Comparison of Direct and N
Iterative Solvers for

Finite-Difference GPU-Based
Valuation of American Options

llya Pogorelov, Paul Mullowney, Peter Messmer
(Tech-X Corporation)

Andrey Itkin and Lewis Biscamp
(Chicago Trading Company)

2009 SIAM Annual Meeting, July 6-10, Denver, Colorado

GCTC uuuuuuuuuuuuuuuuuuuuu TECH-X CORPORATION

3
« Modern option trading systems require highly efficient and

accurate algorithms for computing theoretical values and
Greeks of American options

Introduction and Motivation

« This requirement translates into solving concurrently multiple
PDEs under very challenging time and hardware constraints

 Recent advances in GPU computing allowed us to address
this problem in a highly efficient and cost-effective way

« We present results for one direct (cyclic reduction) and one
iterative (biconjugate gradient) solver for the banded linear
system resulting from discretization of the Black-Scholes-
Merton equation

AS

/

Finite Difference-Based Pricing

Assume the underlying asset price S(f) undergoes geometric
Brownian motion

dS(t) = S@)[(r — 8)dt + odW

American options can be exercised at a previously agreed-upon
“strike price” K, at any time prior to maturity T (discrete
simulation/exercise times t =0, ..., T in FD models)

Theoretical value f of a put option written on a non-dividend-
paying stock satisfies a parabolic PDE (Black-Scholes-Merton):

0f O 1 400f
5t "9 T27 Y gez =

Solving backwards in time, the “initial” condition att = T is
f(t,S) = max(0, K-S) for both European and American puts

FD-Based Pricing (continued)

 Domain boundaries are chosen at S = S, such that
ft,S,..,) = 0, and at S = S, = 0 where f(t,S,,,,) = K for an
American put and f(t,S,,;,) = K exp(-r(T-t)) for a European put

« Implicit discretization schemes result in band-diagonal system
solves at every timestep

« Guaranteed stability

« We studied performance on a GPU of cyclic reduction and
biconjugate gradient solvers for the tridiagonal system resulting
from an O(As? At) discretization scheme

« A very large number of systems have to be solved
simultaneously, each for a different choice of the option
parameters K, T, r, 0

AS

/

Problem Description

In practice, a very large number of linear systems result from
a parameter space “sweep”

For each underlying name, a (small) number of maturities T
and multiple strike prices K are considered

Varying K modifies initial and boundary conditions, but not the
matrix

In addition, computation of Greeks requires re-computing the
theoretical values of the options with new values of rand o

This yields N concurrent linear system solves per timestep,
where N is the number of points in parameter space

A task-farming-based parallelism, ideally suited for GPU-
based computing

\V 4
Tech-X Corporation’s GPULIib

« GPULIib: an easy-to-use software library for computation acceleration
using Graphics Processing Units (GPUs)

« GPULIib provides a large collection of GPU vector operations in Very High
Level languages

MATLAB, IDL, and Python

GPUIib wrappers
(language specific, includes software emulator)

GPULIib functions NVIDIA functions || cupaA
Runtime
Vector Data Complex T
Arithmetic || Manipulation || Operations ||| C4BLAS || CUFFT

GPULIib (cont-d)

 GPU viewed as co-processor

« Explicit data transfer to/from GPU
 Interface to GPU matches language style

» Performance via vector operations on GPU
* No need for low-level code development

« Supports CUDA enabled devices

GPULIib (cont-d)

* |n addition to cuBLAS and cuFFT, GPULIib has a broad
set of:
— Vector arithmetic operations
— Reductions (e.g., dot products)
— Interpolation operations
— Array reshaping
— Advanced physics algorithms
— Mersenne Twister RNG, ...

Messmer, Mullowney, and Granger, “GPULib: GPU Computing in High Level
Languages”, Computing in Science and Engineering, 10(5), 70-73 (2008)

Vector Kernel Performance

10

—_
o
o

—w—GPU:
—CPU:
—wGPU:

CPU :

u(o,1)
U(o,1)
N(D,1)
N(0,1)

-
= 0

—_
L=
L~

T T

w

time (average of 10 invocations)

—_
o,
>
—

MATLAB - Random Number Generation Performance

—_
o
e

10 10
random numbers

10

7

10

= tepu/tepy

Speedup

Single kernel invocation, incl. data transfer

o
O
o

¢, Lgamma(c,x+c;)+c,
Lgamma(x)

exp(x)
sin(x)
C;X+C¥y+Cy
X+y

10.0

..........

o

wt
1)
........

10 10° 10* 10° 10%° 10’
Vector Length

O

10’

CPU: Intel Core2 6400 (dual core), 2.1 GHz, 3 GB RAM , GPU: NVIDIA GeForce 8800 GTX (128 processing elements)

~
B
-
& ' I ‘ CHICAGO TRADING COMPANY
.
= ~ |

TECH-X CORPORATION

/
AL

Thread

. Per-thread local
memory

Thread Block _

ER
1]
g

Grid 0

Block (0,0) = Block (1, 0) Block (2, 0)

Block (0, 1) | Block (1,1) | Block (2, 1)

Grid 1
Global memory

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)

[——

Block (0, 2) Block (1, 2)

GPU Memory (From “NVIDIA CUDA Programming Guide”)

Implementing Linear Solvers on GPUs

Test system: NVIDIA TESLA
C1060 GPU

Computation strategy: one
thread-block per linear system
solve

Each GPU thread-block has
256 threads and 16k shared
memory

Systems are limited to 256
equation so as to keep
temporary data in shared

memory (both CR and BiCG)

Each thread effectively handles
one ‘row in the vector

arithmetic

AL

/

Implementing Linear Solvers on GPUs
(continued)

We implemented the cyclic reduction and bicongugate
gradient algorithms

Algorithms are implemented in single precision on the
GPU

One of the main issues: efficient reduction operations
(e.g., dot product) in BiCG require many thread
synchronization steps

Several reduction operations per iteration

Reductions are likely the main source of slowdown in
BiCG

Speedup from MATLAB Alb Operation
o

"
o

10

N

— BiConjugate Gradient
— Tridiagonal Cyclic Reduction

—_
o T

1 2 3
10 10

Number of Concurrent Solves

10 10

The speedup of the GPULIb cyclic reduction and biconjugate
gradient solvers vs MATLAB’s A\b solve. NVIDIA TESLA
C1060 GPU and 2.4 GHz Intel Core 2 Duo used for these tests

AAAAAAAAAAAAAAAAAAA

4

Algorithm Performance

Test system: NVIDIA TESLA
C1060 GPU

Up to N = 5000 systems (points in
parameter space in our sweeps)

We expect comparable results for
parameter sweeps with different
matrices

Figure to the left shows the
speedup of the GPULib cyclic
reduction and biconjugate
gradient solvers versus
MATLAB’s A\b solve on the
2.4GHz Intel Core 2 Duo CPU

CR shows 1000X and BICG
shows 50X acceleration for
N = 5000

