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Introduction and Motivation 

•  Modern option trading systems require highly efficient and 
accurate algorithms for computing theoretical values and 
Greeks of American options 

•  This requirement translates into solving concurrently multiple 
PDEs under very challenging time and hardware constraints 

•  Recent advances in GPU computing allowed us to address 
this problem in a highly efficient and cost-effective way  

•  We present results for one direct (cyclic reduction) and one 
iterative (biconjugate gradient) solver for the banded linear 
system resulting from discretization of the Black-Scholes-
Merton equation 



•  Assume the underlying asset price S(t) undergoes geometric 
Brownian motion 

•  American options can be exercised at a previously agreed-upon 
“strike price” K, at any time prior to maturity T (discrete 
simulation/exercise times t = 0, …, T in FD models) 

•  Theoretical value f of a put option written on a non-dividend-
paying stock satisfies a parabolic PDE (Black-Scholes-Merton): 

Finite Difference-Based Pricing 

dS(t) = S(t)[(r − δ)dt + σdW ]
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•  Solving backwards in time, the “initial” condition at t = T is  
     f(t,S) = max(0, K-S) for both European and American puts 



FD-Based Pricing (continued) 

•  Domain boundaries are chosen at S = Smax such that      
f(t,Smax) = 0, and at S = Smin = 0 where f(t,Smin) = K for an 
American put and f(t,Smin) = K exp(-r(T-t)) for a European put 

•  Implicit discretization schemes result in band-diagonal system 
solves at every timestep 

•  Guaranteed stability 
•  We studied performance on a GPU of cyclic reduction and 

biconjugate gradient solvers for the tridiagonal system resulting 
from an O(Δs2,Δt) discretization scheme  

•  A very large number of systems have to be solved 
simultaneously, each for a different choice of the option 
parameters K, T, r, σ 



Problem Description 

•  In practice, a very large number of linear systems result from 
a parameter space “sweep” 

•  For each underlying name, a (small) number of maturities T 
and multiple strike prices K are considered 

•  Varying K modifies initial and boundary conditions, but not the 
matrix 

•  In addition, computation of Greeks requires re-computing the 
theoretical values of the options with new values of r and σ 

•  This yields N concurrent linear system solves per timestep, 
where N is the number of points in parameter space 

•  A task-farming-based parallelism, ideally suited for GPU-
based computing 



Tech-X Corporation’s GPULib  

•  GPULib: an easy-to-use software library for computation acceleration 
using Graphics Processing Units (GPUs) 

•  GPULib provides a large collection of GPU vector operations in Very High 
Level languages 



GPULib (cont-d) 

•  GPU viewed as co-processor 
•  Explicit data transfer to/from GPU 
•  Interface to GPU matches language style 
•  Performance via vector operations on GPU 
•  No need for low-level code development 
•  Supports CUDA enabled devices 



GPULib (cont-d) 

•  In addition to cuBLAS and cuFFT, GPULib has a broad 
set of: 
–  Vector arithmetic operations 
–  Reductions (e.g., dot products) 
–  Interpolation operations 
–  Array reshaping 
–  Advanced physics algorithms 
–  Mersenne Twister RNG, … 

Messmer, Mullowney, and Granger, “GPULib: GPU Computing in High Level 
Languages”, Computing in Science and Engineering, 10(5), 70-73 (2008) 



Vector Kernel Performance 

CPU: Intel Core2 6400 (dual core), 2.1 GHz, 3 GB RAM , GPU: NVIDIA GeForce 8800 GTX (128 processing elements) 



Implementing Linear Solvers on GPUs 

GPU Memory (From “NVIDIA CUDA Programming Guide”)

•  Test system: NVIDIA TESLA 
C1060 GPU 

•  Computation strategy: one 
thread-block per linear system 
solve 

•  Each GPU thread-block has 
256 threads and 16k shared 
memory 

•  Systems are limited to 256 
equation so as to keep 
temporary data in shared 
memory (both CR and BiCG) 

•  Each thread effectively handles 
one ‘row’ in the vector 
arithmetic 



Implementing Linear Solvers on GPUs 
(continued) 

•  We implemented the cyclic reduction and bicongugate 
gradient algorithms 

•  Algorithms are implemented in single precision on the 
GPU 

•  One of the main issues: efficient reduction operations 
(e.g., dot product) in BiCG require many thread 
synchronization steps 

•  Several reduction operations per iteration 
•  Reductions are likely the main source of slowdown in 

BiCG 



Algorithm Performance 
•  Test system: NVIDIA TESLA 

C1060 GPU 
•  Up to N = 5000 systems (points in 

parameter space in our sweeps) 
•  We expect comparable results for 

parameter sweeps with different 
matrices 

•  Figure to the left shows the 
speedup of the GPULib cyclic 
reduction and biconjugate 
gradient solvers versus 
MATLAB’s A\b solve on the 
2.4GHz Intel Core 2 Duo CPU 

•  CR shows 1000X and BiCG 
shows 50X acceleration for         
N = 5000 

The speedup of the GPULib cyclic reduction and biconjugate 
gradient solvers vs MATLAB’s A\b solve.  NVIDIA TESLA 
C1060 GPU and 2.4 GHz Intel Core 2 Duo used for these tests


