The Chichibabin Reaction

Chichibabin Reaction: A substitution in which an amide anion (-NH2) attacks carbon 2 or carbon 4 of a pyridine ring, and a Hydride ion (H-), is the leaving group. Occurs via the nucleophilic aromatic substitution reaction mechanism.

Chichibabin Reaction Mechanism:

Step 1 (Rate Determining Step): The incoming nucleophile (-NH2) attacks the delta + Carbon adjacent to the Nitrogen.
This nucleophilic attack results in the loss of aromaticity.
The Carbon’s delta + is due to the fact Nitrogen is significantly more electronegative than carbon.

Step 2 (Aromaticity Restored when Hydride ion is Ejected): The leaving group (H-) is ejected.
The restoration of aromaticity assists the Hydride ion’s ejection.
The Hydride ion is a “special circumstances only” leaving group—the special circumstance being the Chichibabin Reaction.

Miscellaneous Chichibabin Reaction Facts:
- A type of polar pi bond reaction (C=N).
- Pyridine is the electrophile; amide anion is the nucleophile; hydride ion is the leaving group.
- This reaction can happen because even though the pyridine has aromaticity, the N destabilizes it.
- Aleksey Yevgenyevich Chichibabin discovered this reaction in 1914.
References:

<http://www.chem.ucla.edu/~harding/>