
Comparison of Direct and
Iterative Solvers for

Finite-Difference GPU-Based
Valuation of American Options

Ilya Pogorelov, Paul Mullowney, Peter Messmer
(Tech-X Corporation)

Andrey Itkin and Lewis Biscamp
(Chicago Trading Company)

2009 SIAM Annual Meeting, July 6-10, Denver, Colorado

Introduction and Motivation

•  Modern option trading systems require highly efficient and
accurate algorithms for computing theoretical values and
Greeks of American options

•  This requirement translates into solving concurrently multiple
PDEs under very challenging time and hardware constraints

•  Recent advances in GPU computing allowed us to address
this problem in a highly efficient and cost-effective way

•  We present results for one direct (cyclic reduction) and one
iterative (biconjugate gradient) solver for the banded linear
system resulting from discretization of the Black-Scholes-
Merton equation

•  Assume the underlying asset price S(t) undergoes geometric
Brownian motion

•  American options can be exercised at a previously agreed-upon
“strike price” K, at any time prior to maturity T (discrete
simulation/exercise times t = 0, …, T in FD models)

•  Theoretical value f of a put option written on a non-dividend-
paying stock satisfies a parabolic PDE (Black-Scholes-Merton):

Finite Difference-Based Pricing

dS(t) = S(t)[(r − δ)dt + σdW]

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂2f

∂S2
= rf

•  Solving backwards in time, the “initial” condition at t = T is
 f(t,S) = max(0, K-S) for both European and American puts

FD-Based Pricing (continued)

•  Domain boundaries are chosen at S = Smax such that
f(t,Smax) = 0, and at S = Smin = 0 where f(t,Smin) = K for an
American put and f(t,Smin) = K exp(-r(T-t)) for a European put

•  Implicit discretization schemes result in band-diagonal system
solves at every timestep

•  Guaranteed stability
•  We studied performance on a GPU of cyclic reduction and

biconjugate gradient solvers for the tridiagonal system resulting
from an O(Δs2,Δt) discretization scheme

•  A very large number of systems have to be solved
simultaneously, each for a different choice of the option
parameters K, T, r, σ

Problem Description

•  In practice, a very large number of linear systems result from
a parameter space “sweep”

•  For each underlying name, a (small) number of maturities T
and multiple strike prices K are considered

•  Varying K modifies initial and boundary conditions, but not the
matrix

•  In addition, computation of Greeks requires re-computing the
theoretical values of the options with new values of r and σ

•  This yields N concurrent linear system solves per timestep,
where N is the number of points in parameter space

•  A task-farming-based parallelism, ideally suited for GPU-
based computing

Tech-X Corporation’s GPULib

•  GPULib: an easy-to-use software library for computation acceleration
using Graphics Processing Units (GPUs)

•  GPULib provides a large collection of GPU vector operations in Very High
Level languages

GPULib (cont-d)

•  GPU viewed as co-processor
•  Explicit data transfer to/from GPU
•  Interface to GPU matches language style
•  Performance via vector operations on GPU
•  No need for low-level code development
•  Supports CUDA enabled devices

GPULib (cont-d)

•  In addition to cuBLAS and cuFFT, GPULib has a broad
set of:
–  Vector arithmetic operations
–  Reductions (e.g., dot products)
–  Interpolation operations
–  Array reshaping
–  Advanced physics algorithms
–  Mersenne Twister RNG, …

Messmer, Mullowney, and Granger, “GPULib: GPU Computing in High Level
Languages”, Computing in Science and Engineering, 10(5), 70-73 (2008)

Vector Kernel Performance

CPU: Intel Core2 6400 (dual core), 2.1 GHz, 3 GB RAM , GPU: NVIDIA GeForce 8800 GTX (128 processing elements)

Implementing Linear Solvers on GPUs

GPU Memory (From “NVIDIA CUDA Programming Guide”)

•  Test system: NVIDIA TESLA
C1060 GPU

•  Computation strategy: one
thread-block per linear system
solve

•  Each GPU thread-block has
256 threads and 16k shared
memory

•  Systems are limited to 256
equation so as to keep
temporary data in shared
memory (both CR and BiCG)

•  Each thread effectively handles
one ‘row’ in the vector
arithmetic

Implementing Linear Solvers on GPUs
(continued)

•  We implemented the cyclic reduction and bicongugate
gradient algorithms

•  Algorithms are implemented in single precision on the
GPU

•  One of the main issues: efficient reduction operations
(e.g., dot product) in BiCG require many thread
synchronization steps

•  Several reduction operations per iteration
•  Reductions are likely the main source of slowdown in

BiCG

Algorithm Performance
•  Test system: NVIDIA TESLA

C1060 GPU
•  Up to N = 5000 systems (points in

parameter space in our sweeps)
•  We expect comparable results for

parameter sweeps with different
matrices

•  Figure to the left shows the
speedup of the GPULib cyclic
reduction and biconjugate
gradient solvers versus
MATLAB’s A\b solve on the
2.4GHz Intel Core 2 Duo CPU

•  CR shows 1000X and BiCG
shows 50X acceleration for
N = 5000

The speedup of the GPULib cyclic reduction and biconjugate
gradient solvers vs MATLAB’s A\b solve. NVIDIA TESLA
C1060 GPU and 2.4 GHz Intel Core 2 Duo used for these tests

