Chem 14C Extra Credit Project

As part of a review of the content and quality of the Chem 14 series, with a focus on how these courses serve your needs, we'd like your input. Listed below are some topics taken from the Chem 14A and Chem 14B syllabi.

Start by writing your name, Chem 14C lecture number, student ID number, and Chem 14AB instructor names at the time of the form on the next page. Then for each topic listed circle a number:

1 = This topic was of absolutely no value to me in Chem 14C.

2 = I see how this topic might be useful in Chem 14C, but Chem 14AB did not really help much.

3 = This topic is useful in Chem 14C, and Chem 14AB prepared me somewhat.

4 = This topic is useful in Chem 14C, and Chem 14AB prepared me well.

5 = This topic is useful in Chem 14C, and Chem 14AB prepared me well, but Chem 14AB spent more time on this topic than was really necessary for Chem 14C.

Also please list any topics that are not covered in Chem 14AB, but that you feel would help your prepare for Chem 14C.

Write any additional comments in the 'Additional comments' section.

Please be honest in your responses. There are no right or wrong answers.

Submit the completed form to Dr H in lecture, to Dr H's office (if Dr H isn't in when you drop by please slide the completed form under the 3077C office door), or bring it to the final exam.

The deadline is the start of the final exam: 3:30 PM on Sunday June 5.

A correctly completed survey submitted before the deadline earns three extra credit points.
Chem 14C Extra Credit Project
Due at the final exam (3:30 PM Sunday June 5)

Name: ______________________ Student ID: ______________________

Chem 14C Lecture number (1 or 2): ____

Name of Chem 14A instructor: __________ Name of Chem 14B instructor: __________

Chem 14A Topics

1. Wavefunctions; s-, p-, and d-orbitals: 1 2 3 4 5
2. Electron configurations: 1 2 3 4 5
3. Trends in the periodic table: 1 2 3 4 5
4. Ionic and covalent bonds: 1 2 3 4 5
5. Lewis structures: 1 2 3 4 5
6. Resonance structures: 1 2 3 4 5
7. Formal charge: 1 2 3 4 5
8. Lewis acids and bases: 1 2 3 4 5
9. Octet rule exceptions: 1 2 3 4 5
10. Ionic versus covalent bonds: 1 2 3 4 5
11. Electronegativity: 1 2 3 4 5
12. Dipole moments: 1 2 3 4 5
13. Bond lengths and energies: 1 2 3 4 5
14. VSEPR model: 1 2 3 4 5
15. Sigma and pi bonds: 1 2 3 4 5
16. Hybridization: 1 2 3 4 5
17. Molecular orbital theory: 1 2 3 4 5
18. Applying Le Chatelier's Principle: 1 2 3 4 5
19. Structures of acids and bases: 1 2 3 4 5
20. Brønsted versus Lewis acid/base theories: 1 2 3 4 5
21. Conjugate acids and bases: 1 2 3 4 5
22. Acidity and basicity constants: 1 2 3 4 5
Chem 14B Topics

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lewis structures (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Formal charges (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Resonance (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>VSEPR model (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Hybridization (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Bond angles (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Electronegativity (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Dipole moments (review):</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Hydrocarbon nomenclature:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Structures of hydrocarbons:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Geometric isomers:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>Functional group nomenclature:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Conformations of alkanes:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>Strain:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Newman projections:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

List any topics that are not covered in Chem 14AB, but that you feel would help you prepare for Chem 14C:

Additional comments: