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Kinetic model of coupled nonequilibrium condensation and radiative
excitation of water molecules

A. L. Itkin
International Institute for Problems of the Asteroid Hazard & Institute of High-Performance Computing
and Databases, Apt. 37, Taganskaya 44, Moscow 109147, Russia

~Received 14 July 1997; accepted 11 November 1997!

A new microscopic kinetic model of coupled nonequilibrium condensation and radiative excitation
of water molecules effusing from a surface of a cometary nucleus is developed. The method is
greatly based on the microscopic theory of nonequilibrium condensation~MTC! developed earlier
by the author. To analyze vibrational and rotational excitation of the H2O molecule a kinetic model
has been used which includes infrared rovibrational pumping by the solar radiation flux, thermal
excitation by collisions, and radiation trapping in the rotational and rovibrational lines. Appropriate
kinetic equations for cluster concentrations and populations of their energetic levels have been
solved analytically. This permits one to reduce the coupled equations of the condensation and
radiative balance to a closed system of differential equations involving the rotational populations of
the water molecule. Prospects of the use of this model when studying an influence of the indicated
processes on the structure of an inner coma are discussed. ©1998 American Institute of Physics.
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I. INTRODUCTION

This paper is the third in our series of works devoted
the investigation of nonequilibrium processes in a comet
coma and their influence on the coma structure. In the p
vious publications1,2 we considered~i! a radiative excitation
of the water vapor molecules evaporating from the surfac
the cometary nucleus and~ii ! special methods for construc
ing various physical and mathematical models which
scribe flows of a dusty gas in the coma. Such flows wit
the framework of the Euler approach were also explored
our paper.3 Here we continue the study which has be
started in Ref. 1 considering condensation of water vapo
the coma against a background of a radiative excitation
the water molecules.

Below we give a short review of papers where cond
sation and radiation in the coma were a subject of consi
ation. At the same time it should be emphasized that cond
sation in the presence of IR radiation can occur also in
earth’s atmosphere or be modeled at laboratory condition
order to manage the condensation process. Thus, alth
we refer to comets, the present study is addressed to a w
area of problems connected with nucleation in the prese
of external radiation.

A. Condensation

Yamamoto and Ashihara4 predicted that the expansio
of water vapor effusing from the surface of a cometa
nucleus and its cooling should lead to spontaneous pa
condensation of H2O into a wealth of ‘‘water hydrates’’~or
‘‘water clusters’’! (H2O)n (n@1). This process was late
studied extensively by Crifo5–9 within the framework of the
classical nucleation theory~CNT!.

Generally speaking, in order that spontaneous conde
tion induces cluster formation, a sufficient number of co
3660021-9606/98/108(9)/3660/18/$15.00
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sions between molecules of the condensible vapor is nee
At low vapor densities~at high Knudsen numbers! when the
mean free time becomes of order of the specific gasdyna
time, some other mechanisms could also be important for
cluster formation, namely: ion-induced nucleation, pho
nucleation, heterogeneous nucleation on dust particles,
Furthermore, by virtue of chemical reactions occurring in t
coma, or binary nucleation when two fugitive componen
could simultaneously condense into a droplet of this soluti
clusters of a mixed type can be formed.

The specific mechanism of condensation depends u
various factors such as a chemical composition and a sp
structure of the nucleus and the distance of a comet from
sun. In particular, in Ref. 9 an important role of the g
production rate is emphasized because this parameter
significant degree determines the initial Knudsen numbe
the vicinity of the nucleus surface. Moreover, a few compe
tive mechanisms of condensation could simultaneously
cur. Crifo9 studied such a mixed mechanism of water co
densation in the inner cometary ionosphere~near 1 AU!. The
crucial effect follows from the huge water cluster’s affini
for electrons and ions: they act as extremely efficient cha
density traps; in other words, as long as heavy water clus
are present, the local plasma is not any more ane22H3O

1

plasma, but a (H2O)n
12(H2O)n

2 cluster plasma. One impli-
cation is that the electric charge is, in this way, ‘‘protecte
from the classical electron-light ion recombination: it follow
that the total charge density is of about an order of mag
tude more than that predicted by classical models.

Further out from the sun, it can be conjectured that sp
taneous recondensation of water will yield a dominance
ion recondensation via the chain of reactions H1~H2O!n

1H2O→H1~H2O!n11 . The free electrons will first recom
bine on H1~H2O!n , and then attach themselves onto the ne
0 © 1998 American Institute of Physics
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3661J. Chem. Phys., Vol. 108, No. 9, 1 March 1998 A. L. Itkin
tral cluster thus produced. Therefore, qualitatively, the c
clusions of Crifo valid at 1 AU should continue to hold
However, quantitative estimates made on the basis of
model9 with allowance for spontaneous and ion-induc
nucleation were not performed for the distances diverse f
1 AU.

Another example is the work10 where a simultaneou
occurrence of heterogeneous and ion-induced condens
of products of methane photodissociation in the neptune
mosphere was investigated based upon CNT.

Within this paper we consider only homogeneous sp
taneous condensation of water vapor but with a numbe
essential differences from the models known in the literatu
First, for the first time in cometary physics we use prin
pally a more modern model of the condensation kinetics.11,12

Second, this model is modified in order to take into acco
both condensation and radiative excitation of the water m
ecules by the solar illumination and their mutual influenc

B. Radiative processes

Radiative processes play an important role in form
the structure of inner cometary comae. As a rule, the in
coma is characterized by the low temperature of va
evaporating from the nucleus surface and consists largel
molecules of water and dusty particles. For the water m
ecules a maximum of absorption and emission in the p
ence of the solar radiation lies in the IR region, therefo
their vibrational degrees of freedom usually are not excit
as opposed to the rotational and rovibrational ones.
physical analysis of the kinetic mechanism of the water m
ecule excited by the solar light has been done in Refs. 13
14 and confirmed by the observational results of Ref.
Owing to a small number of the populated rovibrational le
els and relatively high density of the water molecules in
coma, a certain amount of radiative lines are optica
thick.13,14While the number of the populated levels is not t
large, it is necessary to consider a sufficiently large to
number of levels when studying a mechanism of the rad
tive excitation. By virtue of it, a usage of the exact radiati
transfer equations is extremely labor consuming and spe
approximate analytical methods were developed which t
into account the influence of the optical depth on the kine
of the process. One of them is the escape probab
method16 originally proposed for a spherically symmetric
coma. Being applied, this method permits one to take i
account the indicated influence and still remain within t
framework of the balance kinetic equations in lines but w
the Einstein coefficients multiplied by a certain factor whi
is strongly nonlinear over populations.

When modeling the water vapor flows in the inner com
with allowance for the radiative transitions because of
large dimension and essential nonlinearity of the system
the kinetic equations one usually tries to be limited by
elementary one-dimensional stationary models.13 Recently
we explored the dynamics of the water vapor expiration fr
the nucleus surface with allowance for the radiative p
cesses using a one-dimensional unsteady approach.1

It turned out that an intensive exchange by the ene
between the internal and translational degrees of freed
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results in a sharp difference of the flow parameters from
adiabatic ones. In addition, during the flow evolution u
steady oscillations of the parameters’ values were obse
in the stream. It was revealed that the intensity of these
cillations is insufficient to produce locally subsonic zones
the initially supersonic flow. However, this could be the ca
if one takes into account the presence of dust partic
~which decelerate the stream! or the vapor condensatio
~which also locally decelerates the stream because of
latent heat extraction!.

Note that so far in the existing literature on cometa
physics the following problem has not been raised at all, t
from the physical point of view a rotationally excited mo
ecule should be less capable to condense against a no
cited molecule. It is hard to take this fact into account with
the framework of CNT in contrast to our theory which a
lows one to generalize it for this case in a quite natural w
Thus within the scope of such a modified model, conden
tion and radiative excitation become the coupled proces
that should be taken into account when elaborating an ap
priate theoretical description of this phenomenon. Therefo
the main goal of this work is to present such a theory dev
oped on the basis of our microscopic condensation theo

The structure of the work is the following. First, w
derive new kinetic equations which describe coupled c
densation and radiative excitation of the water molecu
Then we propose an asymptotic method to get analyt
solutions of these equations. It gives rise to the closed sys
of differential equations only for supersaturationS0 and
populationsx1(k) of the rotational states of the water mo
ecule. Solving this system one can further analytically
store the cluster size distribution function as well as popu
tions of the internal states of the clusters. Finally, some n
features of this solution, in particular an appearance of s
gularities at a certainS0 , are discussed. However, the resu
of simulation of water vapor flow effusing from the surfac
of a cometary nucleus produced with the help of the pres
model will be published in a separate paper.17

II. KINETIC EQUATIONS

Two different basic approaches exist to describe ph
transitions of the first kind. The nucleation process cons
ered here is one of the examples. The first approach is
kinetic theory of gases. Within this theory the object und
investigation is an ensemble of molecules whereas the p
transition is recognized as an appearance of long-term co
lations in such a system or singularities in the respec
kinetic equation. Under this consideration a definition of t
physical cluster should be introduced on the basis of a
tain additional relation which unites together all the mon
mers pertaining to this cluster. In principle, it is possible
consider this approach as a consequent generalization o
basic statements of the kinetic theory for the case of
condensible system. However, this point of view has
brought any essential achievement. In view of this, in o
opinion it is more feasible to concentrate on the other
proach. Following its main idea the condensible gas is
sumed to be a mixture of monomers, dimers, etc., i.e., fr
the very beginning clusters are introduced as real phys
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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objects which exist both in stable and metastable phase
such a statement is accepted the phase transition coul
further treated as a sequence of chemical reactions provi
a redistribution of molecules from small clusters to the la
ones, or in other words providing an increase of concen
tions of the large clusters in the process of their coalesce
with both molecules and small clusters. This considerat
has been used in the Szilard model and we also put it in
basis of our model used in the given work.

The subject of our study is the water vapor evaporat
from the surface of a cometary nucleus affected by the s
light. We treat this stream as a mixture of ideal gases, eac
which consists of the water molecules being in a certain
ternal state. In accordance with Ref. 13 we further cons
only the processes of nonequilibrium excitation of rotatio
sublevels belonging to the ground vibrational state of
water molecule. Thus each of the molecular component
the mixture represents molecules of water being in a cer
rotational state while excitation of the vibrational states
the water molecule assumes to be inefficient at specific t
peratures on the surface of nucleusT5100– 200 K.

In general, we introduce a cluster as a molecular co
plex ~either a stable or unstable one! formed by hydrogen,
Van der Waals, metallic, or some other types of chem
bond but we do not distinguish isomers of the cluster fr
each other. The internal energy of this complex can be sp
fied as usual in the molecular physics by a set of quan
numbers corresponding to the different internal modes.
us consider the processes of translational relaxation of m
ecules and clusters to be rapid enough, so that we can in
duce a common translational temperature of the whole m
tureT. Generally speaking, this assumption is not correct
the very large clusters, but their concentration in the sys
is small enough, therefore such an assumption should
affect in the least the integral characteristics of the syste

The distribution of the rotational energy of the cluste
can also be accepted as an equilibrium one. To give evide
to this point we shall notice, that:~1! External radiation ex-
citing the rotational degrees of freedom of a monomer is
effective with respect to excitation of librational oscillation
of molecules inside a cluster in which rotations of free m
ecules are transformed when these molecules attach to
cluster. It is connected with a significant shift of frequenc
in such a process owing to the external solar radiation
frequencies corresponding to a maximum of the solar sp
trum intensity which becomes nonresonant to excite sin
quantum rotational transitions. We shall neglect multiqu
tum transitions or poorly intensive excitation of singl
quantum transitions.~2! Probability of the attachment of
rotational excited molecule to a cluster should be far l
than that for the nonexcited one~see further!. By virtue of
that the cluster is formed preferably by the attachment of
rotationally nonexcited molecules.

Thus the rotational degree of freedom of the cluster
the whole can be excited basically at collisions, and prin
pally with molecules~including rotationally excited ones!
because collisions among the clusters are rather rare. H
ever, such excitations relax practically at some mean
times. Therefore in what follows we assume that the ro
Downloaded 31 Oct 2005 to 169.232.135.10. Redistribution subject to AI
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tional degrees of freedom of clusters can be described by
rotational temperature, and that it coincides with the ro
tional temperature of the mixtureT which, in turn, is equal to
the translational temperature of the mixture.

As far as the vibrational energy is concerned its rate
relaxation can be of the order of the rate of the formation a
decay of the clusters. It is clear that even the minor co
plexes, trimers, tetramers, etc., can have quite a great num
of the vibrational modes, therefore for the sake of simplic
it is convenient to subdivide all of them into two group
considering in a harmonic approximation. In the first one
collect vibrations of the molecules being a part of the clus
~intermolecular oscillations!. In the second one we unite vi
brations of atoms which form the molecule~monomer!, i.e.,
the internal molecular vibrations. Intermolecular vibratio
are low-energetic ones. For example, the specific frequen
of the Van der Waals complexes are 50– 200 cm21. But for
the internal vibrations various situations are possible.

~1! If these vibrations have low frequencies they effective
exchange energy with the intermolecular vibrations t
allows one to introduce the total vibrational energy
the clusterEj (k) ~j is the number of molecules in th
cluster,k is the number of the energetic level!. At the
moment the existence of the different types of interm
lecular oscillations is not taken into account here. In a
dition, we do not consider the radiationless transitions
the process of the intermode energy exchange. All th
assumptions are made in order to simplify as much
possible a very complicated picture of the redistributi
of the internal energy inside the cluster, but at the sa
time to keep the main features of the process.

~2! If the monomer has high-frequency vibrational mode
they inefficiently interact with the intermolecular vibra
tions. In this case, with respect to the condensation p
cess, the monomer behaves as a structureless particle
due to a rather high value of its vibrational quantum t
excited vibrational states of the monomer are poo
populated. This situation is close to the condensat
theory of monoatomic gases being a particular case
the theory developed here. Nevertheless, even for su
case the vibrational degrees of freedom of the cluster
be characterized by the value of their total energyEj (k).

To analyze kinetics of the radiative transitions of t
H2O molecule a model in Ref. 13 is used. Within the fram
works of this model, as the main processes affecting
energy redistribution among the mixture constituents and
external radiation, we take into account infrared rovib
tional pumping by the solar radiation flux, thermal excitati
by collisions, and radiation trapping in the rotational a
rovibrational lines.

As was already mentioned when formulating the kine
model we introduce two essential assumptions. First, exc
tion of the vibrational states of the water molecule assum
to be inefficient at temperaturesT5100– 200 K specific for
the surface of a cometary nucleus. It is necessary to no
that such an assumption is not a restriction of MTC as in
original version intramolecular vibrations are taken in
account18,12 and only permits one to simplify the further a
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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gebra with allowance for a real physical picture of the p
cess under investigation. Second, it is assumed that the
tionally excited molecule has a smaller cross section to
attached to the cluster than the nonexcited. This problem
theoretically investigated in Ref. 19 with the purpose to e
plain experiments on rotational-selective condensation
water and heavy water molecules.20,21 A multistep mecha-
nism of the resonant capture of molecules through the
mation of an intermediate complex was considered wh
was illustrated by system He–H2O. It was found in these
works that the ratioh of the rate constant of capture of th
water molecule being in the ground para state to the s
rate constant of the water molecule being in the ground o
state is 8.4<h<12.3 as the temperature is ranged within t
limit 30 K<T<50 K. Thus these data testify to an opport
nity of the rotational selectivity of condensation already
the stage of capture. It is clear that as the rotational energ
the molecule increases its rate constant of capture decre
Therefore in this work we use a model where the only m
ecules being in a ground para state~i.e., rotationally nonex-
cited! are most capable to condense while the probability
the formation of molecular complexes by attaching the wa
molecule being in another rotational state is neglected.

Further for the sake of simplicity we consider a spatia
uniform system for which parameters vary with time. Ge
eralization of this method for a spatially nonuniform syste
will be given elsewhere. With allowance for the assumptio
made the above kinetic equations describing an evolutio
populations of rovibrational levels which belong to th
ground vibrational state of the water moleculex1(k), k
50,...,M1 and populations of the energetic levels cor
sponding to intermolecular vibrations in the clusterxj (k),
k50,...,M j , j 52,...,N can be written in the form

dxj~k!

dt
5F j ,k[ (

l 50

M j 21

I j 21~ l ,0uk!2 (
l 50

M j 11

I j~k,0u l !~12d jN!

1(
l 50

M j

(
n50

M1

(
i

Jj~ l ,i uk,n!, j .1,

dx1~k!

dt
52(

j 52

N

(
i ,l 50

M j

(
n50

M1

Jj~ l ,ku i ,n!1Vk
c1Vk

r , kÞ0,

dx1~0!

dt
52 (

j 52

N21

(
i 50

M j 11

(
l 50

M j

I j~ l ,0u i !22 (
i 50

M j 11

I 1~0,0u i !

2(
j 52

N

(
i ,l 50

M j

(
n50

M1

Jj~ l ,0u i ,n!1V0
c1V0

r ,

I j 21~ l ,0uk!5Cj 21~ l ,0uk!x̄ j 21~ l !x̄1~0!2Ej~ku0,l !x̄ j~k!,

Jj~ l ,i uk,n!5Rj~ l ,i uk,n!x̄ j~ l !x̄1~ i !2Rj~k,nu l ,i !x̄ j~k!x̄1~n!,

Vk
r 5(

i 8
Ai 8kx1~ i 8!2x1~k!(

i 8
Aki81(

i 8
Bi 8kJ ~l i 8k!x1~ i 8!

2x1~k!(
i 8

Bki8J ~lki8!,

Vk
c5Cc@ x̄1e~k!2 x̄1~k!#, x̄ j~k!5xj~k!/sj~k!. ~1!
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Here the fluxesI j describe the formation and decay of th
clusters;Jj , relaxation of intermolecular vibrations in th
clusters,V i

c andV i
r , collisional and radiative fluxes for the

water molecule being in thei th rotational state. The othe
notation is as follows: m is the monomer’s mass
Cj 21( l ,0uk) is the rate of formation of thej cluster with
energy Ej (k) from the j 21 one with energyEj 21( l ) by
attaching the monomer being in the ground rotational p
state;Ej (k,u l ,0) is the rate of decay of thej cluster with
energyEj (k) into the j 21 one with energyEj 21( l ) and the
monomer being in the ground rotational para sta
Rj ( l ,i uk,v) is the rate of relaxation of thej cluster from the
state with energyEj ( l ) to the state with energyEj (k) ac-
companied by the simultaneous relaxation of the monom
~RT relaxation! from the state with energyE1( i ) into the
state with energyE1(v); M j is the number of the topmos
energetic level~see below! of the j cluster,sj (k) is the sta-
tistical weight~degeneracy! of the j cluster,d i j is the Kro-
necker delta,Aii 8d Bii 9 are the Einstein coefficients for spon
taneous and induced radiation,g i i 8 is the wavelength of the
transition,J is the intensity of the radiative flux average
over all the directions and integrated over the whole line,Cc

is the total collision rate for rotational transitions, andxie is
the equilibrium populations at the given temperature.

Further it is convenient to change the traditional MT
notation for the rate constants of formation and decay fo
more compact one with allowance for the circumstance t
within the present model condensation from the only grou
rotational state of the water molecule is taken into acco
therefore index 0 is dummy. By virtue of it let us introduc
new designationsE j ,Mk[Ej (M u0,k), C j ,kM[Cj (k,0uM ).

When writing Eq. ~1! a model of strong collisions is
used allowing us to write the collisional term in th
Bathnagar–Gross–Krook~BGK or ‘‘relaxation’’! form. Co-
efficientsAi j vanish if Ei,Ej . Furthermore, in Eq.~1! de-
riving the possibility that the cluster could be formed~de-
cayed! by gaining ~losing! a dimer, trimer, etc., was
neglected as well as the triple collisions of the molecules
clusters. Besides, in Eq.~1! the conservation law preservin
the total number of molecules in the system is already ta
into account.

(
j

(
k

xj~k!5(
j

nj51,

where nj is the numerical fractional concentrations of th
clusters of sizej .

The further program of our actions is as follows. Syste
Eq. ~1! is too complicated to be solved directly by virtue
~i! its infinite dimension~in a real systemN→`! and~ii ! the
absence of data on the majority of rate constants of the
ementary processes considered in Eq.~1!. Therefore at first
we discuss asymptotic solutions obtained by using a spe
quasisteady-state method similar to that in Ref. 11 and gi
in more detail in Appendix A. Then we use anoth
asymptotic method to obtain an explicit analytical soluti
for the cluster concentrations. Explicit expressions for eq
librium concentrations and populations of the clusters p
sented in these equations were given in Refs. 22 and 1
well as the model rate constants of the attachment and
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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3664 J. Chem. Phys., Vol. 108, No. 9, 1 March 1998 A. L. Itkin
tachment of a single molecule to the cluster~they have been
obtained in Refs. 23 and 24 with the help of the statisti
theory of monomolecular reactions and the microscopic
versibility!.

III. ANALYTICAL SOLUTIONS OF THE KINETIC
EQUATIONS

A detailed exposition of asymptotic methods develop
to find analytical solutions of the equations of type Eq.~1! is
given in Refs. 25, 18, 26 and 27. Here we only briefly d
scribe the main stages of getting these solutions and ass
tions made. To construct this asymptotical solution we
the general idea of the theory of the singularly perturb
system, namely: It is necessary to subdivide all variable
the studied equations; Eq.~1! into two groups, the fast and
slow ones, i.e., the variables which have the substanti
different characteristic times of relaxation. After that we e
amine the behavior of the whole system in the scale of
evolution of the slow variables. For such times the fast va
ables do not explicitly depend upon time but only upon
slow variables themselves~a quasisteady-state regime!. If we
manage to find the evident form of such a function then
could substitute it into the equations for the slow variab
and derive a closed reduced system for them.

On the whole the method of finding these quasiste
solutions proposed in Refs. 18 and 26 consists of three m
steps.

A. Stage 1

The initial step is connected with a substitution of va
ablesxj (0) for concentrationsnj at all j . Equations fornj

could be found from Eq.~1! by summing the equations fo
xj (k) over all k.

dnj

dt
5I j 212I j , ~2!

whereI j5S l ,kI ( l ,0uk). Further it is possible to prove that a
populationsxj (k), j 52,...,N, k51,...,M j are the fast vari-
ables with respect to the slow concentrationsnj andT.18,12

B. Stage 2

Having subdivided all the variables into the fast a
slow ones it is further possible to use special methods
asymptotic integration for singularly perturbed ordinary d
ferential equations, for example, a method of bound
functions.28 A concrete realization of this idea for the kinet
equations of MTC in a general case is given in Refs. 18
12. The sense of previous manipulations is that for spec
times of evolution of the slow variables~i.e., concentrations!
the quasisteady equations forxj (k) have the form

F j ,k50, k>1, j >2. ~3!

In other words instead of the initial differential equations E
~1! for xj (k), we should solve a more simple system of
gebraic equations, Eq.~3!.

However, as already mentioned above it is without do
the unreal problem to find the exact solution of this syste
For this reason we propose a convenient approxima
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based on the understanding of the physical nature of the
nomena. The point is that for the large clusters with t
substantially excited intracluster vibrations the rate of dis
ciation of the molecule from the cluster is much less than
rate of the vibrational relaxation at these levels while for t
small clusters the opposite relationship could take place
view of this it is reasonable to introduce the special clus
size r such that in its physical meaningr is the number of
molecules in the cluster for which the dissociation rate fro
the topmost levelMr ~for the detailed definition of the leve
M j see below! is of the same order of magnitude as t
vibrational relaxation rate at the same level. For the clus
with j .r the rate of relaxation of the intracluster vibration
is much greater than the rate of the cluster dissociation bu
j ,r there is an opposite situation. An analytical solution f
the equations of the type Eq.~1! was obtained in Ref. 26 for
the model of single-quantum transitions and the BGK mod
Note that these solutions are valid for a rather general fo
of rate constants of formation, decay, and relaxation of
clusters. The result are analytical relationships which expr
quasisteady populationsxj (k), j >2 through the cluster con
centrations and populations of monomers.

In our case of nonequilibrium distribution of monome
over the rotational degrees of freedom a similar solution
be obtained if one describes relaxation of intracluster vib
tions in the frameworks of the BGK model~model of strong
collisions!. Details of this method as applied to the model
condensation in the presence of the external radiation c
sidered in this work are given in Appendix A.

Substituting the obtained relationships forxj (k) into the
equations for nj one can get fornj , j >1, x1(k), k
51,...,M1 a closed system of equations which in a gene
form are given in Refs. 8, 27, and 12. It turns out that if t
rate of relaxation of the internal energy of monomers~for
polyatomic molecules! is more than the rate of dimerizatio
then for j .r the quasisteady equations coincide with tho
of the quasichemical~Szilard! model. In all the other case
~j <r , slow relaxation of monomers! the obtained equation
differ much from the agreed upon ones. For the case con
ered here when only condensation of water molecules be
in a ground rotational para state is taken into account s
equations for slow variables take the form~see Appendix A!:

dx1~0!

dt
52 (

k51

M1 dx1~k!

dt
2(

j 52

r 21

j
dnj

dt
1

dnr

dt

2~r 11! Î 2 (
j 5r 12

N21

I j
~1! ,

dx1~k!

dt
5Vk

c1Vk
r , kÞ0,

dnj

dt
5I j

~2!2dj Î , j 52,...,r 21,
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dnr

dt
5

nr~12 f r !

t r
Fzr~M !~12t ru!

t ru

2 (
k51

M21
C r ,kMx̄1~0!zr~k!

C r ,kMx̄1~0!1t r
21G

2
E r ,MMnrezr~M !

nS0ut r
I r 11

~2!

1
nrzr~M ! f r

t ru
C r ,MMn1ez1~0!~12S0!,

dnr 11

dt
5 Î 2I r 12

~1! 2
dnr

dt
,

~4!
dnj

dt
5I j

~1!2I j 11
~1! ~12d jN!, j .r 11.

Here I j
(1) , I j

(2) , and Î are the fluxes that can be genera
represented as

I j
~1!5K j

1nj 21x̄1~0!2K j
2nj ,

I j
~2!5L j

1x̄1
j ~0!2L j

2nj 21x̄1~0!,

Î 52
E r ,MMnrezr~M !

n H n̄r~12 f r !

t ru
1

1

S0
S E r ,MM

nu
21D

3I r 11
~2! 1

C r ,MMx̄1~0!

S0u
n̄r 11~12S0!J , ~5!

f r5n̄r 11 /S0n̄r , n̄j5nj /nje , S05 x̄1(0)/n1ez1(0) is an ana-
log of supersaturation andzj ( i ) is the Boltzmann factor~sta-
tistical weight! of the i th state ofj clusters. CoefficientsK j

1 ,
L j

1 , andK j
2 , L j

2 are the nonequilibrium rate constants d
scribing the cluster formation and decay that depend not o
upon the temperatureT but also uponx1(k), k50,...,M . The
explicit form of all coefficients presented in Eqs.~4! and~5!
is given in Appendix A. A convenience of Eq.~5! is that at
equilibrium I j

( i ) , i 51,2 as well asÎ vanish.
We shall notice that when writing Eq.~4! we have kept

equations for populationsx1(k) in a general form and did no
purposely compare the rate of relaxation of the internal
ergy of monomers and the rate of all the other processe
does not contradict a general idea of the ‘‘boundary fu
tions’’ method, however, it permits one to consider here
after various cases of the monomer relaxation in the fra
works of a common scheme.

C. Stage 3

To solve the derived equations for the cluster concen
tions in the case of the fast relaxation of monomers in R
26 we developed a special asymptotic method. Originall
was utilized in Ref. 22 to find analytical solutions of th
quasichemical model but later was generalized also
MTC.26 It allows one to obtain the analytical expression
the cluster concentrations for nearly all sizes~save the big-
gest ones! through supersaturationS5n1 /n1e and tempera-
ture T. The method is based on a nonlinear substitution
variablesnj→ f j such that the initially coupled equations fo
nj in new variables could be decomposed so that each e
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tion of this new system could be solved independently fr
each other~factorization!. Three important assumptions a
made to do that.

~1! For the large clusters the following relationship is va
( l ,iEj (ku i ,l ); j n, n<1.

~2! The equilibrium concentrations follow the relationsh
nje /n1e!1.

~3! At j .r variablesf j smoothly depend uponj so that

12
f j

f j21
.e!1.

In Refs. 23, 24, and 12 the model expressions of rate c
stants for the cluster’s formation and decay were obtai
with the help of the statistical theory of the chemical react
rates. As shown in Refs. 26 and 12 for such constants the
reliable evidence of these assumptions.

However, in the case of slow relaxation of monomers
common solution of the quasisteady equations for concen
tions have not yet been obtained. Thus if the monomer po
lations may vary with an arbitrary rate to solve Eq.~4! it is
necessary to develop a special asymptotic method.

In what follows we describe such a modification of th
method26 as applied to Eq.~4!. Let us introduce the follow-
ing substitution of variables x1(0),n2 ,...,nN→S0 ,
f 2 ,...,f N21 , where

f j5n̄ j 11 /S0
j 11, j 51,...,r 21,

f j5n̄ j 11 /S0n̄ j , j 5r ,...,N21, ~6!

S05x1~0!/n1ez1~0!.

Further we exclude variablex1(M ) from the system in-
troducing instead concentrationn15(kx1(k). Thus instead
of the equation forx1(M ) we use the equation forn1 which
could be obtained summing all the equations forx1(k) over
all k. Nevertheless, we keepx1(M ) in the right-hand side
~R/H/S! of these equations but now it is not a variable bu
notation

x1~M !5n12 (
k50

M21

x1~k!.

Omitting an intermediate algebra we give rise to t
equations, Eq.~4! written in new variables, and the equatio
for S5n1 /n1e

d f j

dt
5Yj2~ j 11! f j

d ln S0

dt
, j 51,...,r 21,

d fr

dt
5Yr2S f r1

nre

S0nr 11,e
DYr 212 f r

d ln S0

dt
,

d f j

dt
5R~ f j !2 f j

d

dt
lnS S0nj 11,e

nje
D1m j

1d j ,r 11

nre

nr 11,eS0

f r 11

f r
FYr 211

ḡ

Kn1ez1~0!
Î uG ,

j 5r 11,...,N21,
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dS0

dt
52(

j 52

r

j b jS0
j f j 21Yj 212~r 11! f r 21S0

r b rFYr 21

2
nr 11,eS0

nre
Yr G2 (

j 5r 12

N21

@11~r 11!d j ,r 12#

3K̄j
1S0

j b j 21~12 f j 21!

3 )
i 5r 21

j 21

f i2
1

K„n1ez1~0!…2 (
k51

M

~Vk
c1Vk

r !,

1

z1~0!

dS

dt
52(

j 52

r

j b jS0
j f j 21Yj 212~r 11!

3 f r 21S0
r b rFYr 212

nr 11,eS0

nre
Yr G

2 (
j 5r 12

N21

@11~r 11!d j ,r 12#

3K̄j
1S0

j b j 21~12 f j 21! )
i 5r 21

j 21

f i ,

1

n1ez1~0!

dx1~k!

dt
5

1

K„n1ez1~0!…2 ~Vk
c1Vk

r !,

k51,...,M21. ~7!

HereYj are the fluxes that turn to zero atf j51.

Yj5
C̄j 11,0MS0

sj 11~0! S 12 f j1f j

f r 21

S0ut r
Î uD , j 51,...,r 22,

f j5FC r 21,MMnr 21,ezr 21~M !

C j 11,MMnj 11,ezj 11~M ! G
3F 11C j 11,MMx̄1~0!a j 11

11C r 21,MMx̄1~0!a r 21
GS0

r 2 j 21,

Yr 2152
ḡ

Kn1ez1~0!
~12 f r 21f r !

1
g1

Kn1ez1~0!
~12 f r ! f r 21

1
f r 21f r

t ru
C̄ r ,MMzr~M !~12S0!,

ḡ5
E r ,MMzr~M !

nut r
,

g15
1

t r
Fzr~M !~12t ru!

t ru

2 (
k51

M21

zr~k!
C r ,kMx̄1~0!

C r ,kMx̄1~0!1t r
21G ,

Yr52
ḡ

Kn1ez1~0!

nre

S0nr 11,e
Î u2K̄r 12

1 S0f r~12 f r 11!,
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Î u52ut r S 12
E r ,MM

nu D 12 f r f r 21

f r 21
112 f r

1t r f rC r ,MMn1ez1~0!~12S0!.

The bar over the parameters means that they are dim
sionless. As a unit of time~Kn1ez1(0)…21 is chosen while as
the characteristic formation rateK, the value of the free mo-
lecular flux per unit of the cluster surface area is used.
the other notations are determined by the relations

R~ f j !5~aj f j2cj !~ f j21!,

aj5@K̄j 12
1 ~12d j ,N21!2K̄j 11

1 #S0 ,

cj5@K̄j 11
2 2K j

2~12d j ,r 11!#/„n1ez1~0!…,

m j5
K̄j

2

n1ez1~0! S 12
f j

f j 21
D ~12d j ,r 11!

2K̄j 12
1 S0f j

2S 12
f j 11

f j
D ~12d j ,N21!, ~8!

andd i j is the Kronecker delta.
As shown in Refs. 26 and 11 at condensation under

adiabatic conditions~flows in nozzles, jets, thermal diffusio
chambers! f j is in fact, a smooth function ofj thereforem j

!1. If one neglects these terms in Eq.~7! then the equations
of the examined system atj .r 11 break into the indepen
dent ones.

Further we may take advantage of the analysis26,12which
shows that in the case of quasiequilibrium distribution
monomers over the internal degrees of freedom among

new variables the slow ones are onlyS and f j , j . j̄
[(2/3e)3, e!1 while all the othersf j are fast. Therefore in
Eq. ~7! the RHS of the equation forS is of the order ofe.

In our case the distribution of monomers over the ro
tional degrees of freedom is affected by collisions with t
other monomers and radiative processes. As is known r
tionally excited molecules relax practically over one col
sion. It means thatCc /Kn1ez1(0)5O(1) therefore the rate
of relaxation is at least not less than the rate of condensa
Thus the equation forS0 can be rewritten in the form

dS0

dt
52

1

K„n1ez1~0!…2 (
k51

M

~Vk
c1Vk

r !. ~9!

As Cc /Kn1ez1(0)5O(1), in Eq. ~7! the RHS of the
equations for dimensionlessx1(k) are of the order ofO(1).
Therefore these variables are fast. Thus we can omit the t
dS0 /dr presented in the RHS of Eq.~7! for all f j . It is
reasonable because it is only an abbreviation for dimens
less Vk

c1Vk
r and if x1(k) is a fast variable thenVk

c1Vk
r

50. Further applying once again the method of ‘‘bounda
functions’’ to solve a full system Eq.~7! we again instead of
differential equations for the fast variablesf j and x1(k), k
50,...,M21 get the following system of algebraic equation
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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05Yj , j 51,...,r ,

05Rj1d j ,r 11

nre

nr 11,eS0

f r 11

f r

ḡ

Kn1ez1~0!
Î u ,

j 5r 11,...,j̄ ,

05Vk
c1Vk

r , k50,...,M21. ~10!

It is seen that the equations of the second line of t
system atj .r 11 are independent and their solution can
easily obtained in an explicit form. Between two existin
roots one has to choose the smallest one because only
root is stable. Equations of the first line can also be sol
explicitly which results in analytic expressions of allf j , j
51,...,r through S0 and f r 11 . These analytic solutions
should then be substituted in the equations forS, S0 , x1(k),
k51,...,M21 and slowf j with j high enough~the typical
numbers of slowf j correspond toj .105!. It can be shown
that the contribution of slowf j to the variation ofS is small
as compared with fastf j and can be neglected. Thus th
equation forS becomes independent on these slowf j and
can be solved together with the algebraic equations, Eq.~10!.
All the other nj , j .1 @and consequentlyxj (k)# one may
calculate using already foundS0 andT according to the re-
spective analytical formulas.

Such a program has been completely realized in Refs
and 12 in the case of fast relaxation of monomers, i.e., w
x1(k)5s1(k)n1z1(k), k50,...,M1 . The quasisteady solu
tions obtained have the form

f j51, j 51,...,x, x511max~r , j * !,
~11!

f j>
1

S S 12
b

3 j 1/3DexpS 2b

3 j 1/3D , j 5x11,...,j̄ ,

whereb is the dimensionless surface energy of the clus
per its surface andj * is determined by the chosen values
the formation and decay rate constants and is close to
critical size.26,12

In our case equations forf j , j .r 11 have the same
solutions as Eq.~11! if we changeS for S0 . Note that the full
equations forf j , j .r 11 arisen from Eq.~7!, if we omit in
them termsm j , also have analytical solutions because th
equations are the familiar Riccati ones with a known par
solution f j51.26,12 Under such a condition the Riccati equ
tion has an integral29

f j5
C1*~aj1cj !Edx2E

C1*~aj1cj !Edx1E
,

~12!

E5exp E ~aj2cj !dx, C5
11 f j 0

12 f j 0
,

where f j 0 is the initial value off j at the momentt50.
In order to solve the remaining equations it is necess

to exclude the termÎ u from the equationYr50 and the equa-
tion for f r 11 , substituting in them the equalityYr 2150 that
gives rise to the closed equations forf r 11

~ f r 1121!@K̄r 13
1 S0f r 112K̄r 12

2 #50. ~13!

This equation has two roots
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f r 1151,

f r 11'
1

S0
expF 2

3~r 11!1/3G .
It is easy to show that they coincide atj * 'r 11. Further

two different situations can be considered.

1. Case x >r 11

In this case the stable root of Eq.~13! is f r 1151. There-
fore the solution of all the other equations forf j , j 51,...,r
can be found from the conditionYj50, Î u50. Omitting an
intermediate algebra we get

f j51, j 51,...,r 22,

f r 215~qS011!
11qa~12S0!

q111qa~12S0!
, ~14!

f r5
1

11qa~12S0!
,

where

q5t rCrMM n1ez1~0!,

p5ut r S 12
E r ,MM

nu D511qS0 ,
~15!

a52
1

11@~nu2E rMM !~t ru1c!/~2E rMM 2nu!#
,

c5 (
k51

M21
zr~k!

zr~M !

C r ,kMx̄1~0!

C r ,kMx̄1~0!1t r
21 .

It can be shown thatf r 21 and f r are positive atS0.0.
At S051 one gets from Eq.~14! f r 215 f r51.

Note that the obtained solutions of Eqs.~11! and ~14!
obey the condition of ‘‘smoothness’’ for allf j at j >r 11.

As the result of all the transformations performed t
rest system of kinetic equations takes the form

1

z1~0!

dS

dt
52 (

j 5x12

N21

@11~r 11!d j ,r 12#K̄ j
1b j 21S0

j

3
11qS0

11q1qa~12S0!
~12 f j 21! )

i 5x11

j 21

f i ,

05Vk
c1Vk

r , k50,...,M21. ~16!

The leading term in the second sum in the equation foS
is the first one which corresponds toj 5x12. Then neglect-
ing the rest of the terms~see details in Refs. 26 and 12! we
finally find

1

z1~0!

dS

dt
52@11~r 11!dx,r 12#bx11,e

3Sx11K̄x11
2

b

6x4/3

11qS0

11q1qa~12S0!
,

05Vk
c1Vk

r , k50,...,M21. ~17!
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All the other steady-state concentrations except that
very large clusters withj @106 could be found based upo
the inverse transformation from variablesf j to variablesnj .

2. Case x 5r 11

Here j * ,r 11 therefore the stable root of Eq.~13! is
f r 11'(1/S0) exp@2/3(r 11)1/3#. Then Î u does not vanish
now but from the conditionYr50 could be expresse
through f r

Î u52a f r ,

a5
Kr 12

1 n1ez1~0!

ḡ
S0

2 nr 11,e

nre
H 12

1

S0
expF 2

3~r 11!1/3G J .

~18!

Now from the equationsYj50, j 51,...,r 22 we find the
values off j

f j512
f ja

S0t rut r
f r f r 21 . ~19!

Quasisteady equationsYr 215Yr50 can be solved in a
similar way as in case 1. It yields

f r 215~qS011!
11ā1qa~12S0!

11q1a1ā1qa~12S0!
,

f r5
1

11ā1qa~12S0!
, ~20!

where

ā5
ḡa

pg12ḡ
.

It can be shown again thatf r 21 and f r are positive at
least at S0>1. However, now even atS051 all f j , j
51,...,r 11 differ from unity.

Although f r 11 differs from unity the solution of Eq.~20!
still obeys the condition of ‘‘smoothness’’ forf j at j >r
11. Substituting these solutions into the equation for
slow variableS and keeping only the leading terms one
nally gets

1

z1~0!

dS

dt
5b r 12S0

r 12K̄r 12
2

b

6~r 11!1/3

3
11qS0

11a1ā1q1qa~12S0!
. ~21!

Analysis of Eq.~19! shows thatf j , j 51,...,r 22 become
negative for j ,b/ ln S0. However, atS0 which obeys the
condition

ln S0.
b

~r 11!1/3

the RHS of Eq.~21! becomes of the order ofO(1) or in the
other wordsS becomes a slow variable. Since thisS0 we can
no longer use the quasisteady equations forf j because the
specific rate of evolution of allf j and S0 is close to each
other @the RHS of Eq.~21! is of the same order as the ter
V0

c1V0
r in Eq. ~7!, thereforeV0

c1V0
r does not vanish#. Thus

in this case it is necessary to solve the full system of coup
Downloaded 31 Oct 2005 to 169.232.135.10. Redistribution subject to AI
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differential equations, Eq.~7!, and further simplifications are
impossible by virtue of the absence of small parameters
the system.

IV. DISCUSSION

The proposed theory of nucleation in the presence
radiation exciting the rotational degrees of freedom of
condensible molecules and methods of the asymptotic i
gration being applied to the studied problem allow one~i!
from the very beginning to formulate the original problem
the microscopic level and~ii ! to avoid some physical as
sumptions which are inherent to usual macroscopic
proaches. Finally, our approach results in a radical simp
cation of the kinetic equations and reduces them to
kinetic equations only for populations of the rotational leve
of monomers. The other cluster concentrations withj >2 and
populations of the intracluster vibrational states are de
mined by the explicit analytical formulas through alrea
known S andT.

A. Justification of the method

In order to verify the accuracy of the method in Ref. 2
an analytical solution of the usual quasichemical equati
of nucleation for a finite system withN molecules

dn1 /dt52(
j 53

N

I j22I 2 ,

dnj /dt5I j2I j 11 , j 52,N21, ~22!

dnN /dt5I N ,

obtained with the help of our approach was compared w
the numerical solution of these equations. Two import
facts were taken into account. First, since we compare
analytical and numerical solutions without analyzing th
physical meaning, we can compare them at model value
the rate constants presented in the original equations.
necessary only that these model rate constants satisfy
assumptions made for the real condensing system. Sec
as follows from the explicit form of the equilibrium functio
nje ~see below! and some estimations, the assumption
MCT made thatnje /n1e!1 at j >2 and justified for an in-
finite system is invalid for smallN ~the choice ofN is limited
by the computer capacity!. Therefore in test calculations w
did not consider Eq.~22! but a net of equations normalize
in another way, namely:

dn1 /dt52(
j 53

N

I j~dj 112dj !2d2I 2 ,

dnj /dt5I j2I j 11 , j 52,N21,
~23!

dnN /dt5I N , dj5exp~ j 2 l !,

n11(
j 52

N

djnj5n.

It can easily be shown22 that an analytical solution to
these equations is constructed exactly as described in
previous section and that atl 55 – 10 the mentioned assump
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tions are valid atN'100. Figure 1 shows the results of th
test. Details of the numerical procedure in use are descr
in Ref. 22. Calculations were performed withN5100, 1000,
and 10 000. It is seen that our analytical method predicts
numerical results with the accuracy of the first approxim
tion ~for this teste,0.01!. After a short initial period func-
tions f j reach their quasisteady values and during their f
ther evolution they depend on time implicitly only due
their dependence onS5S(t). A good agreement of the dat
confirms that the suggested approach is very promising.

B. Parameters and constants of the theory

For potential users of the theory further we also brie
present explicit expressions for the rate constant of the c
ter formation and decay but a more detailed theory can
found in Ref. 12.

1. Rate constant K j
1

In the case of an equilibrium distribution of the intern
energy of a cluster the rate of the cluster formationK j

1 could
be expressed through the rate of the cluster unimolec
decayKJ

2 using the relationship of the detailed balance

K j
15K j

2nj 11,e /njen1e . ~24!

For K j
2 the explicit representation has been found in23,24

K j
2'Wd~T! j 2/3 exp~2Ea /kBT!. ~25!

Here

Wd~T!5
8hn l

kBT
Z1,2,r

1 S h

d1
D 2

n t~111/a t!,
~26!

a i5expS hn i

kBTD21, i 5t,l , h5~3m1/4pr l !
1/3.

n t andn l are translational and librational intermolecular v
brations in the cluster, considering in a harmonic approxim
tion, m1 is the molecular mass,r l is the liquid density, andh
andkB are the Planck and Boltzmann constants. The defi
tion of Z1,2,r

1 is given further in the paragraph devoted tonje

andP1,0 is given by the expression

FIG. 1. Dependences ofS, f 1 , f 2 , andf 50 as functions of the dimensionles
time t obtained in the test example: 1, our analytical solution; 2, numer
solution,N5100.
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P1,05A2p

3 S e8

kBTD 1/6

expF2
3

2 S e8

kBTD 1/3

1S eLD

kBTD G ,
~27!

where

e85m1~n t /a!2. ~28!

Here a51/sLD and sLD and eLD are parameters of the
Lennard–Jones potential. For the activation energy we
an approximation

Ea5EbS l 12
l 2m

~ j 1m22! D , ~29!

whereEb is the average dissociation energy per bond, a
the term in parentheses is the average number of bonds
molecule which could be capable of leaving the cluster w
the other molecules in the cluster. ConstantsEb , n t , l 2 , l 1 ,
d1'2sLD , m1 for some substances are given in Ref. 12.

2. Function n je

An explicit form of this function depends upon th
physical model of the cluster. Nevertheless, the common
pression of22

nje5Āj~T!exp~2b j2/3! ~30!

should be valid for any model and the matter is to specifyAj

which weakly depend uponj . For instance, for a simple
model of the cluster which has been previously used by R
30 it is possible to get

Āj5l1
23 j 3/2ZjRu6 exp@ l 1e0~2!/kBT#exp~3u!, ~31!

wherel j is the de Broglie thermal wavelength

ZjR5
8p2

h3x j
~2pkBTJj !

3/2, Jj5
2

5
m1 jRj

2, Rj5h j 1/3,

~32!

x j is the number of the axes of symmetry of thej cluster,
e0(2),0 is the dimer potential well,u5hn3t /kBT. The
minimum frequency of the intracluster translational oscil
tions n3t for some substances is given in Ref. 12.

As far asn1e is concerned the analysis of Ref. 22 show
that it could be determined with the help of the well-know
Clapeyron–Clausius relationship.31

As shown in Ref. 12 when utilizing these constants MC
predicts the available experimental data on nucleation
streams and permits one to explain many experimentally
served phenomenon.

C. Main assumptions and problems of the theory

Note that all assumptions made at the asymptotic in
gration of the initial system are discussed in detail in Ref.
therefore we omit this discussion here. In addition, we ha
already discussed above the existing theoretical backgro
which provides evidence to assume that only the water m
ecules being in a ground rotational para state are efficien
be attached to the cluster while the probability to form m
lecular complexes from the water molecules being in
other rotational states is negligible.

l
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Nevertheless we would like to highlight the main pro
lems of MCT left to be solved in the future. First it is re
sonable to note that from the mathematical point of vi
there is no sharp boundary between the fast and slow v
ables as well as between the areas where the limit of ‘‘h
and low pressures’’ have been introduced. Under such c
ditions our idea of the parameterr could be very attractive
for physicists but not for mathematicians because we hav
evidence for introducing such a sharp transition. This pr
lem has already been discussed in Ref. 12 where, howev
weak influence of this simplification on the value of sup
saturation and the integral parameters of the system has
revealed. As far as the cluster concentrations are concer
a more precise definition of this boundary apparently sho
greatly affect the value of concentrations for clusters witj
aboutr , but for other clusters such concentrations should
close to those obtained here.

A similar situation arises when calculating the prec
values of the cluster concentrations by means of thef vari-
ables which have been found as a solution of our quasiste
equations. The problem is that according to thef definition
in Eq. ~6! a reverse transformation fromf to n concentra-
tions leads to considerable errors at large values ofj . The
matter is that small errors in calculatingf , inherent to any
asymptotical method, are summed with one another giv
rise to the large errors innj .

At the same time our results of numerical calculations
various condensible gas flows in smooth nozzles, jets,
nozzles with a contour fracture demonstrate the capabilit
MCT to predict the experimental data in a wide range
temperatures and pressures with only the parameterl 1 for
fitting, which is the average number of bonds per molecule
a large cluster.23,12 Moreover, this parameter has a cle
physical sense and, in principle, could be obtained fr
quantum chemistry.

In any case one could consider MCT as a more con
tent way to adopt some ideas of the kinetic theory of che
cal reacting gases and an asymptotical analysis as applie
the nucleation problem.

D. Behavior of the system in the vicinity of x 5r 11

Let us further give a brief analysis of the solution o
tained. First, by means of some transformations we wo
come to a more evident form of the solution for the prod
f r f r 21 , namely:

f r f r 21511
q~S021!~11a!

11q1qa~12S0!
, x.r 11,

f r f r 21511
q~S021!~11a!2d

11q1qa~12S0!1d
, x5r 11,

a5
11qS02E rMM t rn

21

E rMM t rn
211~11qS0!~E rMM t rn

211qS01c!
~33!

d[a1ā

5a
qS0~11E rMM t rn

211qS01c!1c

qS0~11E rMM t rn
211qS01c!1E rMM t rn

211c
.

It is seen that 0,a,1 becauseE rMM t rn
21,1 andq

;1 and d.0. In view of this f r f r 21.1 at x.r 11 and
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f r f r 21,1 at x5r 11. As dS/dt is proportional tof r f r 21 ,
when x crosses the pointr 11 the character of the depen
dencedS/dt on S0 changes a little. However, as far asf j ,
j 51,...,r 22 is concerned atx5r 11 the further increase o
S0 results in the decrease of thesef j . In order to prove this
statement let us give a more explicit expression for the pr
uct f ja/S0t rut r , which is presented in Eq.~19!. In doing so
note that from thea j definition given in Eq.~A15! we have

a3E3MM511S0

n2eC2MMz2~M !

n1eC100z1~0!
,

a4E4MM511S0

n3eC2MMz2~M !

n2eC100z1~0!

3S 11S0

n2eC2MMz2~M !

n1eC100z1~0! D ,

etc. Leaving in these expressions only the leading term
gets

a j 12E j 12,MM5
nj 11,eCj 21,MMzj 11~M !

n1eC100z1~0!
S0

j .

Let us assume thatK j
1 is proportional to j 2/3 as it is

usually done. Thus we can finally represent Eq.~19! in the
following approximate form

f j512 f r f r 21

~r 12!2/3

S0
2 b r 11S0

r 11. ~34!

It turns out that within this representation the RHS
Eq. ~34! does not depend onj . Certainly this dependenc
will arise if we take into account the omitted terms. It is se
that since lnS0.b/(r11)1/3 the coefficient atf r f r 21 becomes
of the order of unity that results in the decrease off j . We
remind the reader that at the sameS0 the RHS of Eq.~21!
becomes also of the order of unity andS becomes a slow
variable~see the previous section!.

E. Influence of radiation

Here we discuss the influence of radiation on the c
densation kinetics analyzing Eq.~17!. First we consider a
weak comet with a small production rate of water vapor fro
the cometary nucleus. It means that the numerical densit
the vapor is small enough that it results in a low value of
relaxation rateCc . Under these conditions the radiative pr
cesses dominate the collisional relaxation (Vk

c!Vk
r ), and the

steady distribution of populations is mostly determined
the external radiation, i.e., by the interaction of water m
ecules with the radiative flux from the sun. As a result t
populations of the rotational levels of monomer are noneq
librium. They can be expressed throughn1 or S by solving
the system which follows from Eq.~17!

Vk
r 50, k50,...,M21,

~35!

x1~M ![n12 (
k50

M21

x1~k!.

Then substituting these solutions into the first equat
of Eq. ~17! we get the closed equation forS, whereS0 de-
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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pends uponS in a certain way and, in principle, this depe
dence may have a rather unusual and complex form.

Another situation takes place for active comets with
high production rate. Here the increase of the initial vap
density results in more frequent collisions, which reduce
rate of the collisional relaxationCc so that it becomes mor
than the rate of the radiative processes (Vk

c@Vk
r ). As a re-

sult, the equilibrium distribution of the energy of rotation
sublevels is established, i.e.,x̄1(k)5n1z1(k). HenceS5S0

and the equation forS in Eq. ~17! becomes closed. The dif
ference with the previous situation is that the RHS of
equation forS in the last case depends onS rather than in the
first case~generally speaking, more simply!.

At the intermediate distances both termsVk
c and Vk

r

could be of the same order of magnitude therefore qu
steady populationsx1(k), k50,...,M are nonequilibrium and
should be found by solving the full system Eq.~17!. Note
that the correlation betweenVk

c and Vk
r can vary from one

rotational sublevel to another in accordance with the value
the Einstein coefficients.

The gas production rate of the comet increases as
distance between the comet and the sun decreases. O
other hand the decrease of this distance also results in
increase of the radiation intensity~see Ref. 1! therefore these
two processes are competitive. For concrete estimat
simulation is needed.

F. Comparison with the classical nucleation theory

It is feasible to compare MCT with the classical nuc
ation theory. Such a comparison is completely given in R
12 for the case of homogeneous nucleation~no radiation! and
here we emphasize only one point. In the classical nuclea
theory a special role is ascribed to the critical nucleus wh
is determined as a droplet being in equilibrium with the s
rounded supersaturated vapor. It is assumed that drops
j . j * are capable of further growth while drops withj , j *
tend to decrease their size. Accordingly, the rate of nu
ation is determined as the number of critical nuclei form
per unit of time and volume.

In contrast the analysis of our results brings an unus
conclusion that all clusters with sizej ,x are in quasiequi-
librium, i.e., for all those clustersnj5njeSj , where nje

'A(T)exp(2bj2/3) is an equilibrium cluster concentratio
and b is the dimensionless surface energy per one sur
molecule.22 Thus for these clusters all fluxesI j5K j

1nj 21n1

2K j
2nj vanish ~i.e., nj5const! while within the classical

theory I j5I 5const and this value is usually accepted as
nucleation rate. Hence ifx' j * our result still correlates in a
certain way with the prediction of the classical theory. Ho
ever, if j * ,x5r 11 than within our theory all clusters with
j ,r 11 are in quasiequilibrium while within the classic
theory it is not the case. In particular, it is known from t
literature that for condensation of water vapor in the air
low temperaturesT,270 K ~such low temperatures are als
inherent to the cometary conditions! the size of the critical
nucleus determined by the classical theory turns out to
less than the water molecule itself that shows the inte
contradictions of the theory. However, these contradicti
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are not inherent to MCT because~i! MCT does not use the
concept of a certain special droplet like the critical nucle
and ~ii ! even if we account for the classical concept of t
droplet being in the equilibrium with the surrounded vap
at x5r 11 this is not the critical nucleus in our theory but a
clusters with j <r 11. Moreover, our direct calculations o
the condensible flow of the pure water vapor and the m
air show that MCT predicts rather well the experimenta
observed dependences. The results are discussed in det
Refs. 32 and 12.

This statement is valid even for homogeneous conden
tion of pure vapor without radiation. In the case of radiati
affecting the condensation kinetics, this influence becom
apparent to~i! the form of the cluster distribution function
~ii ! the form of the dependence ofS upon t; ~iii ! the depen-
dence ofS upon I at the intermediate gas production rat
whenVk

c;Vk
r .

In conclusion we note that the method proposed be
generalized for spatially nonuniform systems, flows of t
condensible vapor, gives an opportunity to simulate cond
sation in the inner coma with allowance for the influence
the external radiation on the condensation kinetics. Indee
allows one to solve hydrodynamic equations in conjunct
with the differential equation for supersaturationS and a
finite system of algebraic equations for populationsx1(k),
k50,...,M21 while the original system contains the infini
number of equations and one should cut it in a certain wa
order to solve it numerically. The other cluster concent
tions and populations of their energetic levels are anal
cally expressed throughS0 and T. The results of such a
simulation and a convenient and economic algorithm wh
combines analytical and numerical approaches and gives
possibility to restore the cluster size distribution functi
will be given elsewhere.
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APPENDIX A: QUASISTEADY SOLUTIONS FOR
POPULATIONS

In this Appendix we determine quasisteady populatio
xj (k) which are the asymptotic solutions of Eq.~1!. As it is
not so simple to solve Eq.~1! at j <r , to make further
progress in such a case we introduce a conception of
dissociation from the topmost level. The physical meaning
this parameter could be understood if we consider the dis
ciation process simulating the cluster by a large molec
with harmonic intracluster oscillations. There is an infin
number of energetic vibrational levels in such a system
contrast to the real anharmonic oscillators for which t
number of levels is limited by the dissociation threshold.
order to take this effect into account we need to cut off tho
levels which are unimportant from the physical point
view.
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In virtue of ther -parameter definition the following re
mark is in order that, in principle, in thej cluster for each
level k the own relationship between the dissociationEj (k)
and relaxationRj (k)n1 rates at this level could exist. More
over, it can be shown that the ratioEj (k)/Rj (k)n1 at givenj
increases withk growth so that at highk the dissociation rate
is always higher than the relaxation one for arbitraryj .
Therefore it may seem that the concept of the numberr in
MCT is a failure. However, fortunately these top levels
not bring any essential contribution to the fluxesI j presented
in the RHS of Eq.~1!. Indeed, substituting the quasistea
solution obtained atj .r in Eq. ~2! with allowance for the
flux I j definition given in Eq.~2! one gets

I j5K j
1nj 21x̄1~0!2K j

2nj ,

K j
25(

k,l
Ej~ku0,l !zj~k!, ~A1!

K j
15K jK j

25(
k,l

Cj 21~ l ,0uk!zj 21~k!.

Rate constantsEj (ku0,l ) are proportional tosj (k), the
degree of degeneracy~the statistical weight! of level k. For
the system ofs identical oscillators containedk quantasj (k)
could be determined by the expressionsj (k)5Ck

k1s215(k
1s21)!/k!s!. On this account the functionsj (k)zj (k) may
be considered as ad function with a maximum in the poin
k5M which holds the relationshipd@sj (k)zj (k)#/dkuk5M

50. Thus the considerable contribution inK j
2 bring only

those levels which are close toM and more distant levels
could be omitted from Eq.~1! due to their negligible contri-
bution.

In accordance with this model Eq.~1! can be rewritten in
a general form12

05(
i

F2I j~k,i uM !1dkM(
l

I j 21~ l ,i uM !G ,
j 52,...,r 21,

05(
i

FdkM(
l

I r 21~ l ,i uM !2I r~k,i uM !

1(
l ,n

Jr~ l ,i uk,n!G ,
05(

l ,i ,n
Jj~ l ,i uk,n!, j 5r 11,...,N,

wherek varies from 1 toM . However, in our case in accor
dance with the already made assumption that only molec
being in a ground para state are able to attach the cluster
system should be transformed to the following final form
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052I j~k,0uM !1dkM(
l

I j 21~ l ,0uM !, j 52,...,r 21,

05dkM(
l

I r 21~ l ,0uM !2I r~k,0uM !1(
l ,i ,n

Jr~ l ,i uk,n!, ~A2!

05(
l ,i ,n

Jj~ l ,i uk,n!, j 5r 11,...,N,

1. High-pressure limit „ j 5r 11,...,N…

In accordance with the parameterr conception in the
high-pressure limit only the relaxation terms(Jj (M ,ku l ,i )
have to be kept in Eq.~A2!. Thus independently upon th
explicit form of these terms the following solution

x̄ j~k!5njz~k!v jk„x̄1~1!,...,x̄1~M !,n̄1 ,T… ~A3!

completely satisfies the reduced equations. More obvi
representation of Eq.~A2! can be obtained at least for tw
models of the relaxation term, the model of the sing
quantum transitions and the BGK model. In the second c
it is managed to reach a radical simplification of the fin
expressions so that they can be written in the explicit fo
for an arbitrary distribution of the monomer populations. T
BGK model~the model of ‘‘strong’’ collisions! assumes tha
during the specific timet j the population of anyl th level
xj ( l ) is able to relax to its equilibrium value that yield
v jk[1. Just the same solution can be obtained if the rate
the monomer relaxation greatly exceeds the dimer disso
tion rate ~‘‘fast relaxation’’! or for monoatomic vapor con
densation.

2. Low-pressure limit „ j 52,...,r 21…

In this section we consider a method which allows one
solve asymptotically the quasisteady equations~A2! in the
low-pressure limit. In such a case two situations should
discussed, namely:~i! the dissociation rate from the top-mo
level Ej (M u0,k) decreases faster than the rate of relaxat
( i ,nRj (k,nuk21,i ) with k drop; ~ii ! for all k one has
Ej (M u0,k).( i ,nRj (k,nuk21,i ). From the physical consid
eration the first case is more real and we shall discuss fur
just this one. The second situation is studied in Ref. 18 g
ing rise to the similar results.

Figure 2 illustrates the situation under consideratio
Here along the abscissa axis the number of the cluster vi
tional level is set down,j is the cluster size,f d, j (k)
5Ej (M u0,k)zj (M ), f R, j (k)5( i ,mRj (k,i uk21,m)n1ez1( i )
zj (k). The low-pressure limit is considered and therefore
the topmost levelM j the following relationship is valid

f d, j~M !@ f R, j~M !.(
i ,m

Rj~M ,mu l ,i !n1ez1~m!zj~M !,

l 50,...,M22.

The last condition is rather obvious because the rate
single-quantum transitions from a certain level is much m
than the rate of multiquantum transitions from the sa
level.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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We proposed thatf d, j (k) decreases faster thanf R, j (k)
with k drop therefore starting from a certain levelqj disso-
ciation and relaxation rates will be of the same ord
@ f d, j (k); f R, j (k)#. This situation takes place for numbe
from qj up to another certain levelpj . For less thanpj levels
one hasf d, j (k)/ f R, j (k)!1. Thus the numberspj andqj split
all the levels into three areas. In region 1(k5qj11,...,M j )
one hasf d, j (k)/ f R, j (k)@1, that reduces the system Eq.~A2!
to the form

dkM (
m5qj 2111

M21

I j 21~m,0uM !2I j~k,0uM !50,

k5qj11,...,M . ~A4!

According to the assumption made the rate cons
Ej (M u0,k) decreases very fast withk drop therefore in Eq.
~A4! we neglect all the fluxesI j 21(m,0uM ),m51,...,qj 21 as
compared withI j 21(m,0uM ), m5qj 2111,...,M .

In region 2 f d, j (k)> f R, j (k) and from Eq.~A2! one gets

2I j~k,0uM !1(
m,l

Jj~ l ,i uk,m!50, k5pj11,...,qj .

~A5!

Finally in region 3 under the above assumptions the
lowing equations are valid

(
i ,m,l

Jj~ l ,i uk,m!50, k<pj . ~A6!

Solving Eqs.~A4!–~A6! one can express all the popul
tions xj (k), j 52,...,r 21, k51,...,M through nj ,n1 ,
xr(M ),x1(1),...,x1(M ). Below for each region we give a
special method for solving the above presented equation

a. Region 3 „k<p j…

To further describe the relaxation processes for the s
of simplicity the BGK model with the relaxation timet j

common for all levels of thej cluster is in use

FIG. 2. The case where the cluster dissociation rate at the topmost
Ej (M u0,k) decreases faster than the rate of relaxation( i ,mRj (k,muk21,i )
with k drop.
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(
i ,m,l

Jj~ l ,i uk,m!52
x̄ j~k!2njzj~k!

t j
. ~A7!

This model brings quite an evident solution of Eq.~A6!

x̄ j~k!5njzj~k!, k51,...,pj . ~A8!

b. Region 2 „k 5p j11,...,q j…

For k5pj11,...,qj from Eq.~A5! with allowance for the
I j andJj definition given in Eq.~1! it is simple to get

x̄ j~k!5
E j 11,Mkx̄j 11~M !1njzj~k!t j

21

C j ,kMx̄1~0!1t j
21 ,

k5pj11,...,qj . ~A9!

c. Region 1 „k 5q j11,...,Mj…

As follows from Eqs.~A2! the quasisteady equations fo
populations in this region have the form

I j~k,0uM !50, k5qj11,...,M21,
~A10!

(
l

I j 21~ l ,0uM !2I j~M ,0uM !50, j 52,...,r 21.

We shall solve these equations on the base of the foll
ing reasoning. Our ultimate goal is to obtain the closed s
tem of equations for concentrations. Each equation of
system has the form

dnj

dt
5(

k,l
I j 21~ l ,0uk!2(

k,l
I j~ l ,0uk!,

and the above-mentioned model of dissociation from the t
most level being applied to this system yields

dnj

dt
5(

l
I j 21~ l ,0uM !2(

k
I j~k,0uM !

5(
l

I j 21~ l ,0uM !2I j~M ,0uM !2I j~0,0uM !

52I j~0,0uM !. ~A11!

To get Eq.~A11! at first we used the first line of Eq.~A10!
and then the last one accounting for the fact that atk<qj in
the low-pressure limit one hasI j (M ,0uM )@( i I j (M ,0uk).

In accordance with the above discussion about the
sociation rate constant behavior under thek change it is rea-
sonable to assume thatm j[I j (0,0uM )/I j (M ,0uM )!1.
Hence in the first approximation over allm j we can rewrite
Eq. ~A11! as follows

I j~k,0uM !50, j 52,...,r 21, k5qj11,...,M21,

I 1~0,0uM !2I 2~M ,0uM !50, ~A12!

I j 21~M ,0uM !2I j~M ,0uM !50, j 53,...,r 21.

Having solved this system we may express allxj (k), j
52,...,r 21, k5qj11,...,M through xr(M ),
x1(0),...,x1(M ), and n2 ,...,nr . Omitting an intermediate
algebra we put down the final result

el
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x̄ j~M !5
j j1a jE r ,MMx̄r~M !1~j ja r 212a jj r 21!C r 21,MMx̄1~0!

11C r 21,MMx̄1~0!a r 21
, j 52,...,r 21,
n.
et
d

-

ip

r-

t

-

y
tion
w

and

n-

s in
t
red.

ter-
x̄ j~k!5 x̄ j 11~M !E j 11,Mk /C j ,kMx̄1~0!,
~A13!

j 52,...,r 21, k5qj11,...,M21,

xj~0!5nj2 (
k51

M

xj~k!,

with the following notation introduced

a j5@11C j 21,MMx̄1~0!a j 21#/E j ,MM ,

a25S (
i ,l

E2~M u i ,l ! D 21

, ~A14!

j j5njezj~M !S0
j , ~A15!

whereS05x1(0)/n1ez1(0) is an analog of supersaturatio
Note that the value ofxr(M ) in the above expressions is y
unknown and it is to be found from solving the correspon
ing equations in Eq.~A2! with j 5r .

3. Intermediate case j 5r

In accordance with the parameterr conception in such a
case Eq.~A2! takes the form

dk,M(
I

I r 21~ l ,0uM !2I r~k,0uM !2
x̄r~k!2nrzr~k!

t r
50,

k51,...,Mr . ~A16!

Populationsxr 11(k), k51,...,M have already been de
termined before Eq.~A1!. Populationsxr 21( l ), l 51,...,M
which are presented in the equations forxr(M ) also have
been already obtained. Combining all these relationsh
within the framework of Eq.~A16! one can get

x̄r~k!5nrzr~k!
Cr~k,0uM !x̄1~0! f r1t r

21

Cr~k,0uM !x̄1~0!1t r
21

52nr~12 f r !
Cr~k,0uM !x̄1~0!

Cr~k,0uM !x̄1~0!1t r
21 1nrzr~k!.

~A17!

An expression forxr(M ) directly follows from ~A16!
with allowance for the explicit representation ofxr 21(M )
given in Eq.~A13!

x̄r~M !5
1

u Fnrezr~M !

t r
1

C r 21,MMx̄1~0!j r 21

n

1E r 11,MMnr 11zr 11~M !G ,
n511C r 21,MMx̄1~0!a r 21 ,

u5Cr~M ,0uM !x̄1~0!1t r
211E r ,MMn21. ~A18!
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However, it would be convenient to represent this fo
mula in another form. For this reason let us multiplyxr(M )
by u and subtract from this product termnrezr(M )n̄r 11u/S0 .
It results in the following expression

x̄r~M !u2nrezr~M !n̄r 11u/S0

5
C r 21,MMx̄1~0!j r 21

n
2

E r ,MMnrezr~M !n̄r 11

nS0

1
nrzr~M !

t r
2

nrezr~M !n̄r 11

S0t r
1E r ,MMnr 11zr 11~M !

2
C r ,MMx̄1~0!nrezr~M !n̄r 11

S0
,

whence the representation forx̄r(M ) follows

x̄r~M !5nrzr~M !~12 f r !
1

ut r
2nrezr~M !

3
E rMM

nS0u
~ n̄r 112S0

r 11!1nrezr~M !n̄r 11

3
u1Cr~M ,0uM !n1ez1~0!~12S0!

uS0
, ~A19!

f r5n̄r 11 /S0n̄r . ~A20!

The convenience of Eq.~A20! is connected with the fac
that in equilibrium f r5S05n̄r 1151, therefore the first and
second terms in Eq.~A20! vanish. Thus we found all quasi
steady populationsxj (k).

APPENDIX B: QUASISTEADY EQUATIONS FOR
CONCENTRATIONS

In this Appendix we give a brief deriving of quasistead
equations for concentrations which are based on the solu
for the quasisteady populations given in Appendix A. Belo
we shall consequently get such equations in the high-
low-pressure limit as well as in the intermediate casej 5r .

1. High-pressure limit „ j>r …

In this region ofj the quasisteady equations for conce
trations follow from Eq.~A1! taking the common form

dnj

dt
5I j 212I j~12d jN!, j .r , ~B1!

where the fluxesI j have been introduced in Eq.~A1!.

2. Intermediate case „ j 5r …

In order to derive the quasisteady equation fornr we
have to substitute the quasisteady values of population
Eq. ~A11!. However, it is not directly feasible to do tha
because of a great complexity of the expressions appea
On the other hand, in deriving the equations we are in
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ested in, it is possible to use some relationships for the q
sisteady populations which have already been used in
pendix A. Doing in such a way we obtain

dnr

dt
5(

l
I r 21~ l ,0uM !2(

k
I r~k,0uM !

5I r 21~0,0uM !1I r 21~M ,0uM !1 (
l 51

M21

I r 21~ l ,0uM !

2I r~0,0uM !2 (
k51

M

I r~k,0uM !. ~B2!

We have intentionally divided the sums in Eq.~B2! into
several parts in order to neglect some of them based on
evaluation of Appendix A. In particular, we can omit all th
terms connected with condensation from the zero level
corresponds to the first approximation over the parame
m j ~see Appendix A!. Furthermore, in accordance with E
~A12! ( l 51

M21I r 21 ,(l ,0uM )50. Finally, with allowance for
Eq. ~A16! one can rewrite Eq.~B2! as follows

dnr

dt
5 (

k51

M
x̄r~k!2nrzr~k!

t r
. ~B3!

Now substitutingx̄r(M ) from Eq. ~A20! and x̄r(k), k
51,...,M21 from Eq.~A17! into Eq. ~B3! one can get after
some transformations

dnr

dt
5

nr~12 f r !

t r
Fzr~M !~12t ru!

t ru

2 (
k51

M21
Cr~k,0uM !x̄1~0!zr~k!

Cr~k,0uM !x̄1~0!1t r
21G

2
E r ,MMnrezr~M !

nS0ut r
I r 11

~2! 1
nrzr~M ! f r

t ru

3Cr~M ,0uM !n1ez1~0!~12S0!, ~B4!

whereI r 11
(2) 5S0

r 112n̄r 11 .
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3. Low-pressure limit „ j<r …

First of all let us introduce a special notationÎ for the
flux I r 21(M ,0uM ) which is important for further applica
tions. By definition

Î 5Cr 21~M ,0uM !x̄r 21~M !x̄1~0!2Er~M u0,M !x̄r~M !,

With an eye to Eqs.~A20! and~A13! we can eventually

express the fluxÎ through the quasisteady concentrations t
yield

Î 52
E r ,MMnrezr~M !

n H n̄r~12 f r !

t ru
1

1

S0
S E r ,MM

nu
21D

3I r 11
~2! 1

C r ,MMn1ez1~0!

S0u
n̄r 11~12S0!J . ~B5!

With the help of Eq.~B5! the quasisteady equations fo
nj , j ,r can be found in a natural way. Indeed, in acco
dance with Eq.~A12!

dnj

dt
52I j~0,0uM !5E j 11,M0x̄ j 11~M !

2C j ,0Mx̄1~0!x̄ j~0!,

whence with allowance for thexj (0) definition given in
Eq. ~1!
dnj

dt
5E j 11,M0x̄ j 11~M !2C j ,0Mx̄1~0!F nj

sj~0!
2 (

k51

M21

x̄ j~k!
sj~k!

sj~0!
2 x̄ j~M !

sj~M !

sj~0! G
5E j 11,M0x̄ j 11~M !2C j ,0Mx̄1~0!F nj

sj~0!
2 x̄ j 11~M ! (

k51

M21
sj~k!

sj~0!

E j 11,Mk

C j ,kMx̄1~0!
2 x̄ j~M !

sj~M !

sj~0! G
52C j ,0Mx̄1~0!F nj

sj~0!
2 x̄ j 11~M ! (

k50

M21
sj~k!

sj~0!

E j 11,Mk

C j ,kMx̄1~0!
2 x̄ j~M !

sj~M !

sj~0! G
52C j ,0Mx̄1~0!F nj

sj~0!
2 x̄ j 11~M !(

k50

M
sj~k!

sj~0!

E j 11,Mk

C j ,kMx̄1~0!
2 x̄ j~M !

sj~M !

sj~0!
1 x̄ j 11~M !

sj~M !

sj~0!

E j 11,MM

C j ,MMx̄1~0!G
52C j ,0Mx̄1~0!F nj

sj~0!
2 x̄ j 11~M !(

k50

M
sj~k!

sj~0!

E j 11,Mk

C j ,kMx̄1~0!G2C j ,0Mx̄1~0!
sj~M !

sj~0! F x̄ j 11~M !
E j 11,MM

C j ,MMx̄1~0!
2 x̄ j~M !G .

~B6!
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Further, if a useful relationship is worth being noted

x̄ j~M !5j j2a j Î , j 52,...,r , ~B7!

we can rewrite Eq.~B6! in the final form

dnj

dt
52

C j ,0Mx̄1~0!

sj~0! Fnj2j j 11(
k50

M

sj~k!
E j 11,Mk

C j ,kMx̄1~0!G
2 Î Fa j 11

C j ,0Mx̄1~0!

sj~0! (
k50

M

sj~k!
E j 11,Mk

C j ,kMx̄1~0!

2
C j ,0Msj~M !

C j ,MMsj~0!G5I j
~2!2dj Î . ~B8!

Here we use the notationI j
(2) for the quasisteady fluxes bein

represented in the form

I j 11
~2! 5L j 11

1 x̄1
j 11~0!2L j 11

2 nj x̄1~0! ~B9!

with the nonequilibrium rates of associationL j
1 and disso-

ciation L j
2 given by the formulas

L j 11
1 5

C j ,0M

sj~0!

nje

~n1ez1~0!! j ,

L j 11
2 5

C j ,0M

sj~0!
, j 52,...,r 21. ~B10!

In order to coverI r 11
(2) by this definition we have to as

sume

Lr 11
1 5

1

~n1ez1~0!!r 11 , Lr 11
2 5

1

nr 11,e
.

As far as the coefficientsdj are concerned they could b
directly written with an eye to Eq.~B8!

dj5FC j ,0Mx̄1~0!a j 11

sj~0! (
k50

M

sj~k!
E j 11,Mk

C j ,kMx̄1~0!

2
C j ,0Msj~M !

C j ,MMsj~0!G , j 52,...,r 21. ~B11!

Note that in the equilibriumI j
(2)5 Î 50.

Finally, we should write the quasisteady equation
nr 11 , which can be easy obtained from two equalities

dnr 11

dt
5I r 112I r 12 ,

dnr

dt
5I r2I r 11 .

Taking into account thatI r[ Î and has already bee
found in the high-pressure limitI r 125I r 12

(1) we get

dnr 11

dt
5 Î 2I r 12

~1! 2
dnr

dt
. ~B12!

4. Equations for monomers „ j 51…

The last point is to get the quasisteady equations
x1(k), k51,...,M . In doing that we shall consider the respe
tive equations for the monomer populations Eq.~1! and take
Downloaded 31 Oct 2005 to 169.232.135.10. Redistribution subject to AI
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into account in the sums in Eq.~1! that forkÞ0 it is reason-
able to neglect condensation as compared with relaxation
turn among all the relaxation terms we keep only lead
terms with j 51. It is caused by the fact that for eachj the
corresponding term in these sums is of the orderb j

5nje /n1e!1,j .1.32,12 Hence

dx1~k!

dt
5Vk

c1Vk
r , kÞ0. ~B13!

The RHS of Eq.~B13! contains only unknown population
x1(k), k50,...,M . Forx1(0) using the normalizing condition
(k, j jx j (k)5const we get

dx1~0!

dt
52 (

k51

M1 dx1~k!

dt
2(

j 52

r

j
dnj

dt
2~r 11!

dnr 11

dt

2~r 12!I r 12
~1! 2 (

j 5r 13

N21

I j
~1! .

Whence with allowance for Eq.~B12!

dx1~0!

dt
52 (

k51

M1 dx1~k!

dt
2(

j 52

r 21

j
dnj

dt
1

dnr

dt
2~r 11! Î

2 (
j 5r 12

N21

I j
~1! . ~B14!
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