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The idea of the work

Swaps and options on quadratic variation recently became a very
popular instrument at financial markets.
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to hedge variance swaps with a strip of options up and down the
strike scale.

The real value accounts for the fact that some strikes are less
liquid, making it more difficult to hedge.

When replicating variance swaps (a log contract) at least three
sources of errors could occur in practice:
1. The analytical error due to jumps in the asset price.

2. Interpolation/extrapolation error from the finite option quotes
available to the continuum of options needed in the replication.

3. Errors in computing the realized return variance.
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The idea of the work

Swaps and options on quadratic variation recently became a very
popular instrument at financial markets.

Great popularity (and, accordingly, liquidity) of variance swaps
relative to, say, volatility swaps is due to the fact that it is easier
to hedge variance swaps with a strip of options up and down the
strike scale.

The real value accounts for the fact that some strikes are less
liquid, making it more difficult to hedge.

When replicating variance swaps (a log contract) at least three
sources of errors could occur in practice:
1. The analytical error due to jumps in the asset price.

2. Interpolation/extrapolation error from the finite option quotes
available to the continuum of options needed in the replication.

3. Errors in computing the realized return variance.

Going from hedging to modeling, we come up to a known
observation that simple models are not able to replicate the price
of the quadratic variation contract for all maturities.
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The idea of the work (continue)

Therefore, one can see a steadfast interest to applying more
sophisticated jump-diffusion and stochastic volatility models to
pricing swaps and options on the quadratic variation. Among
multiple papers on the subject, note the following:
Schoutens(2005), Carr & Lee (2003), Carr, Geman, Madan, Yor
(2005), Gatheral & Friz (2005).
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Therefore, one can see a steadfast interest to applying more
sophisticated jump-diffusion and stochastic volatility models to
pricing swaps and options on the quadratic variation. Among
multiple papers on the subject, note the following:
Schoutens(2005), Carr & Lee (2003), Carr, Geman, Madan, Yor
(2005), Gatheral & Friz (2005).

A similar class of models uses stochastic time change and, thus,
operates with time-changed Levy processes. Usually, Monte-Carlo
methods are used to price the quadratic variation products within
these models.

Analytical and semi-analytical (like FFT) results are available only
for simplest models. For instance, Swichchuk (2004) uses the
change-of-time method for the Heston model to derive explicit
formulas for variance and volatility swaps for financial markets
with stochastic volatility following the CIR process. Also Carr et
all (2005) proposed a method of pricing options on quadratic
variation via the Laplace transform, but this methods has some
serious pitfalls.
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The idea of the work (continue)

Therefore, one can see a steadfast interest to applying more
sophisticated jump-diffusion and stochastic volatility models to
pricing swaps and options on the quadratic variation. Among
multiple papers on the subject, note the following:
Schoutens(2005), Carr & Lee (2003), Carr, Geman, Madan, Yor
(2005), Gatheral & Friz (2005).

A similar class of models uses stochastic time change and, thus,
operates with time-changed Levy processes. Usually, Monte-Carlo
methods are used to price the quadratic variation products within
these models.

In the present paper we consider a class of models that are known
to be able to capture at least the average behavior of the implied
volatilities of the stock price across moneyness and maturity -
time-changed Levy processes. We derive an analytical expression
for the fair value of the quadratic variation and volatility swap
contracts as well as use the approach similar to that of Carr &
Madan (1999) to price options on these products.
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Quadratic variation and forward characteristic function
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Quadratic variation

Quadratic variation of the stochastic process st is defined as follows

QV (st) = EQ
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In case of N discrete observations over the life of the contract with
maturity T , annualized quadratic variation of the stochastic
process st is then
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where k is the number of observations per year.
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where k is the number of observations per year.

Suppose the observations are uniformly distributed over (0, T )
with τ = ti − ti−1 = const,∀i = 1, N . Then

QV (st) ≡
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Forward characteristic function

Quadratic variation is often used as a measure of realized variance.
Moreover, modern variance and volatility swap contracts in fact
are written as a contract on the quadratic variation because i) this
is a quantity that is really observed at the market, and ii) for
models with no jumps the quadratic variance exactly coincides
with the realized variance.
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Forward characteristic function

As shown by Hong (2004) an alternative representation of the
quadratic variation could be obtained via a forward characteristic
function. The idea is as follows.
Let us define a forward characteristic function

φt,T ≡ EQ [exp(iust,T )|s0, ν0] ≡

Z ∞

−∞

e
ius

qt,T (s)ds, (4)

where st,T = sT − st and qt,T is the Q-density of st,T conditional
on the initial time state

qt,T (s)ds ≡ Q (st,T ∈ [s, s + ds)|s0) . (5)
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where st,T = sT − st and qt,T is the Q-density of st,T conditional
on the initial time state
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From Eq. (3) and Eq. (4) we obtain
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Analytical expression for the forward characteristic
function
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Forward characteristic function

Let us first remind that a general Lévy process XT has its characteristic function

represented in the form

φX (u) = EQ

h

eiuXT
i

= e−TΨx(u), (7)

where Ψx(u) is known as a Lévy characteristic exponent.
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= e−TΨx(u), (7)

where Ψx(u) is known as a Lévy characteristic exponent.

For time-changed Lévy process, Carr and Wu (2004) show that the generalized

Fourier transform can be converted into the Laplace transform of the time change

under a new, complex-valued measure, i.e. the time-changed process Yt = XTt has

the characteristic function
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where the expectation and the Laplace transform are computed under a new

complex-valued measure M.
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= Lu
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where the expectation and the Laplace transform are computed under a new

complex-valued measure M.

The measure M is absolutely continuous with respect to the risk-neutral measure Q

and is defined by a complex-valued exponential martingale

DT (u) ≡
dM

dQ

˛

˛

˛

T
= exp [iuYT + TT Ψx(u)] , (9)

where DT is the Radon-Nikodym derivative of the new measure with respect to the

risk neutral measure up to time horizon T .
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FCF (continue)

Further we again follow to the idea of Hong (2004). For the process Eq. (7) we need

to obtain the forward characteristic function which is

φt,T (u) ≡ EQ

»

e
iu(sT −st)

˛

˛

˛
F0

–

= e
iu(r−q)(T−t)

EQ

»

e
iu(YT −Yt)

˛

˛

˛
F0

–

, (10)

where t < T .
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From the Eq. (10) one has
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For Markovian arrival rates ν the inner expectation will be a function of ν(t) only.
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For Markovian arrival rates ν the inner expectation will be a function of ν(t) only.

Now let us consider a time-homogeneous time-change processes, for instance, CIR

process with constant coefficients. With the allowance of the Eq. (8) the last

expression could be rewritten as

EQ

»

EM

»

e
−(TT −Tt)Ψx(u)

˛

˛

˛
Ft

––

= EQ
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EM
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e
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RT
t ν(s)ds

˛

˛

˛
νt

––
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»
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τ (Ψx(u))

˛

˛

˛
ν0

–

, (12)

where τ ≡ T − t.
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Affine arrival rates
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Affine rates

Now for all the arrival rates that are affine, the Laplace transform Luτ (Ψx(u)) is also

an exponential affine function in νt

Lu
τ (Ψx(u)) = exp [α(τ,Ψx(u)) + β(τ,Ψx(u))νt] , (13)

and hence

φt,T (u) = e
iu(r−q)τ

EQ

h

e
iu(YT −Yt)

˛

˛

˛F0

i

= e
iu(r−q)τ

EQ

h

exp [α(τ,Ψx(u)) + β(τ,Ψx(u))νt]
˛

˛

˛ν0

i

(14)

= e
iu(r−q)τ

e
α(τ,Ψx(u))

EQ

h

e
β(τ,Ψx(u))νt

˛

˛

˛ν0

i

= e
iu(r−q)τ

e
α(τ,Ψx(u))

φνt (−iβ(τ,Ψx(u))νt) .

Here as φνt () we denote the generalized characteristic function of the activity rate

process under the risk neutral measure Q.
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Here as φνt () we denote the generalized characteristic function of the activity rate

process under the risk neutral measure Q.

Example: CIR clock change. In the case of the CIR clock change the conditional

Laplace transform (or moment generation function) of the CIR process

ψt,h(v) = EQ

»

e
−vyt+h

˛

˛

˛
yt

–

, v ≥ 0 (15)

can be found in a closed form (Heston). Since νt in our case is a positive process, the

conditional Laplace transform characterizes the transition between dates t and t + h

(Feller 1971).
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CIR clock change
CIR process

dνt = κ(θ − νt)dt+ η
√
νtdZt (16)
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CIR clock change
CIR process

dνt = κ(θ − νt)dt+ η
√
νtdZt (16)

Therefore, from the Eq. (16) we obtain

φt,T (u) = exp

h

iu(r − q)τ + α(τ,Ψx(u)) − a(t,−β(τ,Ψx(u)))ν0 − b(t,−β(τ,Ψx(u)))

i

. (17)

Now, expressions for α(τ, Ψx(u)) and β(τ, Ψx(u)) in the case of the CIR time-change
have been already found in Carr & Wu (2004) and read

β(τ,Ψx(u)) = −
2Ψx(u)(1 − e

−δτ
)

(δ + κ
Q

) + (δ − κ
Q

)e
−δτ

, (18)

α(τ,Ψx(u)) = −
κ

Q
θ

η
2

"

2 log

 

1 −
δ − κ

Q

2δ
(1 − e

−δτ
)

!

+ (δ − κ
Q

)τ

#

,

where δ2 = (κQ)2 + 2Ψx(u)η2, κQ = κ − iuησρ and σ is a constant volatility rate of

the diffusion component of the process.
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where δ2 = (κQ)2 + 2Ψx(u)η2, κQ = κ − iuησρ and σ is a constant volatility rate of

the diffusion component of the process.

Further let us have a more close look at the Eq. (8). Suppose the distance between

any two observations at time ti and ti−1 is one day. Suppose also that these

observations occur with no weekends and holidays. Then τi ≡ ti − ti−1 = τ = const.

Further we have to use the Eq. (17) with t = ti−1 and T = ti, substitute it into the

Eq. (8), take second partial derivative and put u = 0.



Itkin, Carr, Pricing swaps and options on quadratic variation..., 14th Annual CAP Workshop, 2007. - p. 13/41

Asymptotic method
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Asymptotic method
A detailed analysis of the Eq. (17) shows that the time interval τ enters this equation

only as a product κτ or (r − q)τ .
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Asymptotic method
A detailed analysis of the Eq. (17) shows that the time interval τ enters this equation

only as a product κτ or (r − q)τ .

Now we introduce an important observation that usually κτ ≪ 1. Indeed, according

to the results obtained for the Heston model calibrated to the market data the value

of the mean-reversion coefficient κ lies in the range 0.01 − 30. On the other hand, as

it was already mentioned, we assume the distance between any two observations at

time ti and ti−1 to be one day, i.e τ = 1/365. Therefore, the assumption κτ ≪ 1 is

provided with a high accuracy.
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Now we introduce an important observation that usually κτ ≪ 1. Indeed, according

to the results obtained for the Heston model calibrated to the market data the value

of the mean-reversion coefficient κ lies in the range 0.01 − 30. On the other hand, as

it was already mentioned, we assume the distance between any two observations at

time ti and ti−1 to be one day, i.e τ = 1/365. Therefore, the assumption κτ ≪ 1 is

provided with a high accuracy.

The above means that our problem of computing φ′′
u(ti, ti + τ)(u = 0) has two small

parameters - u and κτ . And, in principal, we could produce a double series expansion

of φ′′
u(ti, ti + τ) on both these parameters. However, to make it more transparent, let

us expand the Eq. (17) first into series on κτ up to the linear terms (that can also be

done with Mathematica).
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of φ′′
u(ti, ti + τ) on both these parameters. However, to make it more transparent, let

us expand the Eq. (17) first into series on κτ up to the linear terms (that can also be

done with Mathematica).

Eventually for CIR clock change we arrive at the following result

−
∂
2
φti,ti−1

(u)

∂u
2

˛

˛

˛

u=0
=
∂
2
Ψx(u)

∂u
2

˛

˛

˛

u=0

h

θ + (ν0 − θ)e
−κti

i

τ + O(τ
2
) (19)
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Asymptotic method
A detailed analysis of the Eq. (17) shows that the time interval τ enters this equation

only as a product κτ or (r − q)τ .

Now we introduce an important observation that usually κτ ≪ 1. Indeed, according

to the results obtained for the Heston model calibrated to the market data the value

of the mean-reversion coefficient κ lies in the range 0.01 − 30. On the other hand, as

it was already mentioned, we assume the distance between any two observations at

time ti and ti−1 to be one day, i.e τ = 1/365. Therefore, the assumption κτ ≪ 1 is

provided with a high accuracy.

The above means that our problem of computing φ′′
u(ti, ti + τ)(u = 0) has two small

parameters - u and κτ . And, in principal, we could produce a double series expansion

of φ′′
u(ti, ti + τ) on both these parameters. However, to make it more transparent, let

us expand the Eq. (17) first into series on κτ up to the linear terms (that can also be

done with Mathematica).

Then from the Eq. (6) we obtain

QV (st) = −
1

T

N
X

i=1

∂
2
φti,ti−1

(u)

∂u
2

˛

˛

˛

u=0
≈

1

T

Z T

0
(Ψx)

′′

u (0)
h

θ + (ν0 − θ)e
−κt

i

dt (19)

= (Ψx)
′′

u (0)

"

θ + (ν0 − θ)
1 − e

−κT

κT

#

.
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Some examples
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CIR clock change. Examples
Heston model. Let us remind that the familiar Heston model can be treated as the

pure continuous Lévy component (pure lognormal diffusion process) with σ = 1 under

the CIR time-changed clock. For the continuous diffusion process the characteristic

exponent is (see, for instance, Carr & Wu (2004)) Ψx(u) = −iµu + σ2u2/2, therefore

(Ψx)
′′

u(0) = 1. Thus, we arrive at the well-known expression of the quadratic variation

under the Heston model (see, for instance, Swishchuk (2004))

QV (st) = θ + (ν0 − θ)
1 − e

−κT

κT
(20)
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CIR clock change. Examples
SSM model. According to Carr & Wu (2004) let us consider a class of models that are

known to be able to capture at least the average behavior of the implied volatilities of

the stock price across moneyness and maturity. We use a complete stochastic basis

defined on a risk-neutral probability measure Q under which the log return obeys a

time-changed Lévy process

st ≡ log St/S0 = (r − q)t+

„

L
R

T R
t

− ξ
R

T
R
t

«

+

„

L
L

T L
t

− ξ
L
T

L
t

«

, (20)

where r, q denote continuously-compounded interest rate and dividend yield, both of

which are assumed to be deterministic; L
R and L

L denote two Lévy processes that

exhibit right (positive) and left (negative) skewness respectively; TRt and TLt denote

two separate stochastic time changes applied to the Lévy components; ξR and ξL are

known functions of the parameters governing these Lévy processes, chosen so that the

exponentials of L
R
TR

t

− ξRT
R
t and L

L
TL

t

− ξLT
L
t are both Q martingales. Each Lévy

component can has a diffusion component, and both must have a jump component to

generate the required skewness.
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CIR clock change. Examples
SSM model. According to Carr & Wu (2004) let us consider a class of models that are

known to be able to capture at least the average behavior of the implied volatilities of

the stock price across moneyness and maturity. We use a complete stochastic basis

defined on a risk-neutral probability measure Q under which the log return obeys a

time-changed Lévy process

st ≡ log St/S0 = (r − q)t+

„

L
R

T R
t

− ξ
R

T
R
t

«

+

„

L
L

T L
t

− ξ
L
T

L
t

«

, (20)

where r, q denote continuously-compounded interest rate and dividend yield, both of
which are assumed to be deterministic; L

R and L
L denote two Lévy processes that

exhibit right (positive) and left (negative) skewness respectively; TRt and TLt denote

two separate stochastic time changes applied to the Lévy components; ξR and ξL are
known functions of the parameters governing these Lévy processes, chosen so that the
exponentials of L

R
TR

t

− ξRT
R
t and L

L
TL

t

− ξLT
L
t are both Q martingales. Each Lévy

component can has a diffusion component, and both must have a jump component to
generate the required skewness.

First, by setting the unconditional weight of the two Lévy components equal to each other, we can

obtain an unconditionally symmetric distribution with fat tails for the currency return under the

risk-neutral measure. This unconditional property captures the relative symmetric feature of the

sample averages of the implied volatility smile. Second, by applying separate time changes to the

two components, aggregate return volatility can vary over time so that the model can generate

stochastic volatility. Third, the relative weight of the two Lévy components can also vary over time

due to the separate time change
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SSM - continue
For model design we make the following decomposition of the two Lévy components

in the Eq. (20)

L
R
t = J

R
t + σ

R
W

R
t , L

L
t = J

L
t + σ

L
W

L
t , (21)

where (WR
t , WL

t ) denote two independent standard Brownian motions and (JRt , JLt )

denote two pure Lévy jump components with right and left skewness in distribution,

respectively.
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SSM - continue
For model design we make the following decomposition of the two Lévy components

in the Eq. (20)

L
R
t = J

R
t + σ

R
W

R
t , L

L
t = J

L
t + σ

L
W

L
t , (21)

where (WR
t , WL

t ) denote two independent standard Brownian motions and (JRt , JLt )

denote two pure Lévy jump components with right and left skewness in distribution,

respectively.

We assume a differentiable and therefore continuous time change and let

νR
t ≡

∂T
R
t

∂t
, νL

t ≡
∂T

L
t

∂t
, (22)

denote the instantaneous activity rates of the two Lévy components. By definition

T
R
t ,TLt have to be non-decreasing semi-martingales.
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For model design we make the following decomposition of the two Lévy components

in the Eq. (20)

L
R
t = J

R
t + σ

R
W

R
t , L

L
t = J

L
t + σ

L
W

L
t , (21)

where (WR
t , WL

t ) denote two independent standard Brownian motions and (JRt , JLt )

denote two pure Lévy jump components with right and left skewness in distribution,

respectively.

We assume a differentiable and therefore continuous time change and let

νR
t ≡

∂T
R
t

∂t
, νL

t ≡
∂T

L
t

∂t
, (22)

denote the instantaneous activity rates of the two Lévy components. By definition

T
R
t ,TLt have to be non-decreasing semi-martingales.

We model the two activity rates as a certain affine process. For instance, it could be a
square-root processes of Heston (1993)

dνR
t = κR(θR − νR

t )dt + ηR
q

νR
t dZ

R
t , (23)

dν
L
t = κ

L
(θ

L − ν
L
t )dt + η

L
q

νL
t dZ

L
t ,

where in contrast to Carr & Wu (2004) we don’t assume unconditional symmetry

and therefore use different mean-reversion κ, long-run mean θ and volatility of

volatility η parameters for left and right activity rates.
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SSM - continue
We assume a differentiable and therefore continuous time change and let

ν
R
t ≡

∂TR
t

∂t
, ν

L
t ≡

∂TL
t

∂t
, (21)

denote the instantaneous activity rates of the two Lévy components. By definition

T
R
t ,TLt have to be non-decreasing semi-martingales.

We model the two activity rates as a certain affine process. For instance, it could be a
square-root processes of Heston (1993)

dνR
t = κR(θR − νR

t )dt + ηR
q

νR
t dZ

R
t , (22)

dν
L
t = κ

L
(θ

L − ν
L
t )dt + η

L
q

νL
t dZ

L
t ,

where in contrast to Carr & Wu (2004) we don’t assume unconditional symmetry

and therefore use different mean-reversion κ, long-run mean θ and volatility of

volatility η parameters for left and right activity rates.

We allow the two Brownian motions (WR
t , WL

t ) in the return process and the two

Brownian motions (ZRt , ZLt ) in the activity rates to be correlated as follows,

ρ
R
dt = EQ[dW

R
t dZ

R
t ], ρ

L
dt = EQ[dW

L
t dZ

L
t ]. (23)

The four Brownian motions are assumed to be independent otherwise.
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SSM (continue)
Now assuming that the positive and negative jump components are driven by two
different CIR stochastic clocks as in the Eq. (16), it could be shown in exactly same
way as we did for the single time process, that the annualized fair strike QV (st)(T ) is
now given by the expression

QV (st)(T ) = (Ψ
L
x )

′′

u (0)

2

4θ
L

+ (ν
L
0 − θ

L
)
1 − e

−κLT

κLT

3

5+(Ψ
R
x )

′′

u (0)

2

4θ
R

+ (ν
R
0 − θ

R
)
1 − e

−κRT

κRT

3

5 .

(24)
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SSM (continue)
Now assuming that the positive and negative jump components are driven by two
different CIR stochastic clocks as in the Eq. (16), it could be shown in exactly same
way as we did for the single time process, that the annualized fair strike QV (st)(T ) is
now given by the expression

QV (st)(T ) = (Ψ
L
x )

′′

u (0)

2

4θ
L

+ (ν
L
0 − θ

L
)
1 − e

−κLT

κLT

3

5+(Ψ
R
x )

′′

u (0)

2

4θ
R

+ (ν
R
0 − θ

R
)
1 − e

−κRT

κRT

3

5 .

(24)

So now we have two independent mean-reversion rates and two long-term run

coefficients that can be used to provide a better fit for the long-term volatility level

and the short-term volatility skew, similar to how this is done in the multifactor

Heston (CIR) model.
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Numerical experiments
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Fair strike of the quadratic variation for three models
Heston model An expression for the characteristic exponent of the Heston model

reads

Ψx(u) = −iµu +
1

2
σ
2
u
2
, (25)

therefore Ψ′′
x(u)|u=0 = σ2.

The Heston model has 5 free parameters κ, θ, η, ρ, v0 that can be obtained by

calibrating the model to European option prices. In doing so one can use an FFT

method as in Carr and Madan (1999).
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Fair strike of the quadratic variation for three models
Heston model An expression for the characteristic exponent of the Heston model

reads

Ψx(u) = −iµu +
1

2
σ
2
u
2
, (25)

therefore Ψ′′
x(u)|u=0 = σ2.

The Heston model has 5 free parameters κ, θ, η, ρ, v0 that can be obtained by

calibrating the model to European option prices. In doing so one can use an FFT

method as in Carr and Madan (1999).

SSM model. To complete the description of the model we specify two jump

components JLt and JRt using the following specification for the Lévy density (Carr &

Wu (2004))

µ
R

(x) =

8

<

:

λRe
−|x|/νR

j |x|−α−1, x > 0,

0, x < 0.
µ

L
(x) =

8

<

:

0, x > 0,

λLe
−|x|/νL

j |x|−α−1, x < 0.

(26)

so that the right-skewed jump component only allows up jumps and the left-skewed

jump component only allows down jumps. We use different parameters λ, νj ∈ R
+

which is similar to CGMY model. Depending on the magnitude of the power

coefficient α the sample paths of the jump process can exhibit finite activity (α < 0),

infinite activity with finite variation (0 < α < 1), or infinite variation (1 < α < 2).

Therefore, this parsimonious specification can capture a wide range of jump behaviors.

Further we put α = −1, so the jump specification becomes a finite-activity compound

Poisson process with an exponential jump size distribution as in Kou (1999).
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Fair strike of the quadratic variation for three models
For such Lévy density the characteristic exponent has the following form

ΨR
x (u) = −iuλR

2

4

1

1 − iuν
R
j

−
ν

R
j

1 − ν
R
j

3

5 + ΨR
d (u) (27)

Ψ
L
x (u) = iuλ

L

2

4

1

1 + iuν
L
j

−
ν

L
j

1 + ν
L
j

3

5+ Ψ
L
d (u)

Ψ
k
d(u) =

1

2
(σ

k
)
2
(iu+ u

2
), k = L,R,

where Ψkd(u) is the characteristic exponent for the concavity adjusted diffusion

component σWt − 1
2
σ2t.
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For such Lévy density the characteristic exponent has the following form

ΨR
x (u) = −iuλR

2

4

1

1 − iuν
R
j

−
ν

R
j

1 − ν
R
j

3

5 + ΨR
d (u) (27)

Ψ
L
x (u) = iuλ

L

2

4

1

1 + iuν
L
j

−
ν

L
j

1 + ν
L
j

3

5+ Ψ
L
d (u)

Ψ
k
d(u) =

1

2
(σ

k
)
2
(iu+ u

2
), k = L,R,

where Ψkd(u) is the characteristic exponent for the concavity adjusted diffusion

component σWt − 1
2
σ2t.

Thus, form Eq. (27) we find that (Ψkx)
′′(0) ≡ (σk)2 + 2λknkj , k = L, R.



Itkin, Carr, Pricing swaps and options on quadratic variation..., 14th Annual CAP Workshop, 2007. - p. 21/41

Fair strike of the quadratic variation for three models
For such Lévy density the characteristic exponent has the following form

ΨR
x (u) = −iuλR

2

4
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1 − iuν
R
j

−
ν

R
j

1 − ν
R
j

3

5 + ΨR
d (u) (27)

Ψ
L
x (u) = iuλ

L

2

4

1

1 + iuν
L
j

−
ν

L
j

1 + ν
L
j

3

5+ Ψ
L
d (u)

Ψ
k
d(u) =

1

2
(σ

k
)
2
(iu+ u

2
), k = L,R,

where Ψkd(u) is the characteristic exponent for the concavity adjusted diffusion

component σWt − 1
2
σ2t.

Thus, form Eq. (27) we find that (Ψkx)
′′(0) ≡ (σk)2 + 2λknkj , k = L, R.

Overall, the SSM model has 16 free parameters

κk, θk, ηk, ρk, vk0 , σk, λk, νkj , k = L, R that can be obtained by calibrating the model

to European option prices, again using the FFT method.
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Fair strike of the quadratic variation for three models
NIG-CIR. The normal inverse Gaussian distribution is a mixture of normal and inverse

Gaussian distributions. The density of a random variable that follows a NIG

distribution X ≈ NIG(α, β, µ, δ) is given by (see Barndorf-Nielse (1998))

fNIG(x;α, β, µ, δ) =
δαe

δγ+β(x−µ)

π
q

d2 + (x− µ)2
K1

„

α
q

δ2 + (x− µ)2
«

, (28)

where K1(w) is the modified Bessel function of the third kind.
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Gaussian distributions. The density of a random variable that follows a NIG

distribution X ≈ NIG(α, β, µ, δ) is given by (see Barndorf-Nielse (1998))

fNIG(x;α, β, µ, δ) =
δαe

δγ+β(x−µ)

π
q

d2 + (x− µ)2
K1

„

α
q

δ2 + (x− µ)2
«

, (28)

where K1(w) is the modified Bessel function of the third kind.

As a member of the family of generalized hyperbolic distribution, the NIG

distribution is infinitely divisible and thus generates a Levy process (Lt)t>0. For an

increment of length s , the NIG Levy process satisfies

Lt+s − Lt ≈ NIG(α, β, µs, δs) (29)
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Fair strike of the quadratic variation for three models
NIG-CIR. The normal inverse Gaussian distribution is a mixture of normal and inverse

Gaussian distributions. The density of a random variable that follows a NIG

distribution X ≈ NIG(α, β, µ, δ) is given by (see Barndorf-Nielse (1998))

fNIG(x;α, β, µ, δ) =
δαe

δγ+β(x−µ)

π
q

d2 + (x− µ)2
K1

„

α
q

δ2 + (x− µ)2
«

, (28)

where K1(w) is the modified Bessel function of the third kind.

As a member of the family of generalized hyperbolic distribution, the NIG

distribution is infinitely divisible and thus generates a Levy process (Lt)t>0. For an

increment of length s , the NIG Levy process satisfies

Lt+s − Lt ≈ NIG(α, β, µs, δs) (29)

Combined with the CIR clock change it produces a NIG-CIR model. The possible

values of the parameters are α > 0, δ > 0, β < |α|, while µ can be any real number.

Below for convenience we use transformed variables, namely:

Θ ≡ β/δ, ν ≡ δ
p

α2 − β2

The characteristic exponent of the NIG model reads

Ψx(u) = iuµ + δ

»

p

α2 − β2 −
q

α2 − (β + iu)2
–

(30)
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Results
We use these three models to compute fair value of the quadratic variation contract

on SMP500 index and Google on August 14, 2006. We calibrated them to the 480

available European option prices using differential evolution - a global optimization

method. We found the following values of the calibrated parameters (see Tables (1-3)

κ θ η v0 ρ

1.572 0.038 0.504 0.019 -0.699

Table 1: Calibrated parameters of the Heston model

κL θL ηL v0L ρL σL λL νL

1.2916 0.6515 2.1152 0.3366 -0.9998 0.2077 0.02396 1.8455

κR θR ηR v0R ρR σR λR νR

6.7486 1.999 0.0004 0.0002 0.4049 0.0734 0.0029 0.5864

Table 2: Calibrated parameters of the SSM model

κ θ η v0 ρ δ ν Θ µ

2.855 0.093 0.787 0.057 -0.987 0.897 7.533 -1.285 0.482

Table 3: Calibrated parameters of the NIGCIR model
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Results (continue)

Figure 1: Fair strike of SPX in Heston, NIGCIR and SSM models. Comparison with a log

contract (as per Bloomberg).
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Results (continue)

Figure 1: Same for Google
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Volatility swaps
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Volatility swaps
Similar to a contract on the quadratic variation, a volatility swap contract makes a

bet on the annualized realized volatility that is defined as follows

V ol(st) ≡
1

T
EQ

v

u

u

t

N
X

i=1

h

(sti
− sti−1

)2
i

≈
1

T
EQ

2

4

s

Z T

0
νtdt

˛

˛

˛ ν0

3

5 =
1

T
EQ[

√
V ], (31)

where V stays for the total annualized realized variance.
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bet on the annualized realized volatility that is defined as follows
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u
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N
X

i=1

h
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− sti−1

)2
i

≈
1

T
EQ

2

4

s

Z T

0
νtdt

˛

˛

˛ ν0

3

5 =
1

T
EQ[

√
V ], (31)

where V stays for the total annualized realized variance.

Swishchuk (2004) uses the second order Taylor expansion for function
√

V obtained in

Brockhaus & Long (2000) to represent EQ[
√

V ] via EQ[V ] and V ar[V ] as

EQ[
√
V ] ≈

q

EQ[V ] −
V arV

8(EQ[V ])
3/2

. (32)
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Volatility swaps
Similar to a contract on the quadratic variation, a volatility swap contract makes a

bet on the annualized realized volatility that is defined as follows

V ol(st) ≡
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T
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− sti−1
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0
νtdt
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˛ ν0
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1

T
EQ[

√
V ], (31)

where V stays for the total annualized realized variance.

Swishchuk (2004) uses the second order Taylor expansion for function
√

V obtained in

Brockhaus & Long (2000) to represent EQ[
√

V ] via EQ[V ] and V ar[V ] as

EQ[
√
V ] ≈

q

EQ[V ] −
V arV

8(EQ[V ])
3/2

. (32)

As we already showed for the CIR time-change the quadratic variation process V

differ from that of the Heston model by the constant coefficient (Ψx)
′′

u(0). Therefore,

V ar[V ] in our case differs from that for the Heston model by the coefficient

[(Ψx)
′′

u(0)]2. Thus, for the Lévy models with the CIR time-change the fair value of

the annualized realized volatility is

V ol(st) =

q

(Ψx)
′′
u (0) V olH(st), (33)

where V olH(st) is this value for the Heston model obtained by using the Eq. (32) and

Eq. (20).
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Volatility swaps (continue)
A more rigorous approach is given by Jim Gatheral (2006). He uses the following

exact representation

EQ

h√
V
i

=
1

2
√
π

Z ∞

0

1 − EQ

h

e
−xV

i

x
3/2

dx. (34)
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Volatility swaps (continue)
A more rigorous approach is given by Jim Gatheral (2006). He uses the following

exact representation

EQ

h√
V
i

=
1

2
√
π

Z ∞

0

1 − EQ

h

e
−xV

i

x
3/2

dx. (34)

Here

EQ

h

e−xV
i

= EQ

»

exp



−x

Z T

0
vtdt

ff–

is formally identical to the expression for the value of a bond in the CIR model if one

substitutes there β(τ, Ψx(u)) with −x.
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Options on the quadratic variation
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Options on quadratic variation
Having known the values of EQ[V ] and EQ[

√
V ] we can price vanilla European options

on the quadratic variation using a log-normal method of Gatheral & Friz (2005). This

method, however, first is an approximation, and second, for complicated models like

SSM, accurate computing of EQ[
√

V ] could be a problem.
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Options on quadratic variation
Having known the values of EQ[V ] and EQ[

√
V ] we can price vanilla European options

on the quadratic variation using a log-normal method of Gatheral & Friz (2005). This

method, however, first is an approximation, and second, for complicated models like

SSM, accurate computing of EQ[
√

V ] could be a problem.

We intend to proceed in sense of Roger Lee (2004) and make use of the FFT method.

Let us denote

Q(T ) ≡ λ

Z T

0
νtdt, λ ≡ (Ψx)

′′

u (0)
1

T
. (35)

For the CIR process the characteristic function φ(u, T ) ≡ EQ[eiuQ(T )] is known

φ(u, T ) = Ae
B
, B =

2iuλv0

κ + δ coth(δT/2)
, (36)

A = exp

"

κ
2
θT

η
2

#

»

cosh(δT/2) +
κ

δ
sinh(δT/2)

–− 2κθ
η
2
, δ

2
= κ

2 − 2iuλη
2
.
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For the CIR process the characteristic function φ(u, T ) ≡ EQ[eiuQ(T )] is known

φ(u, T ) = Ae
B
, B =

2iuλv0

κ + δ coth(δT/2)
, (36)

A = exp

"

κ
2
θT

η
2

#

»

cosh(δT/2) +
κ

δ
sinh(δT/2)

–− 2κθ
η
2
, δ

2
= κ

2 − 2iuλη
2
.

Therefore, according to Lee (2004) the call option value on the quadratic variation is

given by the following integral

C(K, T ) =
e−α log(K)

π

Z ∞

0
Re
h

e
−iv log(K)

ω(v)
i

dv, ω(v) =
e−rT φ(v − iα, T )

(α+ iu)2
(37)

The integral in the first equation can be computed using FFT, and as a result we get

call option prices for a variety of strikes.



Itkin, Carr, Pricing swaps and options on quadratic variation..., 14th Annual CAP Workshop, 2007. - p. 30/41

Other affine activity rate models
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Other affine activity rate models
In a one factor setting, Carr and Wu adopt a generalized version of the affine term
structure model proposed by Filipovic (2001), which allows a more flexible jump
specification. The activity rate process νt is a Feller process with generator

Af(x) =
1

2
σ
2
xf

′′
(x) + (a

′ − kx)f
′
(x) (38)

=

Z

R
+
0

h

f(x+ y) − f(x) − f
′
(x)(1 ∧ y)

i

(m(dy) + xµ(dy)),

where a′ = a +
R

R
+
0

(1 ∧ y)m(dy) for some constant numbers σ, a ∈ R+, k ∈ R+ and

nonnegative Borel measures m(dy) and µ(dy) satisfying the following condition:
Z

R
+
0

(1 ∧ y)m(dy) +

Z

R
+
0

(1 ∧ y2)µ(dy) < ∞. (39)
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R
+
0

(1 ∧ y)m(dy) +

Z

R
+
0

(1 ∧ y2)µ(dy) < ∞. (39)

Under such a specification, the Laplace transform of random time is exponential

Lu
Tt

(Ψx(u)) = exp [−α(t,Ψx(u)) − β(t,Ψx(u))νt] , (40)
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+
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(1 ∧ y)m(dy) +

Z

R
+
0

(1 ∧ y2)µ(dy) < ∞. (39)

Under such a specification, the Laplace transform of random time is exponential

Lu
Tt

(Ψx(u)) = exp [−α(t,Ψx(u)) − β(t,Ψx(u))νt] , (40)

with the coefficients α(t,Ψx(u)), β(t, Ψx(u)) given by the following ordinary
differential equations:

β
′
(t) = Ψx(u) − kβ(t) −

1

2
σ
2
β
2
(t) +

Z

R
+
0

h

1 − e
−yβ(t) − β(t)(1 ∧ y)

i

µ(dy), (41)

α
′
(t) = aβ(t) +

Z

R
+
0

h

1 − e
−yβ(t)

i

m(dy),

with boundary conditions β(0) = α(0) = 0.
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Other affine activity rate models
Theorem. Given the above conditions the annualized quadratic variation of the Lévy
process under stochastic time is

QV (st) =
1

T
ξEQ[

Z T

0
νtdt

˛

˛

˛ ν0] ≡
1

T
ξEQ[V ], (42)

ξ ≡ (Ψx)
′′

u (0)
∂2β(t,Ψx(u))

∂t∂u
(0, 0) + (Ψx)

′2
u (0)

∂
3
β(t,Ψx(u))

∂t∂
2
u

(0, 0).
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(0, 0) + (Ψx)
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u (0)

∂
3
β(t,Ψx(u))

∂t∂
2
u
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Proof. We prove it based on the idea considered in the previous sections. Namely, we again express

QV (st) via the forward characteristic function φti−1,ti
(u), which is

φti−1,ti
(u) = e

iu(r−q)τ
EQ

h

Lu
Tτ

(Ψx(u))
˛

˛

˛ ν0

i

= EQ

h

exp [iu(r − q)τ − α(τ,Ψx(u)) − β(τ,Ψx(u))νt]
˛

˛

˛ ν0

i

(43)
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Let us remind that κτ ≪ 1 is a small parameter as well as (r − q)τ ≪ 1. Therefore we expand the

above expression in series on τ up to the linear terms to obtain

φti−1,ti
(u) = EQ

n

exp [−α(0,Ψx(u)) − β(0,Ψx(u))νt] · (44)

h

1 +

„

iu(r − q) −
∂α(τ,Ψx(u))

∂τ

˛

˛

˛

τ=0
−
∂β(τ,Ψx(u))

∂τ

˛

˛

˛

τ=0
νt

«

τ
i

+ O(τ
2
).
o
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Let us remind that κτ ≪ 1 is a small parameter as well as (r − q)τ ≪ 1. Therefore we expand the

above expression in series on τ up to the linear terms to obtain

φti−1,ti
(u) = EQ
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exp [−α(0,Ψx(u)) − β(0,Ψx(u))νt] · (44)
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iu(r − q) −
∂α(τ,Ψx(u))

∂τ

˛

˛

˛

τ=0
−
∂β(τ,Ψx(u))

∂τ

˛

˛

˛

τ=0
νt

«

τ
i

+ O(τ
2
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o

Note, that according to the boundary conditions α(0,Ψx(u)) = β(0,Ψx(u)) = 0. Also from the

second equation in the Eq. (41) we see that α′(τ,Ψx(u))τ (0,Ψx(u)) = 0. Substituting these terms

into the Eq. (44) and computing −∂2φti−1,ti
(u)/∂2u(u = 0) we find

∂2φti−1,ti
(u)

∂u2

˛

˛

˛

u=0
= EQ[ξτνt]. (45)

�
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3/2 power clock change
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3/2 power clock change
In this section we consider one more class of the stochastic clock change. Despite it is

not affine, it still allows variance swaps to be priced in a closed form. Originally this

model has been proposed in a simple form (long term run coefficient is constant) by

Heston Lewis (2000) to investigate stochastic volatility. Here we consider a more

general case when the long-term run could be either a deterministic function of time,

or even a stochastic process.
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3/2 power clock change
In this section we consider one more class of the stochastic clock change. Despite it is

not affine, it still allows variance swaps to be priced in a closed form. Originally this

model has been proposed in a simple form (long term run coefficient is constant) by

Heston Lewis (2000) to investigate stochastic volatility. Here we consider a more

general case when the long-term run could be either a deterministic function of time,

or even a stochastic process.

Let the futures price F of the underlying asset be a positive continuous process. By

the martingale representation theorem, there exists a process v such that:

dFt

Ft
=

√
vtdZ̃t, t ∈ [0, T ], (46)

where Z̃ is a Q standard Brownian motion.
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Heston Lewis (2000) to investigate stochastic volatility. Here we consider a more

general case when the long-term run could be either a deterministic function of time,

or even a stochastic process.

Let the futures price F of the underlying asset be a positive continuous process. By

the martingale representation theorem, there exists a process v such that:

dFt

Ft
=

√
vtdZ̃t, t ∈ [0, T ], (46)

where Z̃ is a Q standard Brownian motion.

In particular, let us assume the risk-neutral process for instantaneous variance to be:

dvt = κvt(θt − vt)dt + ǫv
3/2
t dW̃t, t ∈ [0, T ], (47)

where W̃ is a Q standard Brownian motion, whose increments have known constant

correlation ρ ∈ [−1, 1] with increments in the Q standard Brownian motion Z̃t, i.e.

dZ̃tdW̃t = ρdt, t ∈ [0, T ]. (48)



Itkin, Carr, Pricing swaps and options on quadratic variation..., 14th Annual CAP Workshop, 2007. - p. 35/41

3/2 clock change (continue)
The 3/2 power specification for the volatility of v is empirically supported. The v

process is mean-reverting with speed of mean reversion κvt, where κ is known. The

reason that the speed of mean-reversion is proportional rather than constant is

primarily for tractability



Itkin, Carr, Pricing swaps and options on quadratic variation..., 14th Annual CAP Workshop, 2007. - p. 35/41

3/2 clock change (continue)
The 3/2 power specification for the volatility of v is empirically supported. The v

process is mean-reverting with speed of mean reversion κvt, where κ is known. The

reason that the speed of mean-reversion is proportional rather than constant is

primarily for tractability

In fact, when θt is a deterministic function of time (let us remind that Heston and

Lewis explored just the case θ = const), the process Eq. (47) is more tractable than

the usual Heston dynamics, since we will show that there exists a closed form solution

for the characteristic function of the log price.
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for the characteristic function of the log price.

In contrast, for the Heston model where the long run mean θt is a deterministic

function of time, there is no closed form formula for the characteristic function of the

log price.
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the usual Heston dynamics, since we will show that there exists a closed form solution

for the characteristic function of the log price.

In contrast, for the Heston model where the long run mean θt is a deterministic

function of time, there is no closed form formula for the characteristic function of the

log price.

As a bonus, when v0 > 0 and the process θ is positive, then the process Eq. (47)

neither explodes nor hits zero. In contrast, the Heston process can hit zero for some

parameter values,which is unrealistic.
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As a bonus, when v0 > 0 and the process θ is positive, then the process Eq. (47)

neither explodes nor hits zero. In contrast, the Heston process can hit zero for some

parameter values,which is unrealistic.

Although our primary motivation for proportional speed of mean-reversion is

tractability, nonlinear drift in the v process is also empirically supported.
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3/2 clock change (continue)
The 3/2 power specification for the volatility of v is empirically supported. The v

process is mean-reverting with speed of mean reversion κvt, where κ is known. The

reason that the speed of mean-reversion is proportional rather than constant is

primarily for tractability

In fact, when θt is a deterministic function of time (let us remind that Heston and

Lewis explored just the case θ = const), the process Eq. (47) is more tractable than

the usual Heston dynamics, since we will show that there exists a closed form solution

for the characteristic function of the log price.

In contrast, for the Heston model where the long run mean θt is a deterministic

function of time, there is no closed form formula for the characteristic function of the

log price.

As a bonus, when v0 > 0 and the process θ is positive, then the process Eq. (47)

neither explodes nor hits zero. In contrast, the Heston process can hit zero for some

parameter values,which is unrealistic.

Although our primary motivation for proportional speed of mean-reversion is

tractability, nonlinear drift in the v process is also empirically supported.

In the CIR model the stochastic time change is linear in drift. Therefore, the variance

swap fair value is independent of how the volatility of Vt is specified. In contrast,

when the drift of Vt is nonlinear, e.g. quadratic then the answer depends on how the

volatility of Vt is specified.
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CF
We show that the conditional Laplace transform of the risk-neutral density of the

realized quadratic variation is given by:

C
L

(λ, It) ≡ L(t, v) =
Γ(γ − α)

Γ(γ)

„

2

ǫ2Itv

«α

M

„

α; γ;
−2

ǫ2Itv

«

, (49)

where

α ≡ −
„

1

2
+

κ

ǫ2

«

+

s

„

1

2
+

κ

ǫ2

«2

+ 2
λ

ǫ2
,

and

γ ≡ 2
h

α + 1 +
κ

ǫ2

i

,

and

It ≡
Z T

t
e

κ
R t′
t θ(u)du

dt
′
. (50)
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h
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i

,
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t
e

κ
R t′
t θ(u)du
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′
. (50)

To derive a closed-form solution for the variance swap price under the stochastic

3/2-power clock change. we again follow our method. Now θ = θ(t) is a known

deterministic function of time. Again we consider the forward characteristic function

of an arbitrary Levy process with the characteristic exponent Ψx(u) under the

stochastic clock change determined by the "3/2-power" law. Similarly to Eq. (44)

φti−1,ti
(u) = e

iu(r−q)τ
EQ

»

Lu
Tτ

(Ψx(u))

˛

˛

˛ ν0

–

= EQ

»

e
iu(r−q)τ

C
L
“

Ψx(u), Iti

”

˛

˛

˛ ν0

–

, (51)
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3/2 model (continue)
Now we make an assumption that κθ(t)τ ≪ 1 is a small parameter. This is a

generalization of the assumption κτ ≪ 1, that we made for the CIR clock change, for

the case of the "3/2- power" model. Therefore, we expand the above expression in

series on κθ(t)τ up to the linear terms.
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Now we make an assumption that κθ(t)τ ≪ 1 is a small parameter. This is a

generalization of the assumption κτ ≪ 1, that we made for the CIR clock change, for

the case of the "3/2- power" model. Therefore, we expand the above expression in

series on κθ(t)τ up to the linear terms.

First of all, expansion of Iti−1 reads

Iti
= τ + κθ(τ)τ

2
+ O(τ

2
), (52)

and therefore

z =
2

ǫ2Iti−1
vt

≈
2

ǫ2τvt
(53)
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generalization of the assumption κτ ≪ 1, that we made for the CIR clock change, for

the case of the "3/2- power" model. Therefore, we expand the above expression in

series on κθ(t)τ up to the linear terms.

First of all, expansion of Iti−1 reads

Iti
= τ + κθ(τ)τ

2
+ O(τ

2
), (52)

and therefore

z =
2

ǫ2Iti−1
vt

≈
2

ǫ2τvt
(53)

As per Abramowitz & Stegun (1964) (13.5.1) an asymptotic expansion series for
M(α; γ; z) at large |z| reads

M (α; γ; z) =
e

iπα
Γ(b)

Γ(b− a)
z
−α

2

4

R−1
X

n=0

(α)n(1 + α− γ)n

n!
(−z)−n

+ O
“

|z|−R
”

3

5 (54)

+
e

z
Γ(b)

Γ(a)
z

α−γ

2

4

S−1
X

n=0

(γ − α)n(1 − α)n

n!
(−z)−n

+ O
“

|z|−S
”

3

5 , −
3

2
π < argz <

3

2
π.

We keep the first two terms in these series with n = 0, 1
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≈
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(53)

As per Abramowitz & Stegun (1964) (13.5.1) an asymptotic expansion series for
M(α; γ; z) at large |z| reads

M (α; γ; z) =
e

iπα
Γ(b)

Γ(b− a)
z
−α

2

4

R−1
X

n=0

(α)n(1 + α− γ)n

n!
(−z)−n

+ O
“

|z|−R
”

3

5 (54)

+
e

z
Γ(b)

Γ(a)
z

α−γ

2

4

S−1
X

n=0

(γ − α)n(1 − α)n

n!
(−z)−n

+ O
“

|z|−S
”

3

5 , −
3

2
π < argz <

3

2
π.

We keep the first two terms in these series with n = 0, 1 Further, omitting a tedious

algebra and remembering that Γ(0) = ∞ we find that

−
∂2φti−1,ti

(u)

∂u2

˛

˛

˛

u=0
= (Ψx)

′′
u(0)EQ[τvti

]. (55)
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3/2 model (continue)
Using this formula together with the Eq. (6) we obtain exactly the same result as for

the CIR process, i.e.

QV (st) = (Ψx)
′′

u (0)
1

T

N
X

i=1

EQ

h

τν
i−1

|ν0
i

≈ (Ψx)
′′

u (0)EQ

»

1

T

Z T

0
νtdt | ν0

–

≡ (Ψx)
′′

u (0)EQ[V ].

(56)
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the CIR process, i.e.

QV (st) = (Ψx)
′′

u (0)
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T

N
X

i=1

EQ

h

τν
i−1

|ν0
i

≈ (Ψx)
′′

u (0)EQ

»

1

T

Z T

0
νtdt | ν0

–

≡ (Ψx)
′′

u (0)EQ[V ].

(56)

The only difference is that now EQ[V ] is computed using the "3/2-power" law, rather than the CIR

process. This can be done by using the conditional Laplace transform of realized variance which

for this process is available in the closed form (Itkin & Carr, 2007). Indeed, we have

L(t, v) ≡ EQ

»

e
−λ

RT
t vudu

˛

˛

˛

˛

vt = v

–

, v ≥ 0, t ∈ [0, T ]
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=

"

− log

 

2

ǫ
2
IT v0

!

+
Γ
′
(2ν)

Γ(2ν)
− 2M

(0,1,0)

 

0; 2ν;−
2

ǫ
2
IT v0

!

−M
(1,0,0)

 

0; 2ν;−
2

ǫ
2
IT v0

!#
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˛
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˛
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=

"
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ǫ
2
IT v0
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+
Γ
′
(2ν)

Γ(2ν)
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(1,0,0)

 

0; 2ν;−
2
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2
IT v0

!#

2

2κ + ǫ
2
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where

ν = 1 +
κ

ǫ2
, IT ≡

Z T

0
e

κ
R t′
0 θ(u)du

dt
′
,

M(1,0,0)(α, γ, ζ) is the derivative of M(α, γ, ζ) on α, M(0,1,0)(α, γ, ζ) is the derivative of

M(α, γ, ζ) on γ, Γ′(2ν) ≡ dΓ(x)/dx|x=2ν , and M(0,1,0)(0, γ, ζ) = 0.
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Conclusion

We considered a class of models that are known to be able to capture at least

the average behavior of the implied volatilities of the stock price across

moneyness and maturity - time-changed Levy processes.
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variation and volatility swap contracts as well as used Lee’s approach (similar

to that of Carr, Madan (1999)) to price options on these products.
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produces the ansatz of the dependency V (T ) while the later gives a constant

multiplier to this ansatz.
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Conclusion

We considered a class of models that are known to be able to capture at least

the average behavior of the implied volatilities of the stock price across

moneyness and maturity - time-changed Levy processes.

We derived an analytical expression for the fair value of the quadratic

variation and volatility swap contracts as well as used Lee’s approach (similar

to that of Carr, Madan (1999)) to price options on these products.

We found that the variance swap fair value V is essentially determined by the

clock change process, rather than the underlying Levy process. The former

produces the ansatz of the dependency V (T ) while the later gives a constant

multiplier to this ansatz.

We considered several examples which includes the Heston model, SSM,

NIGCIR for the CIR clock change, and 3/2-power clock change.
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Thank you!
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