SMCC PCI1/PCI3” in your CD-ROM drive.
 Run the quancom.exe program on the CD-ROM drive. Click on Start | Run. Type

drive:\QLIB\quancom.exe and click on “OK”. (Replace the string drive with the letter for you CD-ROM
drive, i.e. d:\QLIB\quancom.exe).

 Depending on the system configuration and the software version of your installer the setup may asks you
to reboot the system. Click “Yes” if the install asks you to reboot the system (after the system has
rebooted the installer will continue the interrupted installation).

 In the next step click “OK” to continue the installation of the QLIB.

ver. 1.0.5 Page 12 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

 Accept the license agreement with the “I accept the license agreement” option button and press the
“Next” button to continue the installation.

 Enter your data (Name; Organization) and choose whether you want to install the software solely for the
current user or for all users of the system (you need administrative rights for this option). Press the
“Next” button to continue the installation.

 To change the installation directory click on the “Browse” button or press the “Next” button to continue
the installation in the default directory.

 Select the installation type and press the “Next” button to continue the installation. There are three types
of installation available:

 Typical (This option installs all drivers and the API but no samples and help files),
 Complete (This option installs all the drivers, the API, all samples and the help files),
 Custom (Customize your installation with this option and select which parts to install).

Only drivers and API are necessary for 8SMCC PCI1/PCI3 library. Samples and help files are optional.
 After the installer has copied all files to the destination directory press the “Finish” button to end the

installation.
 The installer asks whether you want to restart the PC. Select “YES” to restart the PC and “NO” to restart

the PC later.

2.3 Installation of 8SMCC PCI1/PCI3 library

After installing QLIB library you have to run the 8SMCC PCI1/PCI3 Library Setup.

 Insert the CD-ROM labeled “8SMCC PCI1/PCI3” in your CD-ROM drive.
 Run the Setup.exe program on the CD-ROM drive. Click on Start | Run. Type drive:\8SMCC\Setup.exe

and click on “OK”. (Replace the string drive with the letter for you CD-ROM drive, i.e. d:\
8SMCC\Setup.exe).

 In the next step click “Next” to continue the installation of the 8SMCC PCI1/PCI3.
 Select modules to install and press the “Next” button to continue installation. There are three optional

modules available:
 Translator application (Graphical user interface to control three motorized translators with embedded

TCP/IP server/client for network communications).
 LabVIEW library (Wrapper around 8SMCC2.dll for LabVIEW).
 MatLAB library (Wrapper around 8SMCC2.dll for MatLAB).

 Select install option “Everyone” or “Just me”. To change the installation directory click on the “Browse”
button or press the “Next” button to continue the installation in the default directory.

 Click “Next” to continue the installation of the 8SMCC PCI1/PCI3.
 After the installer has copied all files to the destination directory press the “Close” button to end the

installation.

ver. 1.0.5 Page 13 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

3 Software layers

8SMCC PCI1/PCI3 controller card is designed on PCI bus controller produced by QUANCOM
Informationssysteme GmbH. Therefore the low level communication is based on qlib32.dll library and
qlibxdrv.sys driver. These two modules are installed as QLIB library before all other 8SMCC PCI1/PCI3
software. 8SMCC PCI1/PCI3 card has very simple programming interface and users can write their own
programs (on any version of C, C++ compilers, Visual Basic, Delphi, etc) directly using functions from
qlib32.dll.
However more recommendable way is to use task-orientated functions from 8SMCC PCI1/PCI3 library
(8SMCC2.dll). This library was designed specially for 8SMCC PCI1/PCI3 controller card and it wraps all
time-critical operations and card-specific communication protocols.
Library can be very easily integrated to any C, C++, and Pascal, Visual Basic or Delphi project.
To make this library even more versatile two additional supporting modules were included. LabVIEW
virtual instruments library 8SMCC2.llb builds wrappers around every function from 8smcc2.dll (using “Call
function” instrument). This allows building simple control applications in a few minutes with several
building elements. Similarly simple wrappers were built to meet MatLAB interface. These two addition
modules are installed optionally if user wants to control 8SMCC PCI1/PCI3 card from LabVIEW or
MatLAB programming environments.

Qlib32.dll library

Qlibxdrv.sys driver

8SMCC PCI1/PCI3 card

8SMCC2.dll library

User’s applications written in Visual
C++, Visual Basic, Delphi, Pascal

Recommended

N
ot

 re
co

m
m

en
de

d

User’s applications written in
LabVIEW

User’s applications written in
MatLAB

SMCC2.llb (LabVIEW VI
library)

Library of MatLAB functions
wrappers (SMCC_....m)

QLIB library
Provided by

QUANCOM Informationssysteme GmbH

8SMCC PCI1/PCI3 library
Provided by Standa

Figure 7. 8SMCC PCI1/PCI3 controller card software layers.

ver. 1.0.5 Page 14 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

4 Command protocol

Controller card is controlled by mean of sending commands. Command protocol is the way of exchanging
information between user’s software and 8SMCC PCI1/PCI3. Every command is composed from two parts:
command code and optional data segment. Command code is always 1 byte length. Data segment depending
on command can be from 0 to 6 bytes length. There are only 11 different commands.

4.1 Command “Set acceleration” (code 01)

Sets acceleration parameter. Total length: 2 bytes. This command is accepted only when motor doesn’t
move.
Command format: 0x01, acceleration data (1 byte).
Acceleration data value can be from 1 to 119. (Default value set by controller on reset is 1).

4.2 Command “Set speed” (code 02)

Sets speed parameter. Total length: 2 bytes. This command is accepted only when motor doesn’t move.
Command format: 0x02, speed data (1 byte).
Speed data value can be from 1 to 220. (Default value set by controller on reset is 220).

4.3 Command “Set steps” (code 03)

Sets number of steps to move. Total length: 4 bytes. This command is accepted only when motor doesn’t
move.
Command format: 0x03, steps (youngest byte), steps (higher byte), steps (highest byte).
Steps value can be from 1 to 16581375. (Default value set by controller on reset is 440).

4.4 Command “Set division factor” (code 04)

Sets step division factor. Total length: 2 bytes. This command is accepted only when motor doesn’t move.
Command format: 0x04, division (1 byte).
Division value can be from 0 to 3. (Default value set by controller on reset is 0).

Value Division factor
0 No division
1 Step divided by 2
2 Step divided by 4
3 Step divided by 8

4.5 Command “Set synchronization mode” (code 05)

Sets synchronization mode. Total length: 2 or 7 bytes. This command is accepted only when motor doesn’t
move.
Command format: 0x05, synchronization mode (1 byte), optional periodic sync pulse parameters (5 bytes).
(Default value set by controller on reset is 0).
Structure of byte of synchronization mode:

Bit Description

ver. 1.0.5 Page 15 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

0 If 0, movement starts immediately after command “Go” is received.
If 1, movement (after command “Go” is received) starts

1 If 0, no sync pulse is generated at the end of movement.
If 1, sync pulse is generated at the end of movement.

2 If 0, no periodic sync pulses are generated.
If 1, periodic sync pulses are generated with defined interval from
defined step.
If 2nd bit is set to 1, controller waits for 5 additional bytes
describing parameters of periodic sync pulse.

3-7 Not used

Structure of periodic sync pulse parameters:

Byte Description
0,1,2 Number of steps when the first sync pulse must be generated. Data

format: youngest byte, higher byte, highest byte. Number of steps
value can be from 1 to 16581375. (Default value set by controller on
reset is 100).

3,4 Period of sync pulse generation in steps. Data format: younger byte,
higher byte. Period value can be from 1 to 65535. (Default value set
by controller on reset is 10).

4.6 Command “Set direction” (code 06)

Sets direction of movement. Total length: 2 bytes. This command is accepted only when motor doesn’t
move.
Command format: 0x06, direction (1 byte).
Steps value can be from 0 to 1. (Default value set by controller on reset is 0).

Value Direction
0 Forward
1 Backward

4.7 Command “Set switch mode” (code 07)

Sets mode for end and rotational switches. Total length: 2 bytes. This command is accepted only when motor
doesn’t move.
Command format: 0x07, switch mode (1 byte).
Switch mode value can be from 0 to 31. (Default value set by controller on reset is 5).
Structure of switch mode byte:

Bit Description
1,0 00- Left end-switch is ignored.

01- “Emergency stop” mode for left end-switch. If end-switch
is pressed while motor moves, movement immediately stops.
10- “Check position” mode for left end-switch. If end-switch
is pressed while motor moves, movement immediately stops,
controller sends two bytes to computer:

ver. 1.0.5 Page 16 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

0x02, switch info byte (where 0 bit is set to 1 if left end-switch
is pressed and 1st bit is set if right end-switch is pressed),
when these two bytes are read, movement continues.

3,2 00- Right end-switch is ignored.
01- “Emergency stop” mode for right end-switch. If end-
switch is pressed while motor moves, movement immediately
stops.
10- “Check position” mode for right end-switch. If end-switch
is pressed while motor moves, movement immediately stops,
controller sends two bytes to computer:
0x02, switch info byte (where 0 bit is set to 1 if left end-switch
is pressed and 1st bit is set if right end-switch is pressed),
when these two bytes are read, movement continues.

3 0- Rotational switch is ignored.
1- Every time when rotational switch is pressed, controller
sends 3 bytes to computer:
0x03, steps (younger byte), steps (higher byte),
Where steps is amount of steps from the last push of rotational
switch and one before last push of rotational switch or start of
movement.

7,6,5,4 Not used

4.8 Command “Go” (code 08)

Starts movement of motor accordingly all defined parameters (acceleration, speed, number of steps, step
division factor, synchronization mode, direction, and switch mode). Total length: 1 byte. This command is
accepted only when motor doesn’t move.
Command format: 0x08.
By default controller card turns off current of all three motors after reset. Command “Set motor status” (see
chapter 4.11) must be used to turn current on before command “Go” is issued.

4.9 Command “Soft stop” (code 09)

Stops movement of motor accordingly acceleration/deceleration and speed parameters. After that controller
sends 4 bytes to computer: 0x04, steps (youngest byte), steps (higher byte), steps (highest byte).
Where steps is amount of steps made from the start of movement. This parameter can be used to calculate
actual position of motor after “Soft stop” command.
Total length: 1 byte. This command is accepted only when motor moves!
Command format: 0x09.

4.10 Command “Get switch info” (code 10)

Gets information from controller about state of end-switches. Total length: 1 byte. This command is
accepted only when motor doesn’t move.
Command format: 0x0a.
After this command is received controller sends 2 bytes to computer:
0x01, switch info byte (where 0 bit is set to 1 if left end-switch is pressed and 1st bit is set to 1, if right end-
switch is pressed).

ver. 1.0.5 Page 17 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

4.11 Command “Set motor status” (code 11)

Turns on or off motor current. Total length: 2 bytes. This command is accepted only when motor doesn’t
move.
Command format: 0x0b, status (1 byte).
If status is 0, current is turned off and if status is 1, current is turned on. Usually this command must be
issued before command “Go” after controller card reset or powering on.

ver. 1.0.5 Page 18 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

5 QLIB library

5.1 General information

The QLIB, which stands for QUANCOM driver library, was developed by QUANCOM
Informationssysteme GmbH with the target to allow the simple programming of all data acquisition
products, produced by this company, under various operating systems. 8SMCC PCI1/PCI3 controller card
uses PCI bus controller developed by QUANCOM, therefore QLIB library is used as the main agent
between user’s applications and hardware.

5.2 QLIB functions

There are only three functions used to communicate with 8SMMC2 PCI card. Descriptions of all other
functions can be found in QLIB 32-Bit API Help. Two versions of this help (English and German) can be
found on Start | Programs | QLIB 32-Bit | Help. All functions are declared in qlib.h file located by default in
…\Program Files\QUANCOM\Qlib32\Inc.

5.2.1 Function QAPIExtOpenCard

unsigned long QAPIExtOpenCard (unsigned long cardid, unsigned long devnum)

With the function QAPIExtOpenCard a card is opened. This function must be called before any function of
the group QAPIExt... is used. It returns the handle which is passed as first parameter to these functions. A
card opened with this function must be closed with QAPIExtCloseCard. The devnum parameter differentiates
multiple cards of the same type. Up to eight cards of same type are supported by the QLIB.
Input parameters:

cardid The ID of the card which should be opened. For 8SMCC PCI1/PCI3 card cardid
always must be equal to PCIPROTO.

devnum The device number of the card which should be opened.
Output value: If the function succeeds, the return value is a handle for the card. If the function fails, the
return value is NULL.

5.2.2 Function QAPIExtCloseCard

void QAPIExtCloseCard(unsigned long cardhandle)

With the function QAPIExtCloseCard a card is closed. This function must always be executed before
leaving an application. Otherwise, the card resources are not freed, The handle you need as parameter is the
handle you get from QAPIExtOpenCard.
Input parameters:

cardhandle The handle of the opened card.
Output value: None.

5.2.3 Function QAPIExtSpecial

unsigned long QAPIExtSpecial (unsigned long cardhandle, unsigned long jobcode, unsigned
long para1, unsigned long para2)

ver. 1.0.5 Page 19 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

With the function QAPIExtSpecial it is possible to execute card-specific functions.
Input parameters:

cardhandle Handle of an opened card.
jobcode Action which the card should perform. In 8SMCC PCI1/PCI3 card case only two

job codes are used: JOB_IOREAD_BYTE (Read a byte from a card) and
JOB_IOWRITE_BYTE (Write a 8 bit value to a proto card).

para1 Offset of base address.
para2 Not used, when jobcode=JOB_IOREAD_BYTE and 8 bit value that has to be

written to the port, when jobcode=JOB_IOWRITE_BYTE.
Output value: Read 8 bit value, when jobcode=JOB_IOREAD_BYTE, and not defined value, when
jobcode=JOB_IOWRITE_BYTE.

5.3 Working with 8SMCC PCI1/PCI3 card over QLIB functions

8SMCC PCI1/PCI3 controller card has three identical and independent stepper motor drives. Four addresses
are used to communicate with all three controllers:

Offset of base address Description
0 Data write/read address for motor 1 controller.
1 Data write/read address for motor 2 controller.
2 Data write/read address for motor 3 controller.
3 Write/Read signals for motors 1, 2 and 3.

Active state for all signals is low.
0 bit- WRITE signal for motor 1,
1st bit- READ signal for motor 1,
2nd bit- WRITE signal for motor 2,
3rd bit- READ signal for motor 2,
4th bit- WRITE signal for motor 3,
5th bit- READ signal for motor 3.

5.3.1 Opening communication channel with 8SMCC PCI1/PCI3

QAPIExtOpenCard function should be used at the beginning of communication. The first parameter cardid
for 8SMCC PCI1/PCI3 card always must be equal to PCIPROTO and the second parameter devnum should be
0 for the first card, 1- for the second, etc.

5.3.2 Sending command to 8SMCC PCI1/PCI3

Data is written using QAPIExtSpecial(card_handle,JOB_IOWRITE_BYTE,address,data) function.
Where address has value 0 for motor 1, 1- for motor 2 and 2 for motor 3. WRITE signal must be checked
before writing data. If controller is ready to receive command or data, WRITE signal is set to 0. If
WRITE=1, reading of last byte is still pending or motor moves. The only exclusion is command “Soft stop”
(code 09). This command can be sent even if WRITE=1. Short example in C shows how to send command
“Go” for motor 1:

unsigned long handle;
handle=QAPIExtOpenCard(PCIPROTO,0);

ver. 1.0.5 Page 20 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

// wait while WRITE for 1-st motor is 1
while ((QAPIExtSpecial(handle,JOB_IOREAD_BYTE,3)&0x01)!=0);
// send comman
QAPIExtSpecial(handle,JOB_IOWRITE_BYTE,0,8 /*8 is ”Go” command code*/);

d “Go”

//wait while motor moves
while ((
QAPIExtCloseCard(handle);

QAPIExtSpecial(handle,JOB_IOREAD_BYTE,3)&0x01)!=0);

5.3.3 Reading data from 8SMCC PCI1/PCI3

Data is read using QAPIExtSpecial(card_handle,JOB_IOREAD_BYTE,address) function. Where address
has value 0 for motor 1, 1- for motor 2 and 2 for motor 3. READ signal must be checked before reading data.
If controller is ready to transmit data, READ signal is set to 0. If READ=1, no data is available for reading.
Short example in C shows how to read state of end-switches:

unsigned long handle;
unsigned char byte1, status;
handle=QAPIExtOpenCard(PCIPROTO,0);
// wait while WRITE for 1-st motor is 1
while ((QAPIExtSpecial(handle,JOB_IOREAD_BYTE,3)&0x01)!=0);
// send comman
QAPIExtSpecial(handle,JOB_IOWRITE_BYTE,0,10 /*10 is ”Get switch info” command code*/);

d “Get switch info”

//wait while READ for 1-st motor changes to 0
while ((QAPIExtSpecial(handle,JOB_IOREAD_BYTE,3)&0x02)!=0);
//read first byte (always should be 1)
byte1=(unsigned char) QAPIExtSpecial(handle,JOB_IOREAD_BYTE,0);
//wait for a while controller to proceed data
Sleep(1);
//wait while READ for 1-st motor changes to 0
while ((QAPIExtSpecial(handle,JOB_IOREAD_BYTE,3)&0x02)!=0);
//read switch status
status=(unsigned char) QAPIExtSpecial(handle,JOB_IOREAD_BYTE,0);
QAPIExtCloseCard(handle);

5.3.4 Closing communication channel with 8SMCC PCI1/PCI3

QAPIExtCloseCard function should be used at the end of communication.

ver. 1.0.5 Page 21 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

6 8SMCC PCI1/PCI3 library

6.1 General information

This library provides task- orientated functions specially designed to control 8SMCC PCI1/PCI3. Library is
delivered as set of five files located in C:\Program Files\8SMMC\Library folder by default:

8SMCC2.dll the library itself,
8SMCC2.h C include file with definitions of functions,
8SMCC2.lib library file (Microsoft library format) used to link user’s application

to 8SMCC2.dll,
Debug\8SMCC2d.dll debug version of library with some debug output,
Debug\8SMCC2d.lib debug version of library file (Microsoft library format).

Note: Library doesn’t not support multithreading by design. If multiple threads are going to use 8SMCC2.dll
library, additional synchronization objects must be used!

6.2 8SMCC PCI1/PCI3 functions

16 functions exported from library can be divided into three groups.
Initialization functions: SMCC_InitPCILibrary(), SMCC_OpenDevice, SMCC_CloseDevice.
Functions that can be called only when motor is still: SMCC_SetAcceleration, SMCC_SetSpeed,
SMCC_SetDivision, SMCC_SetDirection, SMCC_SetSwitchConfig, SMCC_SetSynchronization,
SMCC_Move, SMCC_GetSwitchStatus, SMCC_SetMotorStatus. These functions fail if motor moves.
Functions that can be called only when motor is moving: SMCC_Stop, SMCC_GetPositionCheckStatus,
SMCC_GetRotationCheckStatus.
Descriptions of all functions are presented in this chapter.

6.2.1 Function SMCC_InitPCILibrary

int SMCC_InitPCILibrary()

It initializes library and data structures. This function must be called before any other function from this
library.
Input parameters: None.
Output value: 0- if failed, 1- if succeeded.

6.2.2 Function SMCC_OpenDevice

unsigned long SMCC_OpenDevice(int card_type, int device_no, int motor_no)

Returns handle to specified motor on specified controller card. This function must be called before any
function of the groups SMCC_Set… and SMCC_Get… is used. A motor opened with this function must be
closed with SMCC_CloseDevice.
Input parameters:

card_type Type of device (SMCC_DEVICE_PCI or SMCC_DEVICE_COM). Only
SMCC_DEVICE_PCI is supported in this version of library.

device_no Controller card number (0- for the first card, 1- for the second etc.).
motor_no Motor number on selected controller card (value from 1 to 3).

Output value: 0 if device can’t be opened or devices handle (value from 1 to 16).

ver. 1.0.5 Page 22 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

6.2.3 Function SMCC_CloseDevice

void SMCC_CloseDevice(unsigned long handle)

Closes handle to motor opened by SMCC_OpenDevice.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
Output value: None.

6.2.4 Function SMCC_SetAcceleration

int SMCC_SetAcceleration(unsigned long handle, unsigned char acc)

Sets acceleration parameter for specified motor.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
acc Acceleration value (from 1 to 119).

Output value: 0 if operation failed, 1- if succeeded.

6.2.5 Function SMCC_SetSpeed

int SMCC_SetSpeed(unsigned long handle, unsigned char speed)

Sets speed parameter for specified motor.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
speed Speed value (from 1 to 220).

Output value: 0 if operation failed, 1- if succeeded.

6.2.6 Function SMCC_SetSteps

int SMCC_SetSteps(unsigned long handle, unsigned long steps)

Sets amount of steps to move.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
steps Amount of steps to move (from 1 to 16581375).

Output value: 0 if operation failed, 1- if succeeded.

6.2.7 Function SMCC_SetDivision

int SMCC_SetDivision(unsigned long handle, unsigned char division)

Sets step division factor parameter for specified motor.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.

ver. 1.0.5 Page 23 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

division Division factor:
0- step is not divided,
1- step divided by 2,
2- step divided by 4,
3- step divided by 8.

Output value: 0 if operation failed, 1- if succeeded.

6.2.8 Function SMCC_SetDirection

int SMCC_SetDirection(unsigned long handle, unsigned char direction)

Sets direction of specified motor’s movement.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
direction 0- direction forward,

1- direction backward.
Output value: 0 if operation failed, 1- if succeeded.

6.2.9 Function SMCC_SetSwitchConfig

int SMCC_SetSwitchConfig(unsigned long handle, unsigned char config)

Sets mode of end switches.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
config Configuration bits for determining reaction to end switches (from 0 to 31). Binary

format: 000zyyxx.
xx= 00- ignore end switch 1,
xx= 01- “emergency stop” mode for switch 1,
xx= 11- “check position” mode for switch 1,
yy= 00- ignore end switch 2,
yy= 01- “emergency stop” mode for switch 2,
yy= 11- “check position” mode for switch 2.
z=0- rotational switch is ignored,
z=1- controller counts steps between press of rotational switch and transfer this
information to computer.
See chapter 4.7 for details about switch modes.

Output value: 0 if operation failed, 1- if succeeded.

6.2.10 Function SMCC_SetSynchronization

int SMCC_SetSynchronization(unsigned long handle, unsigned char sync, unsigned long
start=0, unsigned long period=0)

Sets mode of specified motor movement synchronization and mode of generation of sync pulses.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
sync Synchronization mode (from 0 to 7). Binary format 0000zyx.

If bit x is set to 1, motor waits for external sync pulse before starting of movement.

ver. 1.0.5 Page 24 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

If bit y is set to 1, motor generates sync pulse when movement is finished.
If bit 3 is set, motor generates sync pulses every period steps starting from start.

start Amount of steps to wait before generation of the first sync pulse when periodic
generation of sync pulses is turned on. Ignored otherwise.

period Period of steps to generate sync pulses when periodic generation of sync pulses is
turned on. Ignored otherwise.

Output value: 0 if operation failed, 1- if succeeded.

6.2.11 Function SMCC_Move

int SMCC_Move(unsigned long handle, int wait)

Starts moving motor accordingly earlier set parameters: amount of steps, direction, acceleration, speed, step
division, synchronization mode and end-switch mode.
Input parameters s:

handle Handle to motor returned by SMCC_OpenDevice.
wait Wait flag. If wait=0, function returns immediately, otherwise function returns

when motor stops.
Output value: 0 if operation failed, 1- if succeeded.
Typically function SMCC_SetMotorStatus must be executed before the first command SMCC_Move,
because controller card by default is in current- off mode.

6.2.12 Function SMCC_Stop

int SMCC_Stop(unsigned long handle, unsigned long* steps)

Starts to slow down motor accordingly speed and acceleration parameters while it stops. If motor doesn’t
move function fails.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
steps Amount of steps made from start of movement. This value can be used to calculate

current position of the motor.
Output value: 0 if operation failed, 1- if succeeded.

6.2.13 Function SMCC_GetSwitchStatus

int SMCC_GetSwitchStatus(unsigned long handle, unsigned char* status)

Gets status of end switches.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
status Status of switches. 0 bit is set if left switch is pressed and 1-st bit is set if right

switch is pressed.
Output value: 0 if operation failed, 1- if succeeded.

6.2.14 Function SMCC_GetPositionCheckStatus

ver. 1.0.5 Page 25 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

int SMCC_GetPositionCheckStatus(unsigned long handle, unsigned char* status, unsigned
long timeout=0)

Gets status of end switches in “Check position” mode. This function can be called only if “check position”
mode is turned on (see SMCC_SetSwitchConfig) and motor is moving (see SMCC_Move).
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
status Information about switch pressed in “check position” mode. 0 bit is set to 1 if left

switch was pressed and 1-st bit is set if right switch was pressed.
timeout Timeout value in milliseconds. Function fails if response from controller is not

received after timeout milliseconds.
Output value: 0 if operation failed or was timeout, 1- if succeeded.

6.2.15 Function SMCC_GetRotationCheckStatus

int SMCC_GetRotationCheckStatus(unsigned long handle, unsigned long* steps, unsigned
long timeout=0)

Gets amount of steps between two rotational switch presses in “rotational switch” mode. This function can
be called only if “rotational switch” mode is turned on (see SMCC_SetSwitchConfig) and motor is moving
(see SMCC_Move).
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
steps Amount of steps counted between two last presses of rotational switch.
timeout Timeout value in milliseconds. Function fails if response from controller is not

received after timeout milliseconds.
Output value: 0 if operation failed or was timeout, 1- if succeeded.

6.2.16 Function SMCC_SetMotorStatus

int SMCC_SetMotorStatus(unsigned long handle, unsigned char status)

Turns current on and off for specified motor.
Input parameters:

handle Handle to motor returned by SMCC_OpenDevice.
speed Motor status: 0- turn current off, 1- turn current on.

Output value: 0 if operation failed, 1- if succeeded.
Typically this function must be executed before issuing the first SMCC_Move command, because controller
card by default is in current- off mode.

6.3 Working with 8SMCC PCI1/PCI3 card over 8SMCC2 functions

There is simple C++ program test.cpp provided together with library to demonstrate how two use
8SMCC2.dll functions. SMCC_InitPCILibrary must be called before any other functions from 8SMCC2.dll.
The second step is to get handle for communication with function SMCC_OpenDevice. After that all other
functions can be called. SMCC_CloseDevice must be used at the end of program. A shorter version of
test.cpp is listed here to demonstrate how to move motor 1 forward by 100 steps:

#include "stdio.h"

ver. 1.0.5 Page 26 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

#include "8smcc2.h"

int main(int argc, char* argv[])
{
 if (SMCC_InitPCILibrary()==1)
 {
 printf("Library inicialization: Ok\n");
 // Get handle for motor 1 on device 0
 unsigned long handle=SMCC_OpenDevice(SMCC_DEVICE_PCI, 0, 1);
 if (handle!=0)
 {
 SMCC_SetAcceleration(handle, 20);
 SMCC_SetSpeed(handle, 150);
 SMCC_SetDivision(handle, 0);
 SMCC_SetSynchronization(handle, 0);
 SMCC_SetDirection(handle, 0);
 SMCC_SetSwitchConfig(handle, 5);
 SMCC_SetSteps(handle,100);
 SMCC_SetMotorStatus(handle,1);
 SMCC_Move(handle, 1);
 SMCC_SetMotorStatus(handle,0);
 SMCC_CloseDevice(handle);
 }
 else printf("OpenDevice: Failed\n");
 }
 else printf("Library inicialization: Failed\n");

 printf("Press Enter to quit\n");
 getchar();

 return 0;
}

6.4 Translator.exe application

Another demonstrational application provided together with 8SMCC PCI1/PCI3 library is Translator.exe.
This program can be used as simple application to control up to three translator stages. It provides simple
and intuitive graphical user interface. Additionally simple TCP/IP network server is integrated to Translator.
It allows controlling translator stages over TCP/IP local or worldwide network using such simple application
as telnet.exe.

6.4.1 Using Translator.exe

Main window of program contains three identical independent sections for every translator stage. Position of
motor is presented in steps and user-defined units. There are several ways to move motor.

 Motor can be moved by mean of using scrollbar. Slider of control bar can be dragged to required position
and released there. Motor will move to pointing position. Two edit boxes displaying current position of
motor will show new position while dragging slider. Pressing on the arrow buttons on the left or right
side of scrollbar will move motor backward or forward by amount of steps displayed in edit box on the
right side of scrollbar. Pressing on the scrollbar on the left or right from slider will move motor backward
or forward by amount of steps displayed in edit box on the right side of scrollbar multiplied by 10.

 Another way to move motor is directly to enter a new position of motor in steps or user-defined units to
corresponding edit box and press “Move” button. Exclamation mark appears when new position is
entered. It informs that position in edit boxes doesn’t correspond to current position of motor.
Exclamation mark disappears when motor reaches a new position. Button “Move” is changed to “Stop”

ver. 1.0.5 Page 27 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

while motor moves. Motor can be stopped at any moment by mean of pressing this button. Current
position where a motor stops is displayed in position edit boxes.

Green numbers bellow scrollbar show range of translator stage in user-defined units. Red led on the left and
right sides bellow scrollbar indicates state of end-switches. If led is turned on- end-switch is pressed.
Information about end-switches is renewed every half of second.
Pressing of “Reset” button moves stage backward while the end-switch is pressed and after that sets position
of stage to “Min position” by mean of moving forward by “Reset offset” steps.

Properties of motor can be changed by pressing button “Properties” and editing parameters in a properties
window. All properties of motor are listed in table below.

Parameter Description
Presets Predefined parameters presets for STANDA products
Load settings Loads settings for motor from file.
Save settings Saves settings of motor to file.

ver. 1.0.5 Page 28 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

Controller number Number of 8SMCC PCI1/PCI3 card (0 for the first card, 1- for
the second, etc.).

Motor address Number of motor (1,2 or 3).
Motor name Translator stage name displayed in the top left corner of stage

panel.
Unit name Name of user-defined units (for example: mm) displayed near

the position in user-defined units edit box.
Unit factor Proportional factor showing how many steps (divided or not)

correspond to one user-defined unit (for example Factor=200
steps/mm).

Min. position Minimal position of translator stage in user-defined units.
Max. position Maximal position of translator stage in user-defined units.
Reset offset Amount of steps moved forward from the end-switch to

position corresponding to Min position in user-defined units
Reverse direction Flag used to swap forward and backward direction of motor

movement.
Acceleration Acceleration parameter of motor.
Speed Speed parameter of motor.
End switch 1 mode Left end-switch mode (“Ignored” or “Emergency stop”).
End switch 2 mode Right end-switch mode (“Ignored” or “Emergency stop”).
Start movement after
sync pulse

Flag indicates if the sync pulse must be received before
starting moving.

Generate sync pulse at
the end

Flag indicates if the sync pulse must be generated at the end of
movement.

Periodically generate
sync pulse

Flag indicates that sync pulse must be generated every t steps
starting from b.

Steps before first sync
pulse

Parameter b, indicates that sync pulses must be generated
starting from b steps.

Generate sync pulse
every… steps

Parameter t, indicates period in steps how often sync pulses
must be generated.

Step division Motor’s step division parameter (“No division”, “Divide by
2”, “Divide by 4”, “Divide by 8”).

6.4.2 Using Translator.exe as network server

Translator.exe has integrated network server and is capable to accept commands sent by network. TCP port
23 is used for communication, those simple terminal application as telnet can be used to control
Translator.exe remotely. When Translator.exe starts it displays information about server status: “TCP/IP
server: computer_name (address computer_IP_address) is running on port 23”. When client connects to
server, Translator changes window name from “Translator” to “Translator- (client connected)” and sends to
client string “{Translator TCP/IP Server ready...}”. Status of server application is transferred as string
“{Card is opened successfully}” or “{Card is not found}”. All commands are case insensitive. Commands
accepted by network server are listed in table bellow.

Command Possible answers by server Description
quit {Bye} Quits communication session.
reset no Ok: reset of motor no

Failed: reset of motor no (incorrect motor
number)

Performs reset of motor no.

ver. 1.0.5 Page 29 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

set_acceleration no acc Ok: set_acceleration of motor no to acc
Failed: set_acceleration of motor no to acc
Failed: set_acceleration of motor no to acc
(incorrect motor number)

Sets a new acceleration value
acc for motor no.

set_speed no sp Ok: set_speed of motor no to sp
Failed: set_speed of motor no to sp
Failed: set_speed of motor no to sp (incorrect
motor number)

Sets a new speed value sp for
motor no.

set_steps no steps Ok: set_steps of motor no to steps
Failed: set_steps of motor no to steps
Failed: set_steps of motor no to steps (incorrect
motor number)

Sets a new steps value steps for
motor no.

set_division no div Ok: set_division of motor no to div
Failed: set_division of motor no to div
Failed: set_division of motor no to div
(incorrect motor number)

Sets a new division value div
for motor no.

set_synchronization no
sync start period

Ok: set_synchronization of motor no to sync
start period
Failed: set_synchronization of motor no to syn
start period
Failed: set_synchronization of motor no to
sync start period (incorrect motor number)

Sets a new set synchronization
parameters sync start period
(synchronization, steps to start,
period in steps) for motor no.

set_direction no dir Ok: set_direction of motor no to dir
Failed: set_direction of motor no to dir
Failed: set_direction of motor no to dir
(incorrect motor number)

Sets a new direction value dir
for motor no.

set_switchconfig no sw Ok: set_switchconfig of motor no to sw
Failed: set_switchconfig of motor no to sw
Failed: set_switchconfig of motor no to sw
(incorrect motor number)

Sets a new switch configuration
value sw for motor no.

set_move no wait Ok: set_move of motor no with wait flag wait
Failed: set_move of motor no with wait flag
wait
Failed: set_move of motor no with wait flag
wait (incorrect motor number)

Starts movement of motor no
with flag wait.

set_stop no Ok: set_stop of motor no. steps steps made
Failed: set_stop of motor no
Failed: set_stop of motor no (incorrect motor
number)

Stops motor no and returns
amount of steps made.

Set_motorstatus no stat Ok: set_motorstatus of motor no to stat
Failed: set_motorstatus of motor no to stat
Failed: set_motorstatus of motor no to stat
(incorrect motor number)

Sets motor current on (stat=1)
or off (stat=0).

set_motorname no name Ok: set_motorname of motor no to name
Failed: set_motorname of motor no to name
Failed: set_motorname of motor no to name
(incorrect motor number)

Changes name of motor no to
name. (name- string of
characters).

set_unitname no units Ok: set_unitname of motor no to units
Failed: set_unitname of motor no to units
Failed: set_unitname of motor no to units
(incorrect motor number)

Changes name of user-defined
units of motor no to units.
(units - string of characters).

ver. 1.0.5 Page 30 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

set_factor no factor Ok: set_factor of motor no to factor
Failed: set_factor of motor no to factor
Failed: set_factor of motor no to factor
(incorrect motor number)

Changes factor of user-defined
units of motor no to factor.
(factor- floating number).

set_minpos no pos Ok: set_minpos of motor no to pos
Failed: set_minpos of motor no to pos
Failed: set_minpos of motor no to pos
(incorrect motor number)

Changes min position of motor
no to pos. (pos- floating
number).

set_maxpos no pos Ok: set_maxpos of motor no to pos
Failed: set_maxpos of motor no to pos
Failed: set_maxpos of motor no to pos
(incorrect motor number)

Changes max position of motor
no to pos. (pos- floating
number).

set_resetoffset no offset Ok: set_resetoffset of motor no to offset
Failed: set_resetoffset of motor no to offset
Failed: set_resetoffset of motor no to offset
(incorrect motor number)

Changes reset offset value of
motor no to offset. (offset-
integer number).

set_reversedirection no
flag

Ok: set_reversedirection of motor no to flag
Failed: set_reversedirection of motor no to flag
Failed: set_reversedirection of motor no to flag
(incorrect motor number)

Changes value of reverse
direction parameter of motor no
to flag. (flag- 0 or 1).

set_newposition no pos Ok: set_newposition of motor no to pos
Failed: set_newposition of motor no to pos
Failed: set_newposition of motor no to pos
(incorrect motor number)

Moves motor no to a new
position pos. (pos- position in
steps).

update_panels - Updates all three panels on
server window

A simple telnet session is displayed as example in picture below.

ver. 1.0.5 Page 31 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

6.4.3 Using Translator.exe as network client

Translator.exe can be used as simple network client as well. To use Translator as network client run program
with command option “/c” (or use shortcut “Start|Programs|8SMCC PCI1/PCI3|Translator network client”
created by library installation). Additional IP address box and button “Connect” are displayed when
Translator starts in client mode (see picture bellow). One more difference is that there are no more red led
indicating state of end-switches.

First operation to perform when Translator is started as client is to connect to server. Enter IP address of
computer with 8SMCC PCI1/PCI3 card installed and Translator started in server mode (without command
switch /c). If connection is established client program will display information “Connection established with
server server_IP_address on port23”. From this moment move, reset and change of properties operations
can be executed in a manner similar to the controlling translators from the local computer. Note that
Translator network client is not full client application and is intended only to demonstrate capabilities of
controlling Translator server over the network.

ver. 1.0.5 Page 32 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

7 Using 8SMCC2.dll over LabVIEW

Additional LabVIEW virtual instrument library 8SMCC2.llb is located in drive:\Program
Files\8SMCC\LabVIEW by default. It contains simple wrappers for all functions exported from
8SMCC2.dll. Functions inside 8SMCC2.llb have the same names as functions in dynamic link library.
Structure of every function can be viewed and modified if necessary. Every virtual instrument gets input
parameters and passes them to the function in dynamic link library using “Call function” instrument
implemented in LabVIEW. Return value of this function is returned as result of operation. Additionally error
input and error output are added to meet LabVIEW programming paradigm. All input parameters of
functions are the same as described in chapter 6.2. Result of operation is 1 if function succeeds and 0 if
function fails. As example, structure of SMCC_SetSteps virtual instrument is presented here.

7.1 Virtual instrument “SMCC_InitPCILibrary”

Please refer to chapter 6.2.1 for description of this function.

7.2 Virtual instrument “SMCC_OpenDevice”

Please refer to chapter 6.2.2 for description of this function.

7.3 Virtual instrument “SMCC_CloseDevice”

ver. 1.0.5 Page 33 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

Please refer to chapter 6.2.3 for description of this function.

7.4 Virtual instrument “SMCC_SetAcceleration”

Please refer to chapter 6.2.4 for description of this function.

7.5 Virtual instrument “SMCC_SetSpeed”

Please refer to chapter 6.2.5 for description of this function.

7.6 Virtual instrument “SMCC_SetSteps”

Please refer to chapter 6.2.6 for description of this function.

7.7 Virtual instrument “SMCC_SetDivision”

Please refer to chapter 6.2.7 for description of this function.

7.8 Virtual instrument “SMCC_SetDirection”

Please refer to chapter 6.2.8 for description of this function.

7.9 Virtual instrument “SMCC_SetSwitchConfig”

ver. 1.0.5 Page 34 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

Please refer to chapter 6.2.9 for description of this function.

7.10 Virtual instrument “SMCC_SetSynchronization”

Please refer to chapter 6.2.10 for description of this function.

7.11 Virtual instrument “SMCC_Move”

Please refer to chapter 6.2.11 for description of this function.

7.12 Virtual instrument “SMCC_Stop”

Please refer to chapter 6.2.12 for description of this function.

7.13 Virtual instrument “SMCC_GetSwitchStatus”

Please refer to chapter 6.2.13 for description of this function.

7.14 Virtual instrument “SMCC_GetPositionCheckStatus”

Please refer to chapter 6.2.14 for description of this function.

7.15 Virtual instrument “SMCC_GetRotationCheckStatus”

ver. 1.0.5 Page 35 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

Please refer to chapter 6.2.15 for description of this function.

7.16 Virtual instrument “SMCC_SetMotorStatus”

Please refer to chapter 6.2.16 for description of this function.

7.17 Using LabVIEW virtual instrument library 8SMCC2.llb

There is simple example program demo.vi located in the same directory as 8SMCC2.llb. It demonstrates
how to use virtual instruments to control 8SMCC PCI1/PCI3 card. Dynamic link library must be initialized
at the beginning with function SMCC_InitPCILibrary. After that handle to motor must be obtained with
function SMCC_OpenDevice. When handle is received all motor parameters can be transferred to controller
card. The order of transfer of parameters is not important. At the end command SMCC_Move must be issued
to move motor and handle must be closed with command SMCC_CloseDevice. Structure of demo.vi
program is presented here.

ver. 1.0.5 Page 36 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

8 Using 8SMCC2.dll over MatLAB

MatLAB can not use functions from standard dynamic link libraries directly those simple wrapper libraries
for every function exported from 8SMCC2.dll are provided in folder drive:\Program Files\8SMCC\MatLAB
by default. Add this path to MatLAB path list or copy these functions to MatLAB\work directory to use
them. Use of functions is almost identical as described in chapter 6.2. All functions are described in table.

Function Description
SMCC_InitPCILibrary Initializes library and data structures. This function must be

called before any other function. Returns 1 on success or 0 on
failure.

SMCC_OpenDevice(card_no,
motor_no)

Returns handle to specified motor motor_no on controller card
card_no. This function must be called before any function of the
groups SMCC_Set… and SMCC_Get… is used. A motor opened
with this function must be closed with SMCC_CloseDevice.
Returns 0 on failure.

SMCC_CloseDevice(handle) Closes handle to motor opened by SMCC_OpenDevice. Always
returns 1.

SMCC_SetAcceleration(handle, acc) Sets acceleration parameter acc for motor specified by handle.
Returns 1 on success or 0 on failure.

SMCC_SetSpeed(handle, speed) Sets speed parameter for motor specified by handle. Returns 1 on
success or 0 on failure.

SMCC_SetSteps(handle, steps) Sets amount of steps to move for motor specified by handle.
Returns 1 on success or 0 on failure.

SMCC_SetDivision(handle, div) Sets step division factor div parameter for motor specified by
handle. Returns 1 on success or 0 on failure.

SMCC_SetDirection(handle, dir) Sets direction dir for movement of motor specified by handle.
Returns 1 on success or 0 on failure.

SMCC_SetSwitchMode(handle, mode) Sets mode of end switches for motor specified by handle. See
chapter 6.2.9 for description of switch modes. Returns 1 on
success or 0 on failure.

SMCC_SetSynchronization(handle,
sync, start, period)

Sets mode of movement synchronization sync and mode of
generation of sync pulses start and period for motor specified by
handle. See chapter 6.2.10 for description of synchronization
modes and parameters. Returns 1 on success or 0 on failure.

SMCC_Move(handle, wait) Starts moving motor specified by handle accordingly earlier set
parameters: amount of steps, direction, acceleration, speed, step
division, synchronization mode and end-switch mode. If flag
wait is set to 0, function returns immediately else function returns
when movement is finished. Returns 1 on success or 0 on failure.

SMCC_Stop(handle) Starts to slow down motor specified by handle accordingly speed
and acceleration parameters while it stops. If motor doesn’t move
function fails. Function returns row of two values. First value is 1
on success and 0 on failure. The second value is amount of steps
made after start of movement.

SMCC_GetSwitchStatus(handle) Gets status of end switches for motor specified by handle.
Function returns row of two values. First value is 1 on success
and 0 on failure. The second value is status of end switches. See
chapter 6.2.13 for description of status of end-switches.

SMCC_GetPositionCheckStatus(handle, Gets status of end switches in “Check position” mode. This

ver. 1.0.5 Page 37 of 38

Stepper Motor Controllers 8SMCC PCI1 and 8SMCC PCI3

timeout) function can be called only if “check position” mode is turned on
(see SMCC_SetSwitchConfig) and motor is moving. Function
returns row of two values. First value is 1 on success and 0 on
failure. The second value is status of end switches. See chapter
6.2.13 for description of status of end-switches and chapter
6.2.10 for description of synchronization modes.

SMCC_GetRotationCheckStatus(handle,
timeout)

Gets amount of steps between two rotational switch presses in
“rotational switch” mode. This function can be called only if
“rotational switch” mode is turned on (see
SMCC_SetSwitchConfig) and motor is moving. Function returns
row of two values. First value is 1 on success and 0 on failure.
The second value is amount of steps counted. See chapter 6.2.10
for description of synchronization modes.

SMCC_SetMotorStatus(handle, status) Sets current on (status=1) or off (status=0) for motor specified by
handle. Returns 1 on success or 0 on failure.

A simple example of MatLAB program is listed bellow.

SMCC_InitPCILibrary
handle=SMCC_OpenDevice(0,1)
SMCC_SetSteps(handle,200)
SMCC_SetMotorStatus(handle,1)
SMCC_Move(handle)
SMCC_SetMotorStatas(handle,0)
SMCC_CloseDevice(handle)

ver. 1.0.5 Page 38 of 38

