• **Definition:** A lipid is an organic molecule of biological origin that is insoluble in water and soluble in non-polar solvents.

• **Properties:** Lipids are hydrophobic (water fearing) also considered lipophilic (fat loving) due to their large non-polar regions.

• **Categories:** There are eight categories of lipids, but we are only responsible for the following seven categories in the Chemistry 14C course:

1. **Fatty acid:**
 - **Definition:** carboxylic acid with long un-branched hydrocarbon chain
 - Fatty acids have an even number of carbons (usually between 12 and 20 are most common)
 - Two types:
 a) **Unsaturated fatty acids:** feature one or more C=C (where cis is more common than trans)
 - **Monounsaturated:** one C=C
 - **Polyunsaturated:** more than one C=C
 b) **Saturated fatty acids:** do not feature a C=C
 - **Biological Importance:**
 a) Precursor to other lipids
 b) Energy Storage
 - **Example:** Lauric acid (12 carbons) (saturated)

2. **Example:** Oleic acid (18 carbons) (unsaturated) (cis)
2. Wax:
 - **Definition:** esters derived from a fatty acid and long-chain alcohol
 - Esters derived from a fatty acid and a long-chain alcohol
 - **Biological Importance:**
 a) Water Barrier
 - Minimizes water evaporation in leaves
 - Minimizes wetting in feathers
 - **Example:** Generic structure

3. Triacylglycerol (triglyceride):
 - **Definition:** fatty acid triester of glycerol
 - Most abundant of the natural lipids
 - Yields soap upon hydrolysis
 - Fat if solid at room temperature; oil if liquid
 - **Biological Importance:**
 a) Energy Storage
 b) Hydrolysis of animal fat yields soap
 - **Example:** Generic structure
4. **Phospholipid:**
 - **Definition:** glycerol esterified with two fatty acids and one phosphate group
 - Second most abundant group of natural lipids
 - Features the **hydrophobic effect** (hydrophobic tails avoid water)
 - **Biological Importance:**
 a) Membrane component
 b) Forms the phospholipid bi-layer

 Example: Phosphatidic acid

 ![Phosphatidic Acid](image)

 Example: Main component to look for:

 ![Phosphatidic Acid](image)

5. **Prostaglandin:**
 - **Definition:** molecule with the prostanoic acid skeleton (see chart)
 - Different prostaglandins have similar structures but different functions
 - **Biological Importance:**
 a) Messenger molecule
 b) Regulates other regulatory molecules such as inflammatory mediation, calcium movement, hormones
 c) May occur at wound sites and lead to inflammation
 d) Has a short half-life within the organism of about 5 minutes or less

 Example: Prostanoic acid generic structure

 ![Prostanoic Acid](image)
6. Steroid:
 - **Definition:** molecule having a 6-6-6-5 membered ring system
 - Features a flat core
 - Different steroids have similar structures but different functions
 - Four classes:
 a) **Bile acid:** aid in digestion by emulsifying fats
 b) **Sex hormone:** signal molecules that control various aspects of sexuality
 c) **Mineralocorticoid:** regulates electrolyte levels
 d) **Glucocorticoid:** regulates blood glucose levels
 - **Biological Importance:**
 a) Messenger molecule that controls functions such as:
 - Sex-related traits
 - Metabolic processes
 - Regulates inflammation
 - Regulates glucose metabolism
 b) Aids in digestion by emulsifying fats

 - **Example:** Generic structure

![Steroid Structure Diagram](image)

7. Lipophilic vitamin:
 - **Definition:** an organic compound, other than fat, protein, or carbohydrate, required for the normal growth and maintenance of animals
 - Features a broad range of structures and functions
 - There is no set structure to memorize for vitamins so the best way to classify them is by process of elimination.
 - **Biological Importance:**
 a) Examples of various functions and effects include:
 - Vitamin A is essential to vision.
 - Vitamin C is an antioxidant.
References:

All images (found in Lecture Supplement or Illustrated glossary)
http://www.chem.ucla.edu/harding/index.html