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A new microscopic kinetic model of coupled nonequilibrium condensation and radiative excitation
of water molecules effusing from a surface of a cometary nucleus is developed. The method is
greatly based on the microscopic theory of nonequilibrium condens@®) developed earlier

by the author. To analyze vibrational and rotational excitation of tjf@ folecule a kinetic model

has been used which includes infrared rovibrational pumping by the solar radiation flux, thermal
excitation by collisions, and radiation trapping in the rotational and rovibrational lines. Appropriate
kinetic equations for cluster concentrations and populations of their energetic levels have been
solved analytically. This permits one to reduce the coupled equations of the condensation and
radiative balance to a closed system of differential equations involving the rotational populations of
the water molecule. Prospects of the use of this model when studying an influence of the indicated
processes on the structure of an inner coma are discussed99® American Institute of Physics.
[S0021-960628)50807-0

I. INTRODUCTION sions between molecules of the condensible vapor is needed.
At low vapor densitiegat high Knudsen numbersvhen the
This paper is the third in our series of works devoted tomean free time becomes of order of the specific gasdynamic
the investigation of nonequilibrium processes in a cometarfime, some other mechanisms could also be important for the
coma and their influence on the coma structure. In the pregjyster formation, namely: ion-induced nucleation, photo-
vious publications? we consideredi) a radiative excitation nycleation, heterogeneous nucleation on dust particles, etc.
of the water vapor molecules evaporating from the surface ofyrthermore, by virtue of chemical reactions occurring in the
the cometary nucleus artd) special methods for construct- coma, or binary nucleation when two fugitive components
ing various physical and mathematical models which de¢qy g simultaneously condense into a droplet of this solution,
scribe flows of a dusty gas in the coma. Such flows within, ;sters of a mixed type can be formed.
the framework of the Eule.r approach were aI;o explored in The specific mechanism of condensation depends upon
our paper. Here we continue the study which has been,.ious factors such as a chemical composition and a spatial
tructure of the nucleus and the distance of a comet from the

started in Ref. 1 considering condensation of water vapor "i
the coma against a background of a radiative excitation o un. In particular, in Ref. 9 an important role of the gas

the \évaltevrvr\r:voleci\lees. hort review of rs wher nd nproductlon rate is emphasized because this parameter to a
_DElow We gIVE a Shoft Teview of papers where conde significant degree determines the initial Knudsen number in
sation and radiation in the coma were a subject of consider; > . . . .
. L X the vicinity of the nucleus surface. Moreover, a few competi-
ation. At the same time it should be emphasized that conden: . . .
ive mechanisms of condensation could simultaneously oc-

sation in the presence of IR radiation can occur also in theur Crite® studied such a mixed mechanism of water con-
earth’s atmosphere or be modeled at laboratory conditionsirf” = ~ .~ . . .
nsation in the inner cometary ionosph@rear 1 AU. The

order to manage the condensation process. Thus, althou _ ; .
we refer to comets, the present study is addressed to a wid Fumal effect follows from the huge water cluster’s affinity

area of problems connected with nucleation in the presencé;)r electrons and ions: they act as extremely efficient charge
of external radiation density traps; in other words, as long as heavy water clusters

are present, the local plasma is not any moreean H;O"
A. Condensation plasma, but a (bD), — (H,0),, cluster plasma. One impli-
Yamamoto and Ashihafa)redicted that the expansion cation is that the electric Charge is, in this way, “protected”
of water vapor effusing from the surface of a cometaryfrom the classical electron-light ion recombination: it follows
nucleus and its cooling should lead to spontaneous partidhat the total charge density is of about an order of magni-
condensation of kO into a wealth of “water hydrates(or ~ tude more than that predicted by classical models.

“water clusters”) (H,O), (n>1). This process was later Further out from the sun, it can be conjectured that spon-
studied extensively by Crifo® within the framework of the taneous recondensation of water will yield a dominance to
classical nucleation theoCNT). ion recondensation via the chain of reactions(H,0),

Generally speaking, in order that spontaneous condensa-H,O—H*(H,0),.,. The free electrons will first recom-
tion induces cluster formation, a sufficient number of colli- bine on H (H,0),, and then attach themselves onto the neu-
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tral cluster thus produced. Therefore, qualitatively, the confesults in a sharp difference of the flow parameters from the
clusions of Crifo valid at 1 AU should continue to hold. adiabatic ones. In addition, during the flow evolution un-
However, quantitative estimates made on the basis of thsteady oscillations of the parameters’ values were observed
modef with allowance for spontaneous and ion-inducedin the stream. It was revealed that the intensity of these os-
nucleation were not performed for the distances diverse frongillations is insufficient to produce locally subsonic zones in
1 AU. the initially supersonic flow. However, this could be the case

Another example is the wotk where a simultaneous if one takes into account the presence of dust particles
occurrence of heterogeneous and ion-induced condensatigwhich decelerate the streanor the vapor condensation
of products of methane photodissociation in the neptune aiwhich also locally decelerates the stream because of the
mosphere was investigated based upon CNT. latent heat extraction

Within this paper we consider only homogeneous spon-  Note that so far in the existing literature on cometary
taneous condensation of water vapor but with a number ophysics the following problem has not been raised at all, that
essential differences from the models known in the literaturefrom the physical point of view a rotationally excited mol-
First, for the first time in cometary physics we use princi- ecule should be less capable to condense against a nonex
pally a more modern model of the condensation kinétidé.  cited molecule. It is hard to take this fact into account within
Second, this model is modified in order to take into accounthe framework of CNT in contrast to our theory which al-
both condensation and radiative excitation of the water mollows one to generalize it for this case in a quite natural way.
ecules by the solar illumination and their mutual influence. Thus within the scope of such a modified model, condensa-

tion and radiative excitation become the coupled processes

B. Radiative processes that should be taken into account when elaborating an appro-

Radiative processes play an important role in formingpriate theoretical dgscriptiqn of this phenomenon. Therefore,

pwe main goal of this work is to present such a theory devel-

the structure of inner cometary comae. As a rule, the inne ) X ) .
coma is characterized by the low temperature of vapoPped on the basis of our microscopic condensation theory.
The structure of the work is the following. First, we

evaporating from the nucleus surface and consists largely of . o . . .
erive new kinetic equations which describe coupled con-

molecules of water and dusty particles. For the water moI-d i d radiati itati f th ¢ lecul
ecules a maximum of absorption and emission in the pre ensalion and radiative excitation ot the water molecules.

ence of the solar radiation lies in the IR region, therefor;-rhen we propose an asymptotic method to get analytical

their vibrational degrees of freedom usually are not excitedSOIUtions of these equations. It gives rise to the closed system

as opposed to the rotational and rovibrational ones. Thénc differential equations only for supersaturati®® and

physical analysis of the kinetic mechanism of the water molpopulationsxl(k) of the rotational states of the water mol-

ecule excited by the solar light has been done in Refs. 13 an%CUIe' Solving this system one can further analytically re-

14 and confirmed by the observational results of Ref 15store the cluster size distribution function as well as popula-

Owing to a small number of the populated rovibrational Iev-?ontS of th? ;rr:.ternall ?tateg of th? cllusters. Finally, somefngw
els and relatively high density of the water molecules in the SAtUres of this solution, In particuiar an appearance ot sin-
ularities at a certaiyy, are discussed. However, the results

coma, a certain amount of radiative lines are opticallyg . ) .
thick 1314 While the number of the populated levels is not tooof simulation of water vapor flow effusing from the surface

large, it is necessary to consider a sufficiently large totaPf a cometary nucleus produced with the help of the present

number of levels when studying a mechanism of the radiamOdeI will be published in a separate paper.

tive excitation. By virtue of it, a usage of the exact radiative
transfer equations is extremely labor consuming and speci:!lll' KINETIC EQUATIONS
approximate analytical methods were developed which take Two different basic approaches exist to describe phase
into account the influence of the optical depth on the kineticgransitions of the first kind. The nucleation process consid-
of the process. One of them is the escape probabilitered here is one of the examples. The first approach is the
method® originally proposed for a spherically symmetrical kinetic theory of gases. Within this theory the object under
coma. Being applied, this method permits one to take intanvestigation is an ensemble of molecules whereas the phase
account the indicated influence and still remain within thetransition is recognized as an appearance of long-term corre-
framework of the balance kinetic equations in lines but withlations in such a system or singularities in the respective
the Einstein coefficients multiplied by a certain factor whichkinetic equation. Under this consideration a definition of the
is strongly nonlinear over populations. physical cluster should be introduced on the basis of a cer-
When modeling the water vapor flows in the inner comatain additional relation which unites together all the mono-
with allowance for the radiative transitions because of themers pertaining to this cluster. In principle, it is possible to
large dimension and essential nonlinearity of the system ofonsider this approach as a consequent generalization of the
the kinetic equations one usually tries to be limited by thebasic statements of the kinetic theory for the case of the
elementary one-dimensional stationary modlRecently condensible system. However, this point of view has not
we explored the dynamics of the water vapor expiration frombrought any essential achievement. In view of this, in our
the nucleus surface with allowance for the radiative pro-opinion it is more feasible to concentrate on the other ap-
cesses using a one-dimensional unsteady approach. proach. Following its main idea the condensible gas is as-
It turned out that an intensive exchange by the energgumed to be a mixture of monomers, dimers, etc., i.e., from
between the internal and translational degrees of freedorhe very beginning clusters are introduced as real physical
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objects which exist both in stable and metastable phases. tional degrees of freedom of clusters can be described by the
such a statement is accepted the phase transition could betational temperature, and that it coincides with the rota-
further treated as a sequence of chemical reactions providingpnal temperature of the mixtufewhich, in turn, is equal to
a redistribution of molecules from small clusters to the largethe translational temperature of the mixture.
ones, or in other words providing an increase of concentra- As far as the vibrational energy is concerned its rate of
tions of the large clusters in the process of their coalescenaelaxation can be of the order of the rate of the formation and
with both molecules and small clusters. This consideratiordecay of the clusters. It is clear that even the minor com-
has been used in the Szilard model and we also put it in thplexes, trimers, tetramers, etc., can have quite a great number
basis of our model used in the given work. of the vibrational modes, therefore for the sake of simplicity
The subject of our study is the water vapor evaporatingt is convenient to subdivide all of them into two groups
from the surface of a cometary nucleus affected by the solazonsidering in a harmonic approximation. In the first one we
light. We treat this stream as a mixture of ideal gases, each afllect vibrations of the molecules being a part of the cluster
which consists of the water molecules being in a certain in{intermolecular oscillations In the second one we unite vi-
ternal state. In accordance with Ref. 13 we further considebrations of atoms which form the molecul®onomey, i.e.,
only the processes of nonequilibrium excitation of rotationalthe internal molecular vibrations. Intermolecular vibrations
sublevels belonging to the ground vibrational state of theare low-energetic ones. For example, the specific frequencies
water molecule. Thus each of the molecular components dff the Van der Waals complexes are 50—200 &nBut for
the mixture represents molecules of water being in a certaithe internal vibrations various situations are possible.

rotational state while excitation of the vibrational states of I . .
S o (1) If these vibrations have low frequencies they effectively
the water molecule assumes to be inefficient at specific tem- : . 7
exchange energy with the intermolecular vibrations that
peratures on the surface of nuclelis 100—200 K. . S
allows one to introduce the total vibrational energy of

In general, we introduce a cluster as a molecular com- o .
lex (either a stable or unstable gnmrmed by hydrogen the cIuste_rEJ-(k) (j is the number of mplecules in the
P : cluster,k is the number of the energetic leyeAt the

Van der Waals, metallic, or some other types of chemical . . .
T moment the existence of the different types of intermo-
bond but we do not distinguish isomers of the cluster from N . .
lecular oscillations is not taken into account here. In ad-

each other. The internal energy of this complex can be speci- . . o " ;
: . . dition, we do not consider the radiationless transitions in
fied as usual in the molecular physics by a set of quantum .
. . ; the process of the intermode energy exchange. All these
numbers corresponding to the different internal modes. Let . : S
. . : assumptions are made in order to simplify as much as
us consider the processes of translational relaxation of mol- . : : o
possible a very complicated picture of the redistribution

ecules and clusters to be rapid enough, so that we can intro- . .
. : of the internal energy inside the cluster, but at the same
duce a common translational temperature of the whole mix- . .
time to keep the main features of the process.

tureT. Generally speaking, thIS. assumptlonlls n.ot correct forz) If the monomer has high-frequency vibrational modes,
the very large clusters, but their concentration in the syste e . . . )
. . they inefficiently interact with the intermolecular vibra-
is small enough, therefore such an assumption should not . . : :
: . o tions. In this case, with respect to the condensation pro-
affect in the least the integral characteristics of the system. .
T . cess, the monomer behaves as a structureless particle and
The distribution of the rotational energy of the clusters : Y
L . : due to a rather high value of its vibrational quantum the
can also be accepted as an equilibrium one. To give evidence . : :
: : . o excited vibrational states of the monomer are poorly
to this point we shall notice, thafl) External radiation ex- N o .
" . . populated. This situation is close to the condensation
citing the rotational degrees of freedom of a monomer is not ) . .
. X o oo . theory of monoatomic gases being a particular case of
effective with respect to excitation of librational oscillations
L . . . the theory developed here. Nevertheless, even for such a
of molecules inside a cluster in which rotations of free mol-

case the vibrational degrees of freedom of the cluster can

ecules are transformed when these molecules attach to the be characterized by the value of their total enegtk)
cluster. It is connected with a significant shift of frequencies '
in such a process owing to the external solar radiation at To analyze kinetics of the radiative transitions of the
frequencies corresponding to a maximum of the solar sped4,0 molecule a model in Ref. 13 is used. Within the frame-
trum intensity which becomes nonresonant to excite singleworks of this model, as the main processes affecting the
guantum rotational transitions. We shall neglect multiguanenergy redistribution among the mixture constituents and the
tum transitions or poorly intensive excitation of single- external radiation, we take into account infrared rovibra-
guantum transitions(2) Probability of the attachment of a tional pumping by the solar radiation flux, thermal excitation
rotational excited molecule to a cluster should be far lesby collisions, and radiation trapping in the rotational and
than that for the nonexcited orisee further. By virtue of  rovibrational lines.
that the cluster is formed preferably by the attachment of the As was already mentioned when formulating the kinetic
rotationally nonexcited molecules. model we introduce two essential assumptions. First, excita-

Thus the rotational degree of freedom of the cluster agion of the vibrational states of the water molecule assumes
the whole can be excited basically at collisions, and princito be inefficient at temperaturds= 100—200 K specific for
pally with molecules(including rotationally excited ong¢s the surface of a cometary nucleus. It is necessary to notice
because collisions among the clusters are rather rare. Howthat such an assumption is not a restriction of MTC as in its
ever, such excitations relax practically at some mean freeriginal version intramolecular vibrations are taken into
times. Therefore in what follows we assume that the rotaaccount®'2and only permits one to simplify the further al-
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gebra with allowance for a real physical picture of the pro-Here the fluxed; describe the formation and decay of the
cess under investigation. Second, it is assumed that the rotalusters;J;, relaxation of intermolecular vibrations in the
tionally excited molecule has a smaller cross section to belusters,Q)f and){, collisional and radiative fluxes for the
attached to the cluster than the nonexcited. This problem wasater molecule being in thih rotational state. The other
theoretically investigated in Ref. 19 with the purpose to ex-notation is as follows: m is the monomer's mass,
plain experiments on rotational-selective condensation o€;_;(I,0k) is the rate of formation of th¢ cluster with
water and heavy water molecu®s*! A multistep mecha- energy E;(k) from the j—1 one with energyE;_,(I) by
nism of the resonant capture of molecules through the forattaching the monomer being in the ground rotational para
mation of an intermediate complex was considered whictstate; E;(k,|I,0) is the rate of decay of thg cluster with
was illustrated by system He-8. It was found in these energyE;(k) into thej—1 one with energy; (1) and the
works that the ratiop of the rate constant of capture of the monomer being in the ground rotational para state;
water molecule being in the ground para state to the samj(l,i|k,v) is the rate of relaxation of thg cluster from the
rate constant of the water molecule being in the ground orthstate with energyg;(l) to the state with energf;(k) ac-
state is 8.4 »=<12.3 as the temperature is ranged within thecompanied by the simultaneous relaxation of the monomer
limit 30 K=T=50 K. Thus these data testify to an opportu- (RT relaxation from the state with energ¥,(i) into the
nity of the rotational selectivity of condensation already atstate with energye;(v); M; is the number of the topmost
the stage of capture. Itis clear that as the rotational energy @fnergetic levelsee below of the j cluster,s;(k) is the sta-
the molecule increases its rate constant of capture decreaséistical weight(degeneracyof the j cluster, §;; is the Kro-
Therefore in this work we use a model where the only mol-necker deltaA;;.d B;;» are the Einstein coefficients for spon-
ecules being in a ground para stéte., rotationally nonex- taneous and induced radiatiop; . is the wavelength of the
cited are most capable to condense while the probability otransition, 7 is the intensity of the radiative flux averaged
the formation of molecular complexes by attaching the watepver all the directions and integrated over the whole I©g,
molecule being in another rotational state is neglected. is the total collision rate for rotational transitions, axg is
Further for the sake of simplicity we consider a spatiallythe equilibrium populations at the given temperature.
uniform system for which parameters vary with time. Gen-  Further it is convenient to change the traditional MTC
eralization of this method for a spatially nonuniform systemnotation for the rate constants of formation and decay for a
will be given elsewhere. With allowance for the assumptionamore compact one with allowance for the circumstance that
made the above kinetic equations describing an evolution afvithin the present model condensation from the only ground
populations of rovibrational levels which belong to the rotational state of the water molecule is taken into account
ground vibrational state of the water molecutg(k), k  therefore index 0 is dummy. By virtue of it let us introduce
=0,...M; and populations of the energetic levels corre-new designationg; iy =E;(M[0k), Z; u=C;(k,QM).

sponding to intermolecular vibrations in the clusig(k), When writing Eq.(1) a model of strong collisions is
k=0,...M;, j=2,..N can be written in the form used allowing us to write the collisional term in the
dx (k) M M1 Bathnagar—Gross—KroolBGK or “relaxation”) form. Co-
X efficients A;; vanish if E;<E;. Furthermore, in Eq(1) de-
=, = I, _1(1,0/k) — I (k,0[l)(1— 6 L ij Ve S i~Ej- '
dt = 2 12,0k Z’o (k0D (1= ) riving the possibility that the cluster could be forméde-
Y cayed by gaining (losing a dimer, trimer, etc., was
j 1 . ..
+ Ik, j>1 neglected as well as the triple collisions of the molecules and
oo VT =5 clusters. Besides, in Eql) the conservation law preserving
the total number of molecules in the system is already taken
dx; (k) NN into account.
=-> J(Lkli,»+ Qg+ Qf,  k#0,
dt j=2i1=0 =0
—=- (1,0 -2 X, 1,(0di) . . | |
dt j=2 =0 =0 i=0 where n; is the numerical fractional concentrations of the
N M Mg clusters of sizqg.
_ 2 E 3 0, v)+Q5+Q5, Thg further program of our actions is as follows..System
j=2i1=0 =0 Eq. (1) is too complicated to be solved directly by virtue of

_ _ — (i) its infinite dimensior(in a real systenN— ) and(ii) the
'J71(|'0|k):Cifl(|*0| k)xjfl(l)xl(o)_EJ(k|O’|)XJ(k)' absence of data on the majority of rate constants of the el-
J,—(I,i|k,v)=R,—(I,i|k,v)x_j(l)x_1(i)—Rj(k,v|l,i)x_j(k)x_l( V), ementary processes _con3|d(_ared in Elq Therefor.e at first _
we discuss asymptotic solutions obtained by using a special
P . ; - guasisteady-state method similar to that in Ref. 11 and given
Qk_; Aina (") Xl(k); Aki'+; B Z(Nin)%a(17) in more detail in Appendix A. Then we use another
asymptotic method to obtain an explicit analytical solution
_ o for the cluster concentrations. Explicit expressions for equi-
Xl(k); Biir. /(M) librium concentrations and populations of the clusters pre-
. _ _ _ sented in these equations were given in Refs. 22 and 12 as
Qp=C[X1e(k) =x1(K) ], x;(K)=x;(k)/sj(K). (1) well as the model rate constants of the attachment and de-
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tachment of a single molecule to the clustifrey have been based on the understanding of the physical nature of the phe-
obtained in Refs. 23 and 24 with the help of the statisticanomena. The point is that for the large clusters with the
theory of monomolecular reactions and the microscopic resubstantially excited intracluster vibrations the rate of disso-

versibility). ciation of the molecule from the cluster is much less than the

rate of the vibrational relaxation at these levels while for the
1. ANALYTICAL SOLUTIONS OF THE KINETIC small clusters the opposite relationship could take place. In
EQUATIONS view of this it is reasonable to introduce the special cluster

sizer such that in its physical meaningis the number of

A detailed exposition of asymptotic methods developedylecules in the cluster for which the dissociation rate from
to find analytical solutions of the equations of type E.iS  the topmost leveM, (for the detailed definition of the level

given in Refs. 25, 18, 26 and 27. Here we only briefly de-yy. see pelow is of the same order of magnitude as the
scribe the main stages of getting these solutions and assumppational relaxation rate at the same level. For the clusters
tions made. To construct this asymptotical solution We USGyith j>r the rate of relaxation of the intracluster vibrations
the general 'def"‘ of the theory of the singularly perturbedg mych greater than the rate of the cluster dissociation but at
system, namely: It is necessary to subdivide all variables if <\ there is an opposite situation. An analytical solution for
the studied equations; E@L) into two groups, the fast and he equations of the type E6L) was obtained in Ref. 26 for
slow ones, i.e., the variables which have the substantiallyye model of single-quantum transitions and the BGK model.
different characteristic times of relaxation. After that we ex-Note that these solutions are valid for a rather general form
amine the behavior of the whole system in the scale of thgyt rate constants of formation, decay, and relaxation of the
evolution of the slow variables. For such times the fast vari|sters. The result are analytical relationships which express
ables do not explicitly depend upon time but only upon thequasisteady populations(k), j =2 through the cluster con-
slow variables themselvéa quasisteady-state regimé we  anirations and populations of monomers.

manage to find the evident form of such a function then we |, our case of nonequilibrium distribution of monomers

could substitute it into the equations for the slow variables,yer the rotational degrees of freedom a similar solution can
and derive a closed reduced system for them. _ be obtained if one describes relaxation of intracluster vibra-

On the whole the method of finding these quasisteadyiyns in the frameworks of the BGK modéhodel of strong
solutions proposed in Refs. 18 and 26 consists of three Maify|jisions. Details of this method as applied to the model of
steps. condensation in the presence of the external radiation con-
A. Stage 1 sidered in this work are given in Appendix A.

Substituting the obtained relationships (k) into the
equations forn; one can get forn;, j=1, x;(k), Kk
=1,..M, a closed system of equations which in a general
form are given in Refs. 8, 27, and 12. It turns out that if the
rate of relaxation of the internal energy of monoméiar

dn polyatomic moleculesis more than the rate of dimerization

W=|i—1_|i ' 2 then forj>r the quasisteady equations coincide with those

of the quasichemicalSzilard model. In all the other cases
wherel; =3, I (1,0k). Further it is possible to prove that all (j<r, slow relaxation of monomerghe obtained equations
populationsx;(k), j=2,..N, k=1,..M; are the fast vari- gjffer much from the agreed upon ones. For the case consid-
ables with respect to the slow concentrationgandT.**  greq here when only condensation of water molecules being

in a ground rotational para state is taken into account such
B. Stage 2 equations for slow variables take the fofeee Appendix A

The initial step is connected with a substitution of vari-
ablesx;(0) for concentration®; at all j. Equations fom;
could be found from Eq(1) by summing the equations for
x;(k) over allk.

Having subdivided all the variables into the fast and
slow ones it is further possible to use special methods of
asymptotic integration for singularly perturbed ordinary dif- dx,(0) dx;(k) o dn; dn
ferential equations, for example, a method of boundary dt _gl dt _122 Vot T ar
functions®® A concrete realization of this idea for the kinetic
equations of MTC in a general case is given in Refs. 18 and -
12. The sense of previous manipulations is that for specific —(r+l- > 1Y,
times of evolution of the slow variabl€se., concentrations jmrez
the quasisteady equations fgi(k) have the form

(I)J"k:O, k?l, JBZ (3) Xm(k)

In other words instead of the initial differential equations Eq. dt =0+, k#0,
(1) for x;(k), we should solve a more simple system of al-
gebraic equations, E@3).
However, as already mentioned above it is without doubt
the unreal problem to find the exact solution of this system. ﬂ_ °

. ) LA 2 —djl, j=2,..r-1,
For this reason we propose a convenient approximation dt !

M -1

N—-1

Downloaded 31 Oct 2005 to 169.232.135.10. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 108, No. 9, 1 March 1998 A. L. Itkin 3665

dn, n(1—f,) [z(M)(1-76) tion of this new s_yst(_am could bg solved independe_ntly from
rTEE - - each other(factorization). Three important assumptions are
' r made to do that.
B ‘<! g},kMxl(O)Zr(k)-‘ (1) For the large clusters the following relationship is valid
&L Z a0+ 7 Y 3E (ki) ~j?, v=<1.
(2) The equilibrium concentrations follow the relationship
_ g},MMnrle(M) (2) nje/nle<1_
vSy O, r+l (3) At j>r variablesf; smoothly depend upopso that
n.z,(M)f _i~ <
-+—L§;¥—5%;MMnma(m<1—sﬂ, e
dn.q, - dn, In Refs. 23, 24, and 12 the model expressions of rate con-
Tzl—lﬂz— e stants for the cluster’s formation and decay were obtained
(4) with the help of the statistical theory of the chemical reaction
dn, O ' rates. As s_hown in Refs. 26 and 12 for such constants there is
F T L ES IS N R reliable evidence of these assumptions.

. However, in the case of slow relaxation of monomers the

Here I}l), IJ(Z), and| are the fluxes that can be generally common solution of the quasisteady equations for concentra-
represented as tions have not yet been obtained. Thus if the monomer popu-

(DK = e lations may vary with an arbitrary rate to solve E4) it is

=K nj-14(0)—K;nj, . .

necessary to develop a special asymptotic method.
|](2>: Lﬁ({(O)— Lj_nj—lyl(o)r In what follows we describe such a modification of the
_ method® as applied to Eq(4). Let us introduce the follow-

Zr mmNeeZ (M) [ (1—f1) N 1 (Ffr,MM_ 1 ing substitution of variables x;(0),n,,....NN—So,
14 7,0 SO 127 f2,...,fN_1,Where

A AC) —n j+1 _
xwﬁJ%%uqu%ﬂ (5 imalS s J=her=L
fe=n.1/Son, n=n;/nje, S=x(0)/n;,z;(0) is an ana- f=nalSong, J=r..N-1, ®
log of supersaturation arg(i) is the Boltzmann factofsta- Sy=x,(0)/n1.2,(0)
e .

tistical weighy of theith state of] clusters. Coe1‘ficientl§;r ,

LJ-+ , andK; , L; are the nonequilibrium rate constants de- Further we exclude variable;(M) from the system in-

scribing the cluster formation and decay that depend not onlyroducing instead concentration = =,x,(k). Thus instead

upon the temperaturg but also uporx;(k), k=0,...M. The  of the equation fox,(M) we use the equation far, which

explicit form of all coefficients presented in Eqd) and(5)  could be obtained summing all the equationsXgfk) over

is given in Appendix A. A convenience of E(p) is that at  all k. Nevertheless, we keep, (M) in the right-hand side

equilibriumlj(", i=1,2 as well ad vanish. (R/H/S) of these equations but now it is not a variable but a
We shall notice that when writing E¢4) we have kept notation

equations for populations, (k) in a general form and did not

purposely compare the rate of relaxation of the internal en-

ergy of monomers and the rate of all the other processes. It x1(M)=n;— go X1(K).

does not contradict a general idea of the “boundary func-

tions” method, however, it permits one to consider herein-  Omitting an intermediate algebra we give rise to the

after various cases of the monomer relaxation in the frameequations, Eq(4) written in new variables, and the equation

M-1

works of a common scheme. for S=ni/nq
C. Stage 3 v gen S0 ot
To solve the derived equations for the cluster concentra- 7
tions in the case of the fast relaxation of monomers in Ref. df, Nre dins,
26 we developed a special asymptotic method. Originally it d—:Y,— f+ . )Yr_l— f, d ,
was utilized in Ref. 22 to find analytical solutions of the T Sofr+1e 4
guasichemical model but later was generalized also for _ d Sen;
MTC.?® It allows one to obtain the analytical expression of —J=R(fj)—fj — In( I*tle +
the cluster concentrations for nearly all siZsave the big- dr dr je
gest onepthrough supersaturatiof=n, /n;. and tempera- Ne  freq Yy .
ture T. The method is based on a nonlinear substitution of +0jr11 mf— Y1t Kn—z(O) Iyl
variablesn;— f; such that the initially coupled equations for rele ' let
n; in new variables could be decomposed so that each equa- j=r+1,.N—-1,
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dSO '
2 J,BJSJofJ 1Yo (r+Df S8 Yo
N-1
n
SULE 2R [1+(r+1)8) 2]
Nye j=r+2 '
><K-*S£>/3,»_1<1—f,»_1)
- M
Hl ! K(nlezl(o))22
1 ds r
Zl(o) dT:_JE JB]SJOf] lYJ 1™ (r+1)
Nr116So
><fr—ls[)ﬁr Yr—l_ rn = Yr
re
N-1
= 2 [1+(+1)8,42]
j=r+2
_ i1
XK S8 -1(1= T30 11 F,
1 dxl(k) 1

ez (0) dr K(ngeza(0)? &

k=1,.M—

1.

kt Q0.

HereY; are the fluxes that turn to zero ft=1.

Y:M 1—f+ ¢, fra

1 5144(0) T 507,

b— Z}l,MMnrl,lel(M)}

P2 ammn 1167 +1(M)
1+7]+1MMY1(0)6¥J+11S{),J-,1
1+ 7 1 um%(0)a, - 1) ’

y
erl__m(l_frflfr)
Y1
 Knpezy(0) 1710
el oz (M) (1-S))
Tr0 “r,MM%r ’
— Zrmmz(M)

¥ vOT,

_ - Zr(M)(l_Tre)

yl_Tr 7.0

% (0) W
_ 7 (k rkM
2 (k)7 Zwxa(0)+ 7, J
7 ot ;=
Yi=-— = Iu_Kr++ZSOfr(1

Kn1z1(0) SNy 1e

_fr+1)1

(@)

iu), ji=1,.5-2,

A. L. Itkin

~ gr,MM 1_frfr—1
|u——ar,(1— V0> oot

+ 7 F 21 MmN1ez1(0) (1= Sp).
The bar over the parameters means that they are dimen-
sionless. As a unit of timé&n,,z;(0)) ! is chosen while as
the characteristic formation rakg, the value of the free mo-

lecular flux per unit of the cluster surface area is used. All
the other notations are determined by the relations

R(fj) (a]J c)(f
aJ:[Ej-:—Z(l_5j,N—1)_Ej++1]SO!
¢;=[K 1~ K (1= 8}, + 1)1/ (N12:(0)),

K 1 fi)l 5
M _nlezl(o) f]-71 ( j,|’+l)

_E;r+250fj2<1_ : (1=6jn-1)s (8)

and ¢;; is the Kronecker delta.

As shown in Refs. 26 and 11 at condensation under the
adiabatic conditiong¢flows in nozzles, jets, thermal diffusion
chamberk f; is in fact, a smooth function of thereforeu;
<1. If one neglects these terms in E@) then the equations
of the examined system at-r +1 break into the indepen-
dent ones.

Further we may take advantage of the anafysiswhich
shows that in the case of quasiequilibrium distribution of
monomers over the internal degrees of freedom among all

new variables the slow ones are on§ and f;, j>]j
=(2/3€)3, e<1 while all the otherd; are fast. Therefore in
Eq. (7) the RHS of the equation fctB is of the order ofe.

In our case the distribution of monomers over the rota-
tional degrees of freedom is affected by collisions with the
other monomers and radiative processes. As is known rota-
tionally excited molecules relax practically over one colli-
sion. It means tha€./Knq¢z,(0)=0(1) therefore the rate
of relaxation is at least not less than the rate of condensation.
Thus the equation fog, can be rewritten in the form

dS 1 M

O R0 & (26 ©

As C./Knq¢z,(0)=0(1), in Eqg. (7) the RHS of the
equations for dimensionless (k) are of the order oD(1).
Therefore these variables are fast. Thus we can omit the term
dS,/dr presented in the RHS of Eq7) for all f;. It is
reasonable because it is only an abbreviation for dimension-
less Q;+Qp and if x,(k) is a fast variable thef);+ Q;
=0. Further applying once again the method of “boundary
functions” to solve a full system Ed7) we again instead of
differential equations for the fast variablés and x,;(k), k
=0,...M —1 get the following system of algebraic equations.
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0=Y;, j=1,.r, fre1=1,
nre fr-%—l ? - 1 F{ 2 }
0=R;+ 5 ly, fri1~ = exXp 55—l
1T Nrv1So fr Kngezy(0) s, 3(r+1)t

. - It is easy to show that they coincidejgt~r + 1. Further
j=r+1,..,j, . L :
two different situations can be considered.

0=0%+0L, k=0,..M-1. (10)

It is seen that the equations of the second line of this
system afj>r+1 are independent and their solution can bel. Case x>r+1

easily obtained in an explicit form. Between two existing In this case the stable root of EA.3) is f, . ;= 1. There-
roots one has to choose the smallest one because only thise the solution of all the other equationng;r j=1,.r

root is stable. Equations of the first line can also be solveq:an be found from the conditiow: =0, 1,=0. Omitting an
explicitly which results in analytic expressions of &I, | intermediate algebra we get P

=1,..r through S; and f,,;. These analytic solutions

should then be substituted in the equationsSp6&,, x;(k), fi=1, j=1,..r-2,
k=1,..M—1 and slowf; with j high enough(the typical 1+qa(1-S))
numbers of slowf; correspond tg>10°). It can be shown f_1=(qS+1) q ’ (14)
that the contribution of slow; to the variation ofS is small q+1+ga(l-S)
as compared with fast; and can be neglected. Thus the 1
equation forS becomes independent on these slbwand frzﬁ,
can be solved together with the algebraic equations(Hij. ga(1-So)
All the othern;, j>1 [and consequentlx;(k)] one may where
calculate using already fourfsh and T according to the re- B
spective analytical formulas. = 7:CrmmN1eZ1(0),

Such a program has been completely realized in Refs. 26 e MM
and 12 in the case of fast relaxation of monomers, i.e., when P= ﬂTr( 1-——=1+9%,
X1(k)=s1(k)n1z;(k), k=0,..M;. The quasisteady solu- (15
tions obtained have the form 1

fj=1, j=1..x x=l+maxr,j,), an BT I (v 0= Zou) (7 0+ DI (27 = v0) ]

1 b 2| _ S 70 Zaxa(0)
fizé(l_ W)ex Wm) J=xE L, VT ) 7 a0

whereb is the dimensionless surface energy of the cluster It can be shown that, ;, andf, are positive aS,>0.
per its surface angl, is determined by the chosen values of At Sp=1 one gets from Eq(14) f, _,=f =1.

the formation and decay rate constants and is close to the Note that the obtained solutions of E¢41) and (14)
critical size2612 obey the condition of “smoothness” for afl; at j=r+ 1.

In our case equations fofj, j>r+1 have the same As the result of all the transformations performed the
solutions as Eq11) if we changeS for S,. Note that the full ~ rest system of kinetic equations takes the form

equations forf;, j>r+1 arisen from Eq(7), if we omit in ds N-1 o
them termsu;, also have analytical solutions because these —_ —— = — > [1+(r+1)8 ,,,]K Bi_ s,
. o . . . . (0) dr i pr+2d™j Pj-1
equations are the familiar Riccati ones with a known partial1 i
solutionf;=1.2%*?Under such a condition the Riccati equa- -1
. . 1+9S
tion has an integra > a-f_ o I f.,
1+g+ga(l-Sy) YS!
_C+f(aj+cj)de—E
I=C+ (a1 ¢, Edx+E’ . 0=0¢+0f, k=0,.M-1, (16
1+f, The leading term in the second sum in the equatiorsfor
E=expf (aj—cpdx, C= 1_fJ , is the first one which corresponds jte x+ 2. Then neglect-
io ing the rest of the termésee details in Refs. 26 and )1®e
wherefq is the initial value off; at the moment=0. finally find
In order to solve the remaining equations it is necessary 1 ds
to exclude the ternh, from the equatiory, =0 and the equa- 72(0) dr =—[1+(r+1)8 +2]Bx+1e
tion for f,, 1, substituting in them the equality, _;=0 that 1 T
gives rise to the closed equations for, ; — b 1+9S
o o~ XS K 6x**1+q+qa(l—-Sy)’
(fre1= DK 3S0f 1~ K 2] =0. (13)
This equation has two roots 0=Q+0Qy, k=0,.M-1. 17
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All the other steady-state concentrations except that fodifferential equations, Eq7), and further simplifications are

very large clusters with>10° could be found based upon
the inverse transformation from variablgsto variablesn; .

2. Case x=r+1

Herej, <r+1 therefore the stable root of E¢L3) is
fro1~(1/Sy) exd2/3(r+1)¥3]. Then I, does not vanish
now but from the conditionY,=0 could be expressed

s

throughf,
( 1- exr{
(18)

Now from the equation¥;=0, j=1,... —2 we find the
values off;

l,=—af,,

1
So

+
Kr+2nlezl(0) 2 Nryie 2

Y Nre

a

d;a
So7, 07¢

Quasisteady equation$ _;=Y,=0 can be solved in a
similar way as in case 1. It yields

1+ atga(l—Sp)

fj:]._

fr r—1- (19)

fr-1=(0S+1) 1+gq+atatqa(l-S)’
1
fl’: i ’ (20)
1+atga(l—S)
where
—
a— =
Pyi—v

It can be shown again thdt_, and f, are positive at
least atS;=1. However, now even ag,=1 all f;, j
=1,...r +1 differ from unity.

Althoughf, . ; differs from unity the solution of Eq20)
still obeys the condition of “smoothness™ fof; at j=r

+1. Substituting these solutions into the equation for the

slow variableS and keeping only the leading terms one fi-
nally gets

1 dS_ r+21—
2,(0) dr  Prez™ K2 griym

1+9S
17 atatq+ga(l—-Sp)°

(21)

Analysis of Eq.(19) shows thaf;, j=1,...y —2 become
negative forj<b/In §. However, atS, which obeys the
condition

In So>m§

the RHS of Eq(21) becomes of the order @(1) or in the
other wordsS becomes a slow variable. Since tRgwe can
no longer use the quasisteady equationsffobecause the
specific rate of evolution of alf; and S; is close to each
other[the RHS of Eq.21) is of the same order as the term
Q5+ Qg in Eq.(7), thereforeQ §+ Qg does not vanish Thus

impossible by virtue of the absence of small parameters in
the system.

IV. DISCUSSION

The proposed theory of nucleation in the presence of
radiation exciting the rotational degrees of freedom of the
condensible molecules and methods of the asymptotic inte-
gration being applied to the studied problem allow dhe
from the very beginning to formulate the original problem at
the microscopic level andii) to avoid some physical as-
sumptions which are inherent to usual macroscopic ap-
proaches. Finally, our approach results in a radical simplifi-
cation of the kinetic equations and reduces them to the
kinetic equations only for populations of the rotational levels
of monomers. The other cluster concentrations \wit? and
populations of the intracluster vibrational states are deter-
mined by the explicit analytical formulas through already
knownS andT.

A. Justification of the method

In order to verify the accuracy of the method in Ref. 22
an analytical solution of the usual quasichemical equations
of nucleation for a finite system witN molecules

N
dny/dt=— 2, 1;-2l,,
i=3

dnj/dt=|j—|j+1,
dny /dt=1,

obtained with the help of our approach was compared with
the numerical solution of these equations. Two important
facts were taken into account. First, since we compare the
analytical and numerical solutions without analyzing their

physical meaning, we can compare them at model values of
the rate constants presented in the original equations. It is

j=2N—1, (22)

necessary only that these model rate constants satisfy the
assumptions made for the real condensing system. Second,
as follows from the explicit form of the equilibrium function

nje (see below and some estimations, the assumption of
MCT made thain./n,,<1 atj=2 and justified for an in-
finite system is invalid for smaN (the choice oN is limited

by the computer capacityTherefore in test calculations we
did not consider Eq(22) but a net of equations normalized

in another way, namely:

N
dn,/dt= —J_Za j(dj+1—dj)—dal2,

dnj/dt=lj—|j+1, j=2,N—l, (23)
dny/dt=1y, dj=expj,

N
nl+2 d]nJ:n

=2

It can easily be showf that an analytical solution to
these equations is constructed exactly as described in the

in this case it is necessary to solve the full system of couplegrevious section and that Bt 5—10 the mentioned assump-
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45 \/ﬂ e\ U6 3/ €\ [ep
PV el ‘{ 2] ]
(27)
where
€' =my(v;/a). (29

35
Here a=1/op and o p and ¢ are parameters of the

Lennard—Jones potential. For the activation energy we use
an approximation

2.5

I,m ) 29

Fa= Eb<|1_(j+m——2)

0 50 7 100 where E, is the average dissociation energy per bond, and

the term in parentheses is the average number of bonds of a
FIG. 1. Dependences § f,, f,, andfs, as functions of the dimensionless  molecule which could be capable of leaving the cluster with
gmjti:)ﬁ?’zalznfgol.n the test example: 1, our analytical solution; 2, numern:althe other molecules in the cluster. Constdas v, |2' |1,

d,~20.p, my for some substances are given in Ref. 12.

tions are valid aN~100. Figure 1 shows the results of this 2. Function n ;.

test. Details of the numerical procedure in use are described A explicit form of this function depends upon the
in Ref. 22. Calculations were performed with=100, 1000,  physical model of the cluster. Nevertheless, the common ex-
and 10 000. It is seen that our analytical method predicts thgression

numerical results with the accuracy of the first approxima- — _
tion (for this teste<0.01). After a short initial period func- Nje=A;(T)exp —bj?3) (30
tions f; rea_ch their quasisteady \(alue_s an_d_ during their furspould be valid for any model and the matter is to speaify
ther evolution they depend on time implicitly only due to \yhich weakly depend upof. For instance, for a simple

their dependence ofi=S(t). A good agreement of the data qqe| of the cluster which has been previously used by Ref.
confirms that the suggested approach is very promising.

B. Parameters and constants of the theory

30 it is possible to get
A=07%32Z,p6° exl1e0(2)/kaT]eXP(36), (31

For potential users of the theory further we also brieflyWherel; is the de Broglie thermal wavelength

present explicit expressions for the rate constant of the clus- 872
ter formation and decay but a more detailed theory can be

found in Ref. 12.

1. Rate constant K /+

2 :
(2mkg T2 Jj=z mjR?, Rj=7j"%

5
(32)
X;j is the number of the axes of symmetry of theluster,

Zin=—m—
jR h3Xj

In the case of an equilibrium distribution of the internal €0(2)<0 is the dimer potential wellf=hvz/kgT. The

energy of a cluster the rate of the cluster formaﬁqh could

minimum frequency of the intracluster translational oscilla-

be expressed through the rate of the cluster unimoleculdfons vz for some substances is given in Ref. 12.

decayK; using the relationship of the detailed balance

K" =K nj;1e/NjeNse. (24)
ForK; the explicit representation has been fountfif
K ~Wqy(T)j?" exp( —Ea/kgT). (25)
Here

8hy, _. (7 2
Wo(T)= 17— Zio| 77| ni(1+Vey),

kBT el dl

(26)

_ hv, i _ 13
ai=exp ——=|—1, i=tl, »=(3my/dmp)-".
kgT

As far asnq, is concerned the analysis of Ref. 22 shows
that it could be determined with the help of the well-known
Clapeyron—Clausius relationship.

As shown in Ref. 12 when utilizing these constants MCT
predicts the available experimental data on nucleation in
streams and permits one to explain many experimentally ob-
served phenomenon.

C. Main assumptions and problems of the theory

Note that all assumptions made at the asymptotic inte-
gration of the initial system are discussed in detail in Ref. 12
therefore we omit this discussion here. In addition, we have

vy and v are translational and librational intermolecular vi- already discussed above the existing theoretical background
brations in the cluster, considering in a harmonic approximawhich provides evidence to assume that only the water mol-

tion, m, is the molecular masg, is the liquid density, anti

ecules being in a ground rotational para state are efficient to

andkg are the Planck and Boltzmann constants. The definibe attached to the cluster while the probability to form mo-

tion of Zf,z; is given further in the paragraph devotednt@
andPy ¢ is given by the expression

lecular complexes from the water molecules being in the
other rotational states is negligible.
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Nevertheless we would like to highlight the main prob- f,f,_;<1 atx=r+1. AsdS/dt is proportional tof f, _,,
lems of MCT left to be solved in the future. First it is rea- when x crosses the point+1 the character of the depen-
sonable to note that from the mathematical point of viewdencedS/dt on S, changes a little. However, as far &s,
there is no sharp boundary between the fast and slow vari-=1,...y —2 is concerned at=r+1 the further increase of
ables as well as between the areas where the limit of “higt§, results in the decrease of thege In order to prove this
and low pressures” have been introduced. Under such corstatement let us give a more explicit expression for the prod-
ditions our idea of the parametercould be very attractive uct ¢ja/Sy7, 07, , which is presented in E¢19). In doing so
for physicists but not for mathematicians because we have noote that from they; definition given in Eq(A15) we have
evidence for introducing such a sharp transition. This prob-

lem has already been discussed in Ref. 12 where, however, a ,4,,,=1+S, N2eCommz2(M)
weak influence of this simplification on the value of super- N1¢C10021(0)
saturation and the integral parameters of the system has been N3cCommZa(M)
revealed. As far as the cluster concentrations are concerned, asZsmu=1+S, "MCroe(0)

a more precise definition of this boundary apparently should 2e™10071

greatly affect the value of concentrations for clusters vyith NyeCommza(M)
aboutr, but for other clusters such concentrations should be x| 1+S "N1Ci021(0) /'

close to those obtained here. L . .
A similar situation arises when calculating the precise€tC- Leaving in these expressions only the leading term one

values of the cluster concentrations by means offthvari-  9€tS

ables .WhICh have been fqund asa squ.tlon of our qug_ssteady “ Ni+16Ci-1mmZ+1(M)

equations. The problem is that according to fhéefinition 281 2MM = Sb-

; - N1C10021(0)

in Eq. (6) a reverse transformation frofito n concentra- _ _ _ o
tions leads to considerable errors at large values. ofhe Let us assume thaﬂ(j+ is proportional toj?? as it is

matter is that small errors in calculatirfg inherent to any usually done. Thus we can finally represent Eip) in the
asymptotical method, are summed with one another givingollowing approximate form

rise to the large errors in; . (r+2)28
At the same time our results of numerical calculations of ~ f;=1—1f,_, > BriiSy L (39
various condensible gas flows in smooth nozzles, jets, and So

nozzles with a contour fracture demonstrate the capability of |t turns out that within this representation the RHS of

MCT to predict the experimental data in a wide range ofEq. (34) does not depend oj. Certainly this dependence

temperatures and pressures with only the paranigtéor  will arise if we take into account the omitted terms. It is seen

fitting, which is the average number of bonds per molecule irthat since In§,>b/(r+1)'2 the coefficient af, f,_; becomes

a large clustef>'? Moreover, this parameter has a clear of the order of unity that results in the decreasef af We

physical sense and, in principle, could be obtained fromremind the reader that at the saiBgthe RHS of Eq.(21)

guantum chemistry. becomes also of the order of unity agdbecomes a slow
In any case one could consider MCT as a more consisvariable(see the previous sectipn

tent way to adopt some ideas of the kinetic theory of chemi-

cal reacting gases and an asymptotical analysis as applied to

the nucleation problem. E. Influence of radiation

D. Behavior of the system in the vicinity of X=r+1 Here we discuss the influence of radiation on the con-
densation kinetics analyzing E@L7). First we consider a
eak comet with a small production rate of water vapor from
he cometary nucleus. It means that the numerical density of
the vapor is small enough that it results in a low value of the
relaxation rateC.. Under these conditions the radiative pro-
a(S—1)(1+a) cesses dominate the collisional relaxati6¥&Qy), and the

Let us further give a brief analysis of the solution ob-
tained. First, by means of some transformations we woul
come to a more evident form of the solution for the produ
f.f,_1, namely:

fefrog=1+ 1+g+qa(l—-Sp)’ x>r+1, steady distribution of populations is mostly determined by
(1 q the external radiation, i.e., by the interaction of water mol-
ff, =1+ A(So=D(A+a)~ CoXx=r+1, ecules with the radiative flux from the sun. As a result the
1+g+ga(l—-S)+d populations of the rotational levels of monomer are nonequi-
1+9Sy— Ly vt librium. They can be expressed throughor S by solving
a=— — — — (33)  the system which follows from Eq17)
Comm v H(L+HAS) (Cmm T v T AT ) .
M—1
o -1
— qs?(1+érEA1\ATrV +qs)f¢)+¢_l . X, (M)=n,— E X, (K).
A1+ ummy T HAS TP+ EmuTy T+ Y k=0
It is seen that &ca<1 because’,yy v <1 andq Then substituting these solutions into the first equation

~1 andd>0. In view of thisf,f,_;>1 atx>r+1 and of Eq.(17) we get the closed equation f& whereS, de-
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pends upors in a certain way and, in principle, this depen- are not inherent to MCT becausge MCT does not use the
dence may have a rather unusual and complex form. concept of a certain special droplet like the critical nucleus
Another situation takes place for active comets with aand (i) even if we account for the classical concept of the
high production rate. Here the increase of the initial vapordroplet being in the equilibrium with the surrounded vapor,
density results in more frequent collisions, which reduce theatx=r+ 1 this is not the critical nucleus in our theory but all
rate of the collisional relaxatio@. so that it becomes more clusters withj<r+1. Moreover, our direct calculations of
than the rate of the radiative process€g$ ;). As a re- the condensible flow of the pure water vapor and the moist
sult, the equilibrium distribution of the energy of rotational air show that MCT predicts rather well the experimentally
sublevels is established, i.e;(k)=n;z,(k). HenceS=S, observed dependences. The results are discussed in detail in
and the equation foB in Eq. (17) becomes closed. The dif- Refs. 32 and 12.
ference with the previous situation is that the RHS of the  This statement is valid even for homogeneous condensa-
equation forS in the last case depends 8mather than in the tion of pure vapor without radiation. In the case of radiation
first case(generally speaking, more simply affecting the condensation kinetics, this influence becomes
At the intermediate distances both terfig and Q;  apparent tdi) the form of the cluster distribution function;
could be of the same order of magnitude therefore quasidi) the form of the dependence 8fupont; (iii) the depen-
steady populations,(k), k=0,...M are nonequilibrium and dence ofS upon| at the intermediate gas production rates
should be found by solving the full system Ed.7). Note ~ whenQg~Q;.

that the correlation betweefl; and Q; can vary from one In conclusion we note that the method proposed being
rotational sublevel to another in accordance with the value ofjeneralized for spatially nonuniform systems, flows of the
the Einstein coefficients. condensible vapor, gives an opportunity to simulate conden-

The gas production rate of the comet increases as thgation in the inner coma with allowance for the influence of
distance between the comet and the sun decreases. On tine external radiation on the condensation kinetics. Indeed, it
other hand the decrease of this distance also results in tt@lows one to solve hydrodynamic equations in conjunction
increase of the radiation intensifyee Ref. Ltherefore these with the differential equation for supersaturati®and a
two processes are competitive. For concrete estimatiorinite system of algebraic equations for population$k),
simulation is needed. k=0,...M —1 while the original system contains the infinite

number of equations and one should cut it in a certain way in
order to solve it numerically. The other cluster concentra-
F. Comparison with the classical nucleation theory tions and populations of their energetic levels are analyti-

It is feasible to compare MCT with the classical nucle- cally expressed througl, and T. The results of such a

ation theory. Such a comparison is completely given in Reffsimulz_ition and a convenient an_d economic algorithm_which
12 for the case of homogeneous nucleatiom radiation and comk_)lr)(_as analytical and numerical gppro_aches_and glve_s the
here we emphasize only one point. In the classical nucleatioﬂgSSlblllt_y to restore the cluster size distribution function
theory a special role is ascribed to the critical nucleus whichVill be given elsewhere.

is determined as a droplet being in equilibrium with the sur-

rounded supersaturated vapor. It is assumed that drops witfCKNOWLEDGMENTS

i>], are capable of further growth while drops witk:,, This work was supported in part by the Russian Ministry
tend to decrease their size. Accordingly, the rate of nuclegt gejence and Technologies and by the Russian Foundation
ation is determined as the number of critical nuclei formedi,, gasic Researches. Grant No. N 97-03-46003. The author

per unit of time and volume. _ thanks Dr. E. Kolesnichenko, Dr. J. F. Crifo, and Dr. D.
In contrast the analysis of our results brings an unusuag,kelee-Morvan for fruitful discussions.
conclusion that all clusters with size<x are in quasiequi-

librium, i.e., for all those clusters);=n;.S, where nj APPENDIX A: OUASISTEADY SOLUTIONS FOR
~A(T)exp(—bj?3) is an equilibrium cluster concentration POPULATIONS

and b is the dimensionless surface energy per one surface

molecule?? Thus for these clusters all fluxes= Kfnj,lnl In this Appendix we determine quasisteady populations
—Kj n; vanish (i.e., nj=cons} while within the classical x;(k) which are the asymptotic solutions of Eg). As it is
theoryl;=1=const and this value is usually accepted as thenot so simple to solve Eq(l) at j<r, to make further

nucleation rate. Hence ¥~j, our result still correlates in a progress in such a case we introduce a conception of the
certain way with the prediction of the classical theory. How-dissociation from the topmost level. The physical meaning of
ever, ifj, <x=r+1 than within our theory all clusters with this parameter could be understood if we consider the disso-
j<r+1 are in quasiequilibrium while within the classical ciation process simulating the cluster by a large molecule
theory it is not the case. In particular, it is known from the with harmonic intracluster oscillations. There is an infinite
literature that for condensation of water vapor in the air anumber of energetic vibrational levels in such a system in
low temperature§ <270 K (such low temperatures are also contrast to the real anharmonic oscillators for which the
inherent to the cometary conditionthe size of the critical number of levels is limited by the dissociation threshold. In
nucleus determined by the classical theory turns out to berder to take this effect into account we need to cut off those
less than the water molecule itself that shows the interndevels which are unimportant from the physical point of
contradictions of the theory. However, these contradictionwiew.
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In virtue of ther-parameter definition the following re-
mark is in order that, in principle, in thi cluster for each Oz_lj(k-0|M)+5kME| lj-1(1L,OIM),  j=2,..5r—1,
level k the own relationship between the dissociatiyik)
and relaxatiorR;(k)n; rates at this level could exist. More- ,
over, it can be shown that the ratg(k)/R;(k)n; at givenj 0= 5kM§|: -2 (1LOM) ~1 r(k’O|M)+|;V J(Lifk,v), (A2)
increases withk growth so that at higk the dissociation rate
is always higher than the relaxation one for arbitraty
Therefore it may seem that the concept of the numbir
MCT is a failure. However, fortunately these top levels do
not bring any essential contribution to the fluxepresented 1 High-pressure limit  (j=r+1,...,N)
in the RHS of Eq.(1). Indeed, substituting the quasisteady

solution obtained a}>r in Eq. (2) with allowance for the ~In accordance with the parameterconception in the
flux I; definition given in Eq(2) one gets high-pressure limit only the relaxation terrs);(M,k|l,i)

have to be kept in EqtA2). Thus independently upon the
explicit form of these terms the following solution

completely satisfies the reduced equations. More obvious
K; =2, Ej(klohz(k), (Al)  representation of EqA2) can be obtained at least for two
k! models of the relaxation term, the model of the single-
guantum transitions and the BGK model. In the second case
. _ it is managed to reach a radical simplification of the final
Kj =KjK; :; Cifl(|10| k)zj - (k). expressions so that they can be written in the explicit form
' for an arbitrary distribution of the monomer populations. The
_ BGK model(the model of “strong” collision$ assumes that
Rate constantg;(k|0J]) are proportional tcsi(k), the  qguring the specific timer; the population of anyth level
degree of degeneradhe statistical weightof level k. For x;(1) is able to relax to its equilibrium value that yields
the system ob identical oscillators containadquantas;(k) =1 Just the same solution can be obtained if the rate of
could be determined by the expressigitk)=Cy" > *=(k  the monomer relaxation greatly exceeds the dimer dissocia-

+s—1)!/k!s!. On this account the functiog (k)zj(k) may  tion rate (“fast relaxation”) or for monoatomic vapor con-
be considered as dfunction with a maximum in the point yensation.

k=M which holds the relationshipl[s;(k)z;(k)1/dk|c-u

=0. Thus the considerable contribution Ky bring only

those levels which are close #d and more distant levels o ]

could be omitted from Eq(1) due to their negligible contri- 2- Low-pressure limit  (j=2,...,r—1)

ozlz J(Lilk,v), j=r+1,..N,

=K nj_1x1(0)—K; n;,

bution. _ _ _ _ In this section we consider a method which allows one to
In accordance with this model EQ].) can be rewritten in solve asymptotica”y the quasisteady equatimg) in the
a general forrff low-pressure limit. In such a case two situations should be

discussed, namelyi) the dissociation rate from the top-most
level E;(M |0k) decreases faster than the rate of relaxation
0=2> {—I,—(k,ilM)MkME -1 (1i[M) |, Si,vR;(k,v|k—1j) with k drop; (i) for all k one has
' ! E;(M[0k)>Z; ,R;(k,v|k—1j). From the physical consid-
eration the first case is more real and we shall discuss further
i=2,..5—1, just this one. The second situation is studied in Ref. 18 giv-
ing rise to the similar results.
Figure 2 illustrates the situation under consideration.

ozz 5kME L2 (1iIM) =1 (k,i|M) Here along the abscissa axis the number of the cluster vibra-
i ! tional level is set down,j is the cluster size,fg;(k)
=E;(M[0k)z;(M), fr;(K)=Z; nRj(k,i|lk—1,m)n;z,(i)
+2 J.(lLilk,v)|, zj(k). The low-pressure limit is considered and therefore for
l,v

the topmost leveM; the following relationship is valid
fqgi(M)>fgi(M)> R.(M,m|l,i)niez;(m)zi(M),
0= 3y(hilks), Gt + 1N, ai(M)=frj(M)> 2 Ri(M,mll,i)nsezs (M)Zj(M)
li,v
[=0,..M—2.

wherek varies from 1 toM. However, in our case in accor- The last condition is rather obvious because the rate of
dance with the already made assumption that only moleculesingle-quantum transitions from a certain level is much more
being in a ground para state are able to attach the cluster thikan the rate of multiquantum transitions from the same
system should be transformed to the following final form level.
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FIG. 2. The case where the cluster dissociation rate at the topmost level

E,-(M|0,k) decreases faster than the rate of relaxaﬁo,n;}]Rj(k,m|kf 1)
with k drop.

We proposed that, j(k) decreases faster thamp (k)
with k drop therefore starting from a certain legl disso-

A. L. Itkin 3673

X0z

7j

-2. J(1,ilk,m)= (A7)

This model brings quite an evident solution of E46)

b. Region 2 (k=p;+1,....q))
Fork=p;+1,...q; from Eq.(A5) with allowance for the
I andJ; definition given in Eq(1) it is simple to get

B gj+1,MkX_j+1(M)+anj(k)Tj_l

Zamxa(0) 7

Xj(k)

c. Region 1 (k=q;+1,...M))

As follows from Eqs.(A2) the quasisteady equations for
populations in this region have the form

I.(k,QM)= k=q,+1,.M—-1
J( 10| ) 01 q] 1 M 1 (A]_O)

Z lj-1(LOM)—1;(M,0M)=0, j=2,.5—1.

ciation and relaxation rates will be of the same order

[fqj(k)~frj(k)]. This situation takes place for numbers

from q; up to another certain level; . For less thamp; levels
one had gy ;(k)/fg;(k)<1. Thus the numbens; andq; split
all the levels into three areas. In regionk¥q;+1,...M))
one had j(k)/fgj(k)>1, that reduces the system EA2)
to the form

M-1

>

m=gj_1+

Skm li-a(mOIM)—1;(k,0[M) =0,

k=g;+1,..M. (A4)

According to the assumption made the rate constant

E;(M|0k) decreases very fast with drop therefore in Eq.
(A4) we neglect all the fluxek _,(m,0|M),m=1,...q;_; as
compared with;_;(m,0/M), m=g;_;+1,..M.

In region 2fy j(k)=fg (k) and from Eq.(A2) one gets

k,m)=0, k:p]+1,q]

(A5)

—|j(k,o||v|)+2| J(l,i

Finally in region 3 under the above assumptions the fol-

lowing equations are valid

> J(Lilk,m)=0, k=p;. (A6)
i,m,l

Solving Egs.(A4)—(A6) one can express all the popula-
tions x;(k), j=2,.7—-1, k=1,..M through nj,nq,
X(M),x1(1),...X1(M). Below for each region we give a

special method for solving the above presented equations.

a. Region 3 (k<p))

To further describe the relaxation processes for the sake2,...r —1,

of simplicity the BGK model with the relaxation time;
common for all levels of thg cluster is in use

We shall solve these equations on the base of the follow-
ing reasoning. Our ultimate goal is to obtain the closed sys-
tem of equations for concentrations. Each equation of this
system has the form

dn;
d—t‘szJ |j_1(|,o||<)—k2’I 1(1,0k),

and the above-mentioned model of dissociation from the top-
most level being applied to this system yields

d .
d_’:JZE Li—2(1,OIM) = > 1;(k,0[M)
T k

=EI - 2(1L,OJM)—1;(M,0]M)—1;(0,0M)

1,(0,0M). (A11)

To get Eq.(All) at first we used the first line of EgA10)

and then the last one accounting for the fact thdtsag; in

the low-pressure limit one hds(M,0/M)>X;1;(M,0[k).

In accordance with the above discussion about the dis-
sociation rate constant behavior under khehange it is rea-
sonable to assume thaj;=1;(0,0M)/I;(M,0|M)<1.
Hence in the first approximation over al; we can rewrite
Eqg. (A11) as follows

1;(k,0M)=0, j=2,.r—1, k=q;+1,.M—1,
1,(0,0M)—1,(M,0[M)=0, (A12)
l;_1(M,0M)=1;(M,0M)=0, j=3,.5—1,

Having solved this system we may expressxa(k), |
k=q;+1,..M through x; (M),
x1(0),...X4(M), andn,,...,n,. Omitting an intermediate
algebra we put down the final result
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Xj(M)=

A. L. Itkin

E+aj & X (M) + (&1~ ajé 1) Z 1 _1mmX1(0)

1+ % —1mmX1(0) a1

X (K) =X 41(M) & 1! € kmX1(0),

(A13)
j=2,.r—-1, k=q;+1,..M-1,
M
xj(0)=n;— 2, xj(k),
k=1
with the following notation introduced
a;=[1+ 7 1umX(0)aj 11/ £} mm
-1
a2:<2 E,(M i,I)) , (A14)
il
&=n;ez;(M)S}, (A15)

, =201

However, it would be convenient to represent this for-
mula in another form. For this reason let us multiglyM)
by 6 and subtract from this product temp.z,(M)n,,,6/S,.
It results in the following expression

X_r(M)a_nrle(M)n_r+10/SO

g}—l,MMx—l(o)gr—l_ Ze mmNreZr (M)N, 4

v Sy

anr(M) nrezr(M)n_H—l ,
+ - + & mmNr+1Z+1(M
7 SOTr rMmMir+1 r+1( )
7 X1 (0) ez (M) g

S, :

where Sy=x,(0)/n1,z;(0) is an analog of supersaturation. whence the representation for(M) follows

Note that the value af,(M) in the above expressions is yet
unknown and it is to be found from solving the correspond-

ing equations in EqtA2) with j=r.

3. Intermediate case j=r

In accordance with the parameteconception in such a

case Eq(A2) takes the form

X, (K)—n,z,(K)
oS 1201, 0M) 1)~ T g

k=1,..M,. (A16)

Populationsx, ; 1(k), k=1,...M have already been de-

termined before Eq(Al). Populationsx,_4(l), I1=1,..M
which are presented in the equations (M) also have

been already obtained. Combining all these relationship

within the framework of Eq(A16) one can get
Cr(K,0M)xy(0)f + 7, *
Cr(K,0M)xy(0)+ 7 *

C,(k,0[M)x,(0)
Cr(k,0M)x1(0)+ 7

X_r(k) =n,z(k)

=-n(1-1)

7 +n,Z.(K).

(A17)

An expression forx,(M) directly follows from (A16)
with allowance for the explicit representation xf_,(M)
given in Eq.(A13)

_ 1|nz(M C_ X1(0)&,_
Xr(M):Tg re ;( )+ r l,MMyl( )gr 1
r

+ & ammNe 1z 1 1(M) |,
v=1+7_1um*1(0)a, 1,

0=C.(M,0M)x1(0)+ 7, '+ %, ymv ™ L. (A18)

X_r(M):anr(M)(l_ fr) %_nrezr(M)

X Sgeg (1™ S0 ez (M) g
6+ C,(M,0M)n;2;(0) (1~ Sy)
X %, . (A19
fe=Ny41/Son; . (A20)

The convenience of E¢A20) is connected with the fact
that in equilibriumf,=S,=n,,,=1, therefore the first and
second terms in EJA20) vanish. Thus we found all quasi-
steady populations;(k).

APPENDIX B: QUASISTEADY EQUATIONS FOR
gONCENTRATIONS

In this Appendix we give a brief deriving of quasisteady
equations for concentrations which are based on the solution
for the quasisteady populations given in Appendix A. Below
we shall consequently get such equations in the high- and

low-pressure limit as well as in the intermediate cpse .
1. High-pressure limit  (j>r)

In this region ofj the quasisteady equations for concen-
trations follow from Eq.(Al) taking the common form

nj .
W:Hfl_lj(l—ﬁm), |>r,

where the fluxed; have been introduced in EGAL).

(B1)

2. Intermediate case (j=r)

In order to derive the quasisteady equation figrwe
have to substitute the quasisteady values of populations in
Eq. (A1l). However, it is not directly feasible to do that
because of a great complexity of the expressions appeared.
On the other hand, in deriving the equations we are inter-
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ested in, it is possible to use some relationships for the quas. Low-pressure limit  (j<r)
sisteady populations which have already been used in Ap-

pendix A. Doing in such a way we obtain First of all let us Iintr(.)du.ce a special notatibrfor the
g flux 1,_,(M,0/M) which is important for further applica-
tr :Z |r71(|,0|M)—§k: 1,(k,0[M) tions. By definition
M—-1
=1,-1(0,dM)+1,_3(M,0[M)+ 21 lr—1(1,0[M) 1=C,_1(M,0[M)X,_1(M)X7(0) — E,(M|O,M)X, (M),
—1H(0,0M) = 2 1(k,0[M). (B2)

With an eye to Eqgs(A20) and(A13) we can eventually

We have intentionally divided the sums in E&2) into  express the fluk through the quasisteady concentrations that
several parts in order to neglect some of them based on théeld

evaluation of Appendix A. In particular, we can omit all the

terms connected with condensation from the zero level that

corresponds to the first approximation over the parameters

A &, M) (n(1—f 1 /&
uj (see Appendix A Furthermore, in accordance with Eq.  |=— - i NreZr (M) [n,( ) il ( .MM 1)
(A12) =M, 1,(1,00M)=0. Finally, with allowance for v 70 So | v
Eq. (A16) one can rewrite Eq(B2) as follows @ ., 7 mmN1eZ1(0)
an M X0-nzk XY+ Y nr1(1-Sp) ¢ (B5)
B A Ay (B3)

dt &1 T

Now substitutingx,(M) from Eq. (A20) and x,(k), k _ _ _
=1,..M—1 from Eq.(AL7) into Eq. (B3) one can get after With the help of Eq(B5) the quasisteady equations for

some transformations nj, j<r can be found in a natural way. Indeed, in accor-
dance with Eq(A12)
ﬂ:nr(l_fr) z,(M)(1—7,0)
dt T 7.0
M—1 — dn,
oy SlkAMX(0)z (k) == 1 (0.AM) =7 100K 2(M)
=1 C,(k,0/M)x4(0)+ 7,
_ Zraiez(M) ) nZ(M)T ~ Ziowxa(0)%(0),
vSy 07, r+l 7,0
XCr(M,0M)Nn1e2,(0)(1-Sp), (B4) whence with allowance for the;(0) definition given in
wherel 2 =gt —n, ;. Eq. (1)
dn, o "G sk s(M)
at = e (M) = Z5ana(0)| g o= 2 %K) Srar=X(M) g
sk & si(M)
=& o : i JIEIMK o i
_(/(j+l,MOX]+1(M) ’g]OMxl(O) (0) X]+1(M)k21 SJ(O) ]kMxl(o) XJ M) S](0)j|
[ M-1 ,
I ng — Si(k)  Ziiimk — sj(M)
=— 7 uX1(0)| =—==—X; 4 1(M J g X(M) =
1owa(0)| g gy XM 2 S 65 7 o M) 5o
M .
o — n si(k)  Zijrimk — si(M) Si(M)  Zyimm
=—7; omX2(0)| =—==—X%; + 1(M J = X(M) =+ X4 1(M) = '
10O 557K M 2 S 65 7 M 5 @) M) $0) 7 a0
i M
= n  — Si(K)  Zjt1mk — s{(M) CiriMm —
=— 7 ouX1(0)] —=—X: 4 1(M J J 2 owX1(0) ——— | X M'——xM .
j,0M 1( )_SJ(O) J+l( )kgo (0) kMX]_(O) Zj,0M l( ) S(O) j+1( ) (/] |\/||\/|X1(0) ]( )
(B6)
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Further, if a useful relationship is worth being noted

X(M)=¢&—ajl, j=2.r, (87)
we can rewrite Eq(B6) in the final form
dn, % omx(0) . Zj+ 1Mk
dt (0 r]j_gjﬂkzo 5(K) i kmx1(0)
- 7, omX1(0) — Zit1MK
| ., 2T s (k) —1 ="
[“J“ 50 2 39 7,000
Z omSi (M -
_ Zions M) =1{2—djl. (B8)
Z;mmsi(0)

Here we use the notatidrﬁz) for the quasisteady fluxes being

represented in the form
121=L," x5 (0) — L 1nyx,(0) (B9)

with the nonequilibrium rates of associatidujT and disso-
ciationL; given by the formulas

L+ :Zj,owl Nje

I+t Sj(0) (n1e21(0))"

- _7jom - .

Liamgtgy 172001 (B10)

In order to cover 2); by this definition we have to as-
sume

1
Lfiy=————r1, L=
el (nlezl(o))r+l et Nri1e

As far as the coefficientd; are concerned they could be
directly written with an eye to EqB8)

vzl v M &
e ZiomX1(0)ajiq S sk @/j+1_.Mk
J s;(0) o 7 2 kmx1(0)
% omS;(M)
j,0M=j .
— IR =21 B11
Zimusi(0) J B11)

Note that in the equilibriumj(z):i:O.

A. L. ltkin

into account in the sums in E@L) that fork+ 0 it is reason-
able to neglect condensation as compared with relaxation. In
turn among all the relaxation terms we keep only leading
terms withj=1. It is caused by the fact that for eaghhe
corresponding term in these sums is of the orggr
=Nje/N1e<1,j>13*"?Hence

dxy(K)
ar it

k+0. (B13)

The RHS of Eq.(B13) contains only unknown populations
x1(K), k=0,...M. Forx,(0) using the normalizing condition
2y,j1X;j(k)=const we get

dx(0) & dxy(k) & . dn, dn, 4
dt __kgl dt _,ZZIE_”H) dt
N—-1

—(r+ 21— 2 1Y,

j=r+3

Whence with allowance for EqB12)
dx(0) ¥ dx(k) ‘o . dn; dn, .
G- & a2 e Y

N—-1

— 1Y, (B14)

j=r+2
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