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Outline

Outline

In mathematical finance a popular approach for pricing options under some
Lévy model is to consider underlying that follows a Poisson jump diffusion
process. As it is well known this results in a partial integro-differential
equation (PIDE) that usually does not allow an analytical solution while
numerical solution brings some problems. In this work we elaborate a new
approach on how to transform the PIDE to some class of so-called
pseudo-parabolic equations which are known in mathematics but are
relatively new for mathematical finance. As an example we discuss several
jump-diffusion models which Lévy measure allows such a transformation.
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Existing approaches to solve PIDE

Existing approaches to solve PIDE

1 Amim (1993) - explicit multinomial tree

2 Tavella and Randall (2000) - Picard iterations

3 Andersen and Andreasen (2000) - forward equation, European call,
second order accurate unconditionally stable operator splitting (ADI),
FFT

4 Cont and Voltchkova (2003) - discretization that is implicit in the
differential terms and implicit in the integral term, it converges to a
viscosity solution.

5 D‘Halluin et al. (2004, 2005)- implicit methods for evaluating vanilla
European options, barrier options, and American options

6 D‘Halluin et al. (2005) - semi-Lagrangian approach for pricing
American Asian options
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Existing approaches to solve PIDE

Existing approaches - cont.

1 Because of the integrals in the equations the methods have proven to
be relatively expensive. Quadrature methods are expensive since the
integrals must be evaluated at every point of the mesh. Though less
so, Fourier methods are also computationally intensive since in order
to avoid wrap around effects they require enlargement of the
computational domain. They are also slow to converge when the
parameters of the jump process are not smooth, and for efficiency
require uniform meshes. And low order of accuracy.

2 Carr and Mayo (2007) proposed a different and more efficient class of
methods which are based on the fact that the integrals often satisfy
differential equations. Completed only for Merton and Kou models.

3 Our approach: 1. represent a Lévy measure as the Green’s function of
some yet unknown differential operator A. If we manage to find an
explicit form of this operator then the original PIDE reduces to a new
type of equation - so-called pseudo-parabolic equation. Done for
GTSP with finite activity when α is integer.
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Alternative methods for real α

Alternative methods for real α

1 Suppose we consider GTSP/KoBoL/SSM class of models. We will
transform the corresponding PIDE to a fractional PDE. Fractional
PDEs for Lévy processes with finite variation were obtained by
Boyarchenko and Levendorsky (2002) and later by Cartea (2007)
using a characteristic function technique.

2 We derive it in all cases including processes with infinite variation
using a different technique - shift operators.

Sa = exp

(
a
∂

∂x

)
, so Saf (x) = f (x + a). (1)

3 and a pure jump PIDE (could be always obtained by using splitting)
reads (positive jumps, but negative - by analogy)

∂

∂τ
C(x , τ) = B1C(x , τ)

B1 ≡
∫ ∞

0

[
exp

(
y
∂

∂x

)
− 1− (ey − 1)

∂

∂x

]
λR

e−νR |y|

|y |1+αR
dy (2)

Formal integration could be fulfilled if we treat a differential operator
∂/∂x as a parameter.
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PDEs for Lévy processes with finite variation were obtained by
Boyarchenko and Levendorsky (2002) and later by Cartea (2007)
using a characteristic function technique.

2 We derive it in all cases including processes with infinite variation
using a different technique - shift operators.

Sa = exp

(
a
∂

∂x

)
, so Saf (x) = f (x + a). (1)

3 and a pure jump PIDE (could be always obtained by using splitting)
reads (positive jumps, but negative - by analogy)

∂

∂τ
C(x , τ) = B1C(x , τ)

B1 ≡
∫ ∞

0

[
exp

(
y
∂

∂x

)
− 1− (ey − 1)

∂

∂x

]
λR

e−νR |y|

|y |1+αR
dy (2)

Formal integration could be fulfilled if we treat a differential operator
∂/∂x as a parameter.

A.Itkin, P.Carr Using pseudo-parabolic equations for option pricing in jump diffusion models April 28, 2009 5 / 13



Our results Positive jumps

Main theorem

Theorem (1)

The PIDE
∂

∂τ
C(x, τ) =

∫ ∞
0

[
C(x + y, τ)− C(x, τ)−

∂

∂x
C(x, τ)(ey − 1)

]
λR

e−νR |y|

|y|1+αR
dy (3)

is equivalent to the fractional PDE

∂

∂τ
C(x, τ) = λR Γ(−αR )

{(
νR −

∂

∂x

)αR
− ναR

R
+
[
ν

αR
R
− (νR − 1)αR

] ∂

∂x

}
C(x, τ),

R(αR ) < 2, R(νR − ∂/∂x) > 0, R(νR ) > 1. (4)

In special cases this equation changes to

∂

∂τ
C(x, τ) = λR

{
log(νR )− log

(
νR −

∂

∂x

)
+ log

(
νR − 1

νR

)
∂

∂x

}
C(x, τ) (5)

αR = 0,R(νR − ∂/∂x) > 0,R(νR ) > 1,

and

∂

∂τ
C(x, τ) = λR

{
− νR log νR + (νR −

∂

∂x
) log

(
νR −

∂

∂x

)
+ [νR log νR − (νR − 1) log(νR − 1)]

∂

∂x

}
C(x, τ)

αR = 1,R(∂/∂x) < 0,R(νR ) > 1,
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Our results Negative jumps

Main theorem - cont.

Theorem (2)

The PIDE
∂

∂τ
C(x, τ) =

∫ 0

−∞

[
C(x + y, τ)− C(x, τ)−

∂

∂x
C(x, τ)(ey − 1)

]
λL

e−νL|y|

|y|1+αL
dy (6)

is equivalent to the fractional PDE

∂

∂τ
C(x, τ) = λLΓ(−αL)

{(
νL +

∂

∂x

)αL
− ναL

L
+
[
ν

αL
L
− (νL + 1)αL

] ∂

∂x

}
C(x, τ),

R(αL) < 2, R(νL + ∂/∂x) > 0, R(νL) > 0. (7)

In special cases this equation changes to

∂

∂τ
C(x, τ) = λL

{
log

(
νL +

∂

∂x

)
− log(νL)− log

(
νL + 1

νL

)
∂

∂x

}
(8)

αL = 0, R(νL + ∂/∂x) > 0, R(νL) > 0,

and

∂

∂τ
C(x, τ) = λL

{
− νL log νL + [νL log νL − (νL + 1) log(νL + 1)]

∂

∂x
+ (νL +

∂

∂x
) log

(
νL +

∂

∂x

)}
C(x, τ)

αR = 1, R(∂/∂x) < 0, R(νL) > 0,
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Our results Solution

Solution

1 Remember that, for instance, the first equation could be represented
in the form

∂

∂t
C (x , t) = −BC (x , t) (9)

2 This equation can be formally solved analytically to give

C (x , t) = eB(T−t)C (x ,T ), (10)

where T is the time to maturity and C (x ,T ) is a payoff.

3 Suppose that the whole time space is uniformly divided into N steps,
so the time step θ = T/N is known. Assuming that the solution at
time step k, 0 ≤ k < N is known and we go backward in time, we
could rewrite the above as

C k+1(x) = eBθC k(x), (11)

4 To get representation of the rhs of the Eq. (11) with given order of
approximation in θ, we can substitute the whole exponential operator
with its Padé approximation of the corresponding order m.
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Our results Solution

Padé approximations

1 First, consider the case m = 1. A symmetric Padé approximation of the order (1, 1) for
the exponential operator is

eBθ =
1 + Bθ/2

1− Bθ/2
(12)

so we obtain a Crank-Nicolson scheme(
1−

1

2
Bθ
)

C k+1(x) =

(
1 +

1

2
Bθ
)

C k (x). (13)

2 The case m = 2 could be achieved either by using symmetric (2,2) or diagonal (1,2) Padé
approximations of the operator exponent. The (1,2) Padé approximation reads

eBθ =
1 + Bθ/3

1− 2Bθ/3 + B2θ2/6
, (14)

and the corresponding finite difference scheme for the solution of the Eq. (11) is[
I − 2Bθ/3 + B2θ2/6

]
C k+1(x) = [I + Bθ/3] C k (x) (15)

which is of the third order in θ.

3 Etc.
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Our results Solution

Approximation in space - finite variation

1 Exclude the last compensator term in the PIDE - move it to a differential part.

2 Use a one-sided forward approximation of the first derivative which is a part of the

operator

(
νR −

∂

∂x

)αR

. Define h = (xmax − xmin)/N to be the grid step in the

x-direction, N is the total number of steps, xmin and xmax are the left and right
boundaries of the grid. Also define ck

i = C k (xi ). To make our method to be of the second
order in x we use the following numerical approximation

∂C k (x)

∂x
=
−C k

i+2 + 4C k
i+1 − 3C k

i

2h
+ O(h2) (16)

Matrix of this discrete difference operator has all eigenvalues equal to −3/(2h).

3 A one-sided backward approximation of the first derivative in the operator

(
νL +

∂

∂x

)αL

reads
∂C k (x)

∂x
=

3C k
i − 4C k

i−1 + C k
i−2

2h
+ O(h2) (17)

Matrix of this discrete difference operator has all eigenvalues equal to 3/(2h)

4 Then we can prove that the method is unconditionally stable and requires solution of
either lower or upper linear triangular system. This is O(N2) but could be solved in
parallel by using block-triangular solvers.
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3 A one-sided backward approximation of the first derivative in the operator

(
νL +

∂

∂x

)αL

reads
∂C k (x)

∂x
=

3C k
i − 4C k

i−1 + C k
i−2

2h
+ O(h2) (17)

Matrix of this discrete difference operator has all eigenvalues equal to 3/(2h)

4 Then we can prove that the method is unconditionally stable and requires solution of
either lower or upper linear triangular system. This is O(N2) but could be solved in
parallel by using block-triangular solvers.
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Our results Solution

Approximation in space - infinite variation

1 Keep all terms in our fractional PDE.
2 A naive approximation results in lack of convergence.

3 To resolve this we propose another scheme which is inspired by Meerschaert and Tadjeran
(2004). In this paper the authors proved that using a standard Grunwald-Letnikov
approximation of the fractional derivative gives rise to a unconditionally unstable scheme.
Instead they proposed to use a shifted Grunwald-Letnikov approximation which resolved
this instability and produced a stable scheme. So by analogy we will use a shifted finite
difference approximation of the first derivative in the fractional operator and unshifted
version in the non-fractional operator. Then the unconditional stability could be proved
again.

4 To summarize these results let us represent them in Table 1,2 where F means the forward
approximation, B means the backward approximation and S means the shifted
approximation.

Operator
αR , αL B− B+

α < 0 F B
0 < α < 1 F B

Table: Finite difference
approximation of the operators at
αR < 1, αL < 1.

Operator
B− B+

1 part SF SB
2 part F B

Table: Finite difference
approximation of the operators at
1 < αR < 2 and 1 < αL < 2.
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Our contribution

Our contribution in this work is:

1 Special cases αr = 0, 1, αl = 0, 1 are not considered in Cartea (2007). In Boyarchenko &
Levendorsky (2002) a corresponding characteristic function of the KoBoL process is
obtained in these cases as well, but they did not consider the fractional PDE and its
numerical solution.

2 In Cartea (2007) a Crank-Nicolson type numerical scheme was proposed to solve the
obtained FPDE which is of the first order in space. Here we derived high-order schemes in
both time and space.

3 As it is known from recent papers Abu-Saman (2007), Meerschaert and Tadjeran (2004,
2006), Sousa (2008), a standard Grunwald-Letnikov approximation leads to
unconditionally unstable schemes. To improve this a shifted Grunwald-Letnikov
approximation was proposed which allows construction of the unconditionally stable
scheme of the first order in space. Here we use a different approach to derive the
unconditionally stable scheme of higher order.

4 We show that despite it is a common practice to integrate out all Lévy compensators in
the integral term when one considers jumps with finite activity and finite variation, this
breaks the stability of the scheme, at least for the fractional PDE. Therefore, in order to
construct the unconditionally stable scheme one must keep the other terms under the
integrals. To resolve this in Cartea (2007) the authors were compelled to change their
definition of the fractional derivative.

5 We also proposed the idea of solving FPDE with real α by using interpolation between
option prices computed for the closest integer values of α. For the latter an efficient
scheme is proposed that results in LU factorization of the band matrix - O((1− α)2N/2).

6 This approach could be easily generalized for a time-dependent Lévy density.
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Our contribution

The end

Thank you!
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