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The idea of the work

Bl There is a huge market for foreign exchange (FX), much
larger than the equity market ... As a result, an
understanding of FX dynamics is economically important.
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understanding of FX dynamics is economically important.

Bl Using currency option quotes, Carr and Wu (2004) found
that under a risk-neutral measure, currency returns display
= not only stochastic volatility, but also stochastic skew.

Bl Using the general framework of time-changed Levy processes,

e they proposed a class of models (SSM) that captures both
[ | . o7

stochastic volatility and skewness.
FE =

Bl The models they proposed are also highly tractable for
pricing and estimation. The pricing speed for European
vanilla options is comparable to the speed of the Bates (1996)
model.
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Bl There is a huge market for foreign exchange (FX), much
larger than the equity market ... As a result, an
understanding of FX dynamics is economically important.

Bl Using currency option quotes, Carr and Wu (2004) found
that under a risk-neutral measure, currency returns display
not only stochastic volatility, but also stochastic skew.

Bl Using the general framework of time-changed Levy processes,
they proposed a class of models (SSM) that captures both
stochastic volatility and skewness.

Bl The models they proposed are also highly tractable for pricing
and estimation. The pricing speed for European vanilla
options is comparable to the speed of the Bates (1996) model.

Bl However, almost nothing has been done so far for exotics.
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Brief overview of the Stochastic

Skew Model
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SSM model

Bl Proposed by Carr and Wu (2004) to study the variation of FX
option prices in the cross section and over calendar time.
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FX option prices in the cross section and over calendar time.

Bl Like equity options, FX option implied volatilities vary
stochastically over calendar time, and there is a smile in FX
option implieds i.e. the convexity measure is always positive.

Bl This suggests that stochastic volatility is needed to explain
risk-neutral currency dynamics, as shown for example by
Bates (1996).
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SSM model

Bl Proposed by Carr and Wu (2004) to study the variation of
FX option prices in the cross section and over calendar time.

Bl Like equity options, FX option implied volatilities vary
stochastically over calendar time, and there is a smile in FX
option implieds i.e. the convexity measure is always positive.

.- This suggests that stochastic volatility is needed to explain
o risk-neutral currency dynamics, as shown for example by
“' Bates (1996).

E .

— However, unlike equity options, there is a substantial

variation in the skewness measure as well. For both currency
pairs, the skewness measure switches signs several times over
our 8 year history.
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SSM model

Bl Proposed by Carr and Wu (2004) to study the variation of
FX option prices in the cross section and over calendar time.

Bl Like equity options, FX option implied volatilities vary
stochastically over calendar time, and there is a smile in FX
option implieds i.e. the convexity measure is always positive.

This suggests that stochastic volatility is needed to explain
risk-neutral currency dynamics, as shown for example by
Bates (1996).

However, unlike equity options, there is a substantial
variation in the skewness measure as well. For both currency
pairs, the skewness measure switches signs several times over
our 8 year history.

This suggests that stochastic skewness is also needed to
explain risk-neutral currency dynamics.
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SSM model (confinue) e

e assume frictionless markets and no arbitrage. Carr and Wu
2004) further assume that under an EMM Q, the dynamics of
he spot exchange rate and the two activity rates are given by the
ollowing system of SDE:

F. dSt = (Td — ’I“f)St_dt
[ | -
0 o—lel/v;
w. _I_ o) ‘/;RSt_thR —|— / St_ (ex — 1) [/LR(dx, dt) — )\w ‘/;Rdxdt
B 0 X
- 0 —|al/v;
- 6
+ oA/ VES,_dW}E + /_OO Si— (e — 1) [ (dx, dt) mH \/V, da:dt

AVt = k(1 — VBt + oy y/ V,RdZ]

AVt = k(1 = V2t + oy /VEdZ, 2)
Whawl =o0, dzldzF =0, awlfdzl =0, dwrdzl =0
dWhdzl = pBadt, dawlrdzl = phdt,
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SSM model - Assumpftions

Bl Here t € [0,Y], rq4,7¢,0, A, 0y, k are nonnegative constants,
So, VOR, VOL, v; are positive constants, o < 2 1s constant,

pft pl € [—1,1] are constant, Y is some arbitrarily distant
horizon.
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Bl Here t € [0,Y], rq4,7¢,0, A, 0y, k are nonnegative constants,
So, VOR, VOL, v; are positive constants, o < 2 is constant,

pft pl € [—1,1] are constant, Y is some arbitrarily distant
horizon.

Bl Since the spot exchange rate can jump, S; denotes the spot
price just prior to any jump at ¢.

Bl The processes WE Wl ZL ZE are all Q standard Brownian

motions. The random measures u't(dz,dt) and u*(dz,dt) are
used to count the number of up jumps and down jumps of
size x in the log spot FX rate at time t.
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SSM model - Assumptions

Bl Here t € [0,Y], rq4,7¢,0, A, 0y, k are nonnegative constants,
So, VOR, VOL, v; are positive constants, o < 2 is constant,

pft pl € [—1,1] are constant, Y is some arbitrarily distant
horizon.

Since the spot exchange rate can jump, S; denotes the spot
price just prior to any jump at ¢.

The processes WHE Wt ZL ZE are all Q standard Brownian

motions. The random measures u't(dz,dt) and u*(dz,dt) are
used to count the number of up jumps and down jumps of
size x in the log spot FX rate at time t.

When calibrating, we assume that Sp, rgq, and ry are directly
observable. The parameter o < 2 is pre-specified. This leaves

the two state variables V,*, V; and the 7 free parameters

o, \, 0V, K, Vj, p't. ol to be identified from the time series of
option prices across multiple maturities and moneyness levels.
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The vector process [S;, V,T, V,F' t] is Markovian in itself on the
state space S > 0,Vg > 0,V > 0,t € [0,T). Let:

C(S, Vi, Vi, t) = e " TV E%{(Sr — K)*|[S, ViT*, Vi" 1] = [S, V&, Vi, 1]} (3)

This function is governed by the following PIDE:

rqC = %C’—F(rd—rf)sa{;C—k (1—VR)%C—|—KJ(1—VL)%C
O2S2(V§ + Vi) ;;2 C + apRavSVR 85%2‘/30 + apLUVSVL 8S882VL C
+ 02VZVR a?;c +Va / N :C(Se ) —C — 5" —1) ;90- Aj;l‘i:j dx
JVZVL a?j VL / :C(Se )= C — S(e” —1) (%C- Aj;l‘i:j dr,
C = (S, Vi, Vi, £) 4)
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Barrier options - Boundary Conditions

Bl The terminal condition for the European call value is:

C(S, Vg, V., T) = (S — K)™, SeR,Vr >0,V >0

[tkin, Carr “New splitting FD method to efficiently price barrier options under Stochastic Skew Model”. Computational Methods in Finance, 2007. - p. 8/4




VOLANT a0

Barrier options - Boundary Conditions

Bl The terminal condition for the European call value is:

C(S, Vg, V., T) = (S — K)™, SeR,Vr >0,V >0

Bl Boundary conditions on S

[tkin, Carr “New splitting FD method to efficiently price barrier options under Stochastic Skew Model”. Computational Methods in Finance, 2007. - p. 8/4




VOLANT 7raaryy

ING
Bloomberg

Barrier options - Boundary Condifions

Bl The terminal condition for the European call value is:

C(S,Vr, V., T) = (S — K)T, SeER,Vr >0,V >0

Bl Boundary conditions on S

Down and Out Calls. On the domain S < L, Vg > 0,V > 0 and
t€|0,T],C(S, Vg, V5,t) = 0. We impose a zero gamma boundary
condition at extremely high return levels:

82

‘%’ITI(EIO WC(S, VR,VL,t) :O, VR >O,VL >O,t€ [O,T]
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Barrier options - Boundary Conditions

Bl The terminal condition for the European call value is:

C(S, Vg, Ve, T) = (S — K)™, SeR, Vg >0,V >0

Bl Boundary conditions on S

Down and Out Calls. On the domain S < L, Vg > 0,V > 0 and

E .
— t€|0,T],C(S, Vg, V5,t) = 0. We impose a zero gamma boundary
—— condition at extremely high return levels:
(| 82
g‘lTIcElo WC’(S,VR,VLJ)ZO, Ve >0,V >0,te€[0,T].

Up and Out Calls. On the domain H < S,Vr > 0,V > 0 and
t€1[0,T],C(S,Vg,Vr,t) =0. On the domain S =0,Vg > 0,V >0
and t € [O,T], C(S, VR, VL,t) = 0.
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Barrier options - Boundary Conditions

Bl The terminal condition for the European call value is:

C(S, Vg, Ve, T) = (S — K)™, SeR, Vg >0,V >0

Bl Boundary conditions on S

:: Down and Out Calls. On the domain S < L,Vg > 0,V > 0 and
— t€|0,T],C(S, Vg, V5,t) = 0. We impose a zero gamma boundary
— condition at extremely high return levels:
[ | 82

ngrglo WC(S,VR,VLJ)ZO, VR >0,V >0,t e [O,T].

Up and Out Calls. On the domain H < S,Vr > 0,V > 0 and
t€1[0,T],C(S,Vg,Vr,t) =0. On the domain S =0,Vg > 0,V >0
and t € [O,T], C(S, VR, VL,t) = 0.

Double barrier Calls. On the domain S < L,Vr > 0,V > 0 or
S<L,Vg>0,V >0and t € [O,T],C(S, VR,VL,t) = 0.
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Boundary Conditions (Confinued)
Boundary conditions on Vi, V',

Bl There exist various opinions how to impose boundary conditions at
extreme values of the activities (Tavella and Randall, 2000; Kluge 2002;
Duffy 2004 and discussion at http//:www.wilmott.com). We impose a

Neumann-wise condition:

. 0? . 0?
V].};ITHOO @C(S, VR, VL, t) = 0, V].;ITIIOO @C(S, VR, VL,t) =0
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Boundary Conditions (Confinued)
Boundary conditions on Vi, V',

Bl There exist various opinions how to impose boundary conditions at
extreme values of the activities (Tavella and Randall, 2000; Kluge 2002;
Duffy 2004 and discussion at http//:www.wilmott.com). We impose a

Neumann-wise condition:

0? 0?
lim —C(S, Vg, V5, t) =0 lim —C(S, Vg, Vr,t) =0
._ Jm s (S, VR, VL,t) =0, Jim—ss (S, VRr, VL, 1)
o These conditions mean that the diffusion flow vanishes at the boundary
. in the direction orthogonal to that boundary. We don’t use these
[ |

conditions as it is, instead substituting them into the PIDE and further

use the obtained equation as the boundary condition.
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Boundary Conditions (Confinued)
Boundary conditions on Vi, V),

Bl There exist various opinions how to impose boundary conditions at
extreme values of the activities (Tavella and Randall, 2000; Kluge 2002;
Duffy 2004 and discussion at http//:www.wilmott.com). We impose a

Neumann-wise condition:

9° 0°
e lim —— t) = lim —— t) =
Em VzirTrclw 052 C(S7 Ve, Ve, ) 0 VLHTréo 052 C(S7 Ve, Ve, ) 0
-

These conditions mean that the diffusion flow vanishes at the boundary

e in the direction orthogonal to that boundary. We don’t use these
E =

conditions as it is, instead substituting them into the PIDE and further

use the obtained equation as the boundary condition.

As either activity rate approaches zero, we must either evaluate the
above PIDE with the appropriate value of V' = 0, or else study the effect
of reflecting boundary conditions. Some authors assume it is empirically
safe to set V,in = 0 and let the value of C vanish at V,,;,. However,
such boundary conditions are inconsistent with the terminal function at

t =T and S > K. This creates a jump in the option value at ¢t =T and

Itkin, Carr ”NewS&Ii@g}-’? me‘rhod to efficiently price barrier options under Stochastic Skew Model”. Computational Methods in Finance, 2007. - p. 9/4



http//:www.wilmott.com

VOLANT 7ramimG

Boundary Conditions (Confinued)
Boundary conditions on Vi, V',

Bl There exist various opinions how to impose boundary conditions at
extreme values of the activities (Tafella and Ran 2000; Kluge 2002;

Duffy 2004 and discussion at hitp//:www.wilmott.col). We impose a

Neumann-wise condition:

82 5 82
£ ] —_— = ] 8— = ] _—
- i, gz (5 Ve Viot) = G i, 3OS Vi Vi, ) = 0, Jim 5755 OS5, Vi
E

These conditions mean that the diffusion flow vanishes gt the boundary

. in the direction orthogonal to dhat boundhry. We don’f/ use these
E =

conditions as it is, instead substitatingAhem into th€ PIDE and further

use the obtained equation as the bgfindary=eoridition.

As either activity rate apppeaches zero, we must either evaluate the
above PIDE with theeppropriate value of V' = 0, or else study the effect
of reflecting boupdary conditions. Some authors assume it is empirically
safe to set V,,/, = 0 and let the value of C vanish at V,,;,. However,
such boundgry conditions are inconsistent with the terminal function at

t =T and S > K. This creates a jump in the option value at ¢t = 1" and
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To obtain the European barrier
option price under the SSM model
we have to solve 3D unsteady PIDE.
So far nobody faced this

problem in math financel
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Some useful theorems
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Necessary and sufficient conditfion

Lemma 1.1. Mafrix of second derivatives of the PIDE is
positive definite if |pr| <1 and |pr| < 1.

Proof 1.1. Necessary and sufficient condifions for the matrix
of coefficients (a;;)s3x3 O be positive definite are:

— ai11a22 — 032 > 0, a11a33 — CL%3 > 0, a22Q33 — agg > 0,

e a11022033 — 11053 — A22073 — A33Q59 + 2012013023 > 0 (19
[ |

== These results are well known and follow from completion of

[ |

squares. The proof is given in Fraser, Duncan and Collar, 1963.
For the PIDE and vector of independent variables x = (x, v.., v;)
the matrix (a;;)sxs = a(x) IS

. 0252(VL —I—VR) SVROvaR SVLaavpL
a(x) = 5 SVroovpr o2 Vi 0 (20)
SVLOvaL 0 O"Q/VL
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The Lie operator formalism
To solve the PIDE we intend to utilize splitting (Yanenko 1971, Samarskii
1964, Dyakonov 1965). Marchuk 1975 and then Strang 1968 extended this

idea for complex physical processes by providing in addition to splitting on

spatial coordinates also splitting on physical processes.

Suppose we can write the PIDE in the form

= 0 4

__ 5-C(S, VR, Vi, 7) = > LiC(S, VR, Vi, 7). 21)
E =1

— We associate a Lie operator F with each given operator £. This Lie operator
Em is a linear operator acting on the space of operators defined on S. Operator

JF maps each operator G into the new operator F (G, such that for any

element ¢ € S

(FG)(C) =G'(C)L(C)

For the solution C(7) of the PIDE it easily follows that

(FO)O() = 2-G(C(), (F'Q)C(r) = %G(Ocr)).
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The Lie operator formalism - Contd

The above relations hold for any G defined on S, in particular for the
identity I. Inserting I for G and using the Taylor expansion of the true
solution, we can write C'(7 4 ) in terms of the exponentiated Lie operator

form or Lie-Taylor series,

C(r+0) = ("7 I)(C(1)).
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The Lie operator formalism - Cont'd
The above relations hold for any G defined on S, in particular for the
identity I. Inserting I for G and using the Taylor expansion of the true
solution, we can write C(7 + 0) in terms of the exponentiated Lie operator

form or Lie-Taylor series,
C(t+0) = (7 1)(C(T)).

Then we compose the resulting exponentiated Lie operators in the same
order as the solution operators in the splitting procedure, with which they are

associated. For instance, the Strang splitting solution can be expressed as

- 1 1 1 1 _
C(T + 9) _ (6?0}-16?0}-269}—36?9}-26§9}-1]) (C(T)) (24)
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The Lie operator formalism - Cont'd
The above relations hold for any G defined on S, in particular for the
identity I. Inserting I for G and using the Taylor expansion of the true
solution, we can write C(7 + 0) in terms of the exponentiated Lie operator

form or Lie-Taylor series,

C(r+0) = ("7 I)(C(1)).

Then we compose the resulting exponentiated Lie operators in the same

£ order as the solution operators in the splitting procedure, with which they are
:: associated. For instance, the Strang splitting solution can be expressed as
E . ~ 10.7-1 10.7-2 0F3 19.7'-2 19.7'-1 ~

C(r+0)=[(e27 e2 7 "e"3e27e27 1) (C(1)). (26)

All we need now is the BCH formula that the product eXe¥ can be

written as the exponential eZ of

1 1 1
Z=X+Y+ 5[X,Y] + E([X,X,Y] +[Y,Y, X]) + ﬂ[X,Y,Y,X] +... 27)
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Our method - the main idea
First rewrite the PIDE in new variables x =1n S/Q,7 =T — t, where Q is a
certain constant. That gives

s, 2 s,
EC = —TdC(aﬁ,VR,VL,T) —+ |:7“d —Trf— J—(VL -+ VR) —arVVr —arVvVy %C
0 0 (VR—I—VL) 0> 0>
1 — — 1 — —
R = VR) g O+ Rl = Vi) 5O 7 g C tor ovVeg aC
9 o2 Ve O? o2 Vi 02
L v VR v VL
30
Top “VVLa A S 1 A R 175 (0)
o e lvl/v;
+ Vg Clxr+y,Vr, Vo, 7)) —C —y—=C| X dy
0 Oz y[tte
o e lul/v;
+ v VL/ +y7VR7VL7 ) C_y_c Afdya
_ Ox y[ 1t
where
/00 )\e_|y|/’/j .
a = ey —1—
" 0 |y| e Y
0 e yl/v;
arp = / e/ —1—y)A e dy
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Main idea (Confinued)

Now we represent the above equation in the form

aaTC(x,vR,vL,T) = (L1 + L)z, Vi, Vi, 7), (30)
where
L.C = —%rdC—l— (;( ra— 1) — %a v —az\/V) aaxc @1
+ k(1-— Vi)aiviC + 022% 88:20 + opiovV; 5 882‘/ C
+ “2V2V@' 8?;C+ m[[C(x+y,vR,VL,T) = C—y(%C])\e;ﬁZ:j dy,

andi=R,Land [, = [, [, = f_oo.
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Main idea (Confinued)

Now we represent the above equation in the form

0

5-C @, Ve, Ve, 7) = (L1 + L2)C(x, Vr, Vi, 7), (32)
where
1 1 1 0
LC = —graC+ (2( a=T5) =50 Vi —aZ\/V) > C (33)
0 o’Vi 0? 02
+ kw(1-— %)a_\/;CJF 5 8x2c+ opiovVi———= D20V ——C
2V, O? —lyl/v;
Uv‘/@ 8 : B B g e J
-+ 5 aViQC—F\/Vz/i[C(a:—Fy,VR,VL,T) C yamC])\ = dy,
andi=R,Land [, = [, [, = f_oo.
Lemma 1.3. [Lr, L] =0
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Main idea (Confinued)

Now we represent the above equation in the form

0
EC(UU Vr,VL,7) = (L1 + L2)C(x, Vr, VL, T), (34)
where
1 1 1 0
s L,C = —§rdC—|— (ﬁ(rd —7rf) — 50 Vi — az\/V) 8:130 (35)
- P A NG S (Ao N VR it
- Vv, 2 0a? POV DV,
e oo V; 07 _ ) e~ lul/v;
. + 5 av@gC%—\/Vz/i[C(a:—l—y,VR,VL,T)—C—y%C])\ = dy,
andi=R,Land [, = [, [, = fi)oo .
Lemma 1.4. [Lr,Lz] =0

Proof 1.4. Without the integral terms it could be easily verified with
Mathematica. The integral terms could be expanded info power series
on y. All coefficients of Ir are just functions of Vr, and all coefficients of
I, are just functions of Vi,. Therefore, Ir commutes with I, and the
diffusion part of L. And vice versa.
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Main idea (Confinued)

Now we represent the above equation in the form

s,
EC(UU Ve, Vi,7) = (L1 + L2)C(x, VR, VL, T), (36)
where
1 1 1 0

- L;C = —§rdC—|— (ﬁ(rd —7rf) — 50 2V — az\/V) 8:1:0 37)
o + /i(l—V-)iC—I—JQVi 82C’—I—(f oy Vi ——— o C
- Vv 2 92 POV i 5oV,
e oo V; 07 _ ) e~ lul/v;
. -+ 5 av@gC%—\/Vz/i[C(a:—l—y,VR,VL,T)—C—y%C])\ = dy,

andi=R,Land [, = [", [, :fi) .

Lemma 1.5.

Proof 1.5. Without the integral terms it could be easily verified with
Mathematica. The integral tferms could be expanded info power series
on y. All coefficients of Ir are just functions of Vr, and all coefficients of
I, are just functions of Vi,. Therefore, Ir commutes with I, and the
diffusion part of L. And vice versa.
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Jump-diffusion splifting

Bl The idea of splitting on physical processes for jump-diffusion models has

been already proposed by Cont and Volchkova. They split the operator L

into two parts:

(%C(S, Vi, Vi, 7) =DC(S, Vi, Vi, 7) + TC(S,Vr, VL, T), (38)

where D and J stand for the differential and integral parts of L
respectively.
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Jump-diffusion splitting =

Bl The idea of splitting on physical processes for jump-diffusion models has

been already proposed by Cont and Volchkova. They split the operator L

into two parts:

830(5, Vi, Vi, 7) =DC(S, Vi, Vi, 7) + TC(S,Vr, VL, T), (40)
~
where D and J stand for the differential and integral parts of L
- respectively.
- Bl They replace DC with a FD approximation D, JC with a certain
[ |
. finite approximation of the integral J (that we will further discuss)

and use the following explicit-implicit time stepping scheme:

C’I’L—l—l . C’I’L
AT

— DOt L gon 41
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Jump-diffusion splitting

Bl The idea of splitting on physical processes for jump-diffusion models has

been already proposed by Cont and Volchkova. They split the operator L

into two parts:

%(1(5, Vr,Vi,7) =DC(S, Vi, Vi, 7) + TC(S, Vi, VL, T), (42)

where D and J stand for the differential and integral parts of L

. )
- respectively.

- They replace DC with a FD approximation D, JC with a certain
[ |

. finite approximation of the integral J (that we will further discuss)

and use the following explicit-implicit time stepping scheme:

C’I’L—l—l . C’I’L
AT

— DOt L gon (43)

Thus, Cont and Volchkova treat the integral part explicitly to avoid
the inversion of the non-sparse matrix J. They show that this does
not affect the stability of the scheme: it remains unconditionally
stable.
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Jump-diffusion splittfing (Confinueq)

Order of approximation!

Bl Unfortunately this scheme approximates the original PIDE with the
accuracy O(0). The higher-order operator splitting algorithms can be
obtained, for instance, by doing one time step of the Strang splitting

method, which consists of three substeps:

C(S, Vg, Vi, 7)" = C(S, Vg, VL, 7)"

= DC(S,Vgr,VL,7)"

AT /2
C(S,Vr,V,7)"" = C(S,Vr,V,7)" .
Ar = JC(S,Vr,VL,T)
C(S7 VR7VL7T)TH—1 — C(Sa VR7VL7T)** _ n+1
X7 —  DC(S, Vi, Vi, 7)
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Jump-diffusion splitting (Confinued)

Order of approximation!

Bl Unfortunately this scheme approximates the original PIDE with the
accuracy O(0). The higher-order operator splitting algorithms can be
obtained, for instance, by doing one time step of the Strang splitting

method, which consists of three substeps:

C(S, Vg, Vi, 7)" = C(S, Vg, VL, 7)"

= DC(S,Vgr,VL,7)"

Em AT/Q

E - C(S, Ve, Vi, 7)"" —C(S,Vr, VL, T)" 5
— ( R L ) AT ( R L ) — JC(S,VR,VL,T)
.- C(S, Vg, Vi, )" —C(S, Vg, Vi, 7)*"

_ n—+1
AT = DC(S, Vg, VL, 7)

Usually for parabolic equations with constant coeflicients this
composite algorithm is second-order-accurate provided the
numerical procedures for the split equations are at least

second-order-accurate.
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VOLANT 7ramimG

Jump-diffusion splittfing (Confinueq)

Order of approximation!

Bl Unfortunately this scheme approximates the original PIDE with the
accuracy O(0). The higher-order operator splitting algorithms can be
obtained, for instance, by doing one time step of the Strang splitting

method, which consists of three substeps:

Em C(S, VR,VL,T)* — C(S, VRvayT)n . *
= A = DC(S,Vgr,VL,T)

.= C(S,Vr,Vr,7)"" = C(S, Vg, Vi, 7)" .
— ( R L ) AT ( R L ) — JC(S, VR,‘/L,T)

Ew. C(S, Vg, Vi, )" —C(S, Vg, Vi, 7)*"

_ n—+1
AT = DC(S, Vg, VL, 7)

Usually for parabolic equations with constant coeflicients this
composite algorithm is second-order-accurate provided the
numerical procedures for the split equations are at least

second-order-accurate.

Bl The parabolic part exactly coincides with the Heston model!
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Bloomberg

Numerical method
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VOLANT 7ramimG

Coordinate fransformation

Reasons

Bl D methods often require equal grid steps in S and Vg, Vz, domains, so to

achieve that the original independent variables should be normalized.
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Coordinate fransformation

Reasons

Bl D methods often require equal grid steps in S and Vg, Vi, domains, so

to achieve that the original independent variables should be normalized.

Bl The solution of the PIDE is very sensitive to localization errors when S
is in the vicinity of K. To increase accuracy it would be reasonable to

use an adaptive mesh with high concentration of the mesh points around
S =K.
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Coordinate fransformation

Reasons

Bl D methods often require equal grid steps in S and Vg, Vi, domains, so

to achieve that the original independent variables should be normalized.

Bl The solution of the PIDE is very sensitive to localization errors when S

is in the vicinity of K. To increase accuracy it would be reasonable to

Em use an adaptive mesh with high concentration of the mesh points around
E = S =K.

E

e For the barrier options the situation is even more complicated. Here we
— consider only continuously sampled barriers, so it is sufficient to place

the barriers on the boundaries of the grid and enforce a boundary
condition of zero option value. The gradient of the option price is
discontinuous at the barriers because we never solve the pricing equation
(which includes second derivative terms that might become singular)

there. So we need an adaptive grid as well.
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Coordinate fransformation (Cont'ad)

Let us use a map S < x, Vg < v, VL < v, t <> 7 of the form

S=5(), ,v,=Vgr:,), v=Ve(n), =Tt (47)
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Coordinate fransformation (Cont'd)

Let us use a map S < x, Vg < v, VL < v, t <> 7 of the form
S=5(), ,v,=Vgr:,), v=Ve(n), =Tt (50)

Tavella, Randall 2000 define the Jacobian of this transformation

J(x) =dS(z)/dx, G
. - _1/2
B J@)=4) J’“(x)_Ql L k(@) = [ad + (S(z) — By)?]"?
k=1

Parameters By correspond to the critical points, i.e. in our case
B1=L,Bs=H,Bs = K, H=min(H, Smnaz), L = max(L, Spin). Parameters
A and ai,k = 1,2,3 are adjustable. Setting ay < 'H — L yields a highly

nonuniform grid while ax > H — L yields a uniform grid.
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Coordinate fransformation (Cont’d)

Let us use a map S < x, Vg < v, VL < v, t <> 7 of the form
S = S(az), , Up = VR(UT), V] = VL(Ul), =T —1t. (53)

Tavella, Randall 2000 define the Jacobian of this transformation

J(z) = dS(z)/dx, 54
(| o 1/
B J@)=4) J’“(x)2] L k(@) = [ad + (S(z) — By)?]"?
k=1

Parameters By correspond to the critical points, i.e. in our case
B1=L,Bs=H,Bs = K, H=min(H, Smnaz), L = max(L, Spin). Parameters
A and ax, k = 1,2,3 are adjustable. Setting ap < 'H — L yields a highly
nonuniform grid while ax > H — L yields a uniform grid.

To obey the boundary condition S(1) = H one can vary A. Since S(z =1) is
monotonically increasing with A the numerical iterations are guaranteed to

converge.
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Coordinate ftransformation - results

VOLANT 7ramimG

Bloomberg

dLog[J(x)])/dS

50 60 70 80 90 100 110
S(x)

Figure 2:
contains 100 nodes uniformly dis-
tributed from 0 to 1.
rameters used in this example are:
H = 130,L = 50, K = 100,y =
oy = (H — L)/60,0¢K = (H —
K)/20. The computed value of A
is 13.935.

New grid in x that

Value of pa-
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50 60 70 80 90 100 110 120
S(x)

Figure 3: dinJ(z)/dz as a func-
tion of S(x).
test are same

Parameters for this

130



Coordinate transformation - resulfs 2

In this Fig. we present a map of the new grid obtained from the original
uniform S — Vg grid by using the above transformation. The new grid
contains 100 nodes in x uniformly distributed from 0 to 1, and 100 nodes in
v, also uniformly distributed from 0 to 1. Value of parameters used in this
example are: H =110,L =95, K =100,ag = ar = (H — L)/0.1,ax =
(H — K)/10, 20 = @v0 = Vimaz /20, where Viqz is @ maximum value of Vg
and Vi, on the grid (here Vi, = 0.5), and vg = 0.2.

105 110
S(x)
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Jumyps with a finite activity secriar
Every term under the integral exists, and therefore two last terms could be
integrated out. If W = W (S(x), v, v, 7), then

/Wmquvwa@wwﬁpﬂwgww_npwwﬂ@:

/W (dy) — BE(x) S W — W,

B y ; B ; ; _)\e—lyl/%‘d
i—/i( 1)p(dy), %—/iu(y), pu(dy) = e W

where ¢(x) = S(x)/J(x), nr(vr) = Vr/JIr(vr),mi(vi) = Vi /Ji(vr), Jacobians
Jr(vyr) and J;(v;) are defined as J,-(vy) = dVr(vy)/dvr, Ji(vi) = dVi(v;)/dv;.

In our setup (B; and ~y; are constants that can be precomputed!
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Jumyps with a finite activity
Every term under the integral exists, and therefore two last terms could be
integrated out. If W = W (S(x), v, v, 7), then

0 Y e_|y|/’/j
(S(ZU),UT, ’Ul,T) o ﬁ(x)%W(e — 1)i| )\Wdy —
0
ﬁif(ﬂf)%w — W,

. e—|y|/’/j

/ P Z p— d ’ d _ A d .
"= Dpldy), — ~ /iu( y) p(dy) Ty W
E where £(x)|= S(x)/J(x),n-(vr) = Vr/JIr(vr), mi(v1) = VL /Ji(v1), Jacobians

Jr(vy) and| J;(v;) are defined as J,(vy) = dVr(vy)/dvr, Ji(vi) = dVi(v;)/dv;.

In our setup (; and ~; are constants that can be precomputed!

The first integral has to be computed with the second order approximation
in x to preserve the second order approximation of the whole method. The
trapezoidal approximation suffices for the second order but higher order
methods are often even faster. Therefore, we use adaptive Lobatto

quadratures.
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VOLANT

Jumps with a finite activity (Cont'd)
According to the above representation the 2d PIDE now reads

0

EW(S(Q?),UT,UZ,T) = L1aW(S(z),vr, v, 7))+ I(S(x),vr,v1,T)
o—lul/v;
I(S(x),vr,v,7) = /W(S(w)ey,vr,vlﬁ))\ = dy
s, s, o? o? o°
Lia = ko + k1% + k2 0. + kll@ + k12 5200, + ka2 902
— 1 0*¢(2)J ()
E - ko = —§Td — i/ Vi(vi), ki1 = Vi(v) 5 ; k12 = opiovE(x)ni(vi),
E .
1 1 dln J
= k= Sl r) — BT | 6) - SVt @ )
2 2 dx
Kk VY 1 5 o danZ(’Uq,) _M
by = (1= Vi(w)) = grovmi(vi) — ==, ko2 = ——
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Jumps with a finite activity (Cont'd)
According to the above representation the 2d PIDE now reads

(%_W(S(a:),vr,vlﬁ) = L1aW(S(z),vr, v, 7))+ I(S(x),vr,v1,T)
o—lul/v;
I(S(z),vr, v, T) :/W(S(x)ey,vr,vlﬁ))\ = dy
s, s, o? o? o?
Lig = ko + kl% + ko 9, + kll@ + k12 D200, + k228—vi2
1 & (z)J

ko= —5ra—vvVi(vi),  ku= Vi) 28 (? 2 - opiovE(x)n:(vi),

I N I AT o022 (o) S I (2)
b = {74 = 1) = B/ | €(2) = Vi) "€ ) T

K PN S T dln J;(v;) B 0‘2/771'(’02-)
by = T (1 =Vi(v)) = grovm(vi)— ==, koo = ——7—

Bl As one of the limits of our integrals is infinite it has to be truncated to
reduce the region of integration to a bounded interval. For options with
the existing upper barrier, in the integral fooo the upper limit can be
truncated to H. This amounts to the truncation of large jumps. For the

detailed discussion of this issue see Cont, Volchkova 2003.
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Jumps with a finife activity (Cont'd)
Bl Now let us introduce a grid in y - y;, ¢ = 1...N. If this grid is uniform or

adaptive in general it doesn’t coincide with the grid in variable x or
S(z). Therefore, to find the value of Z(S(xz)eY?, v, v, T) at least linear
interpolation has to be used at each point : =1, ..., N to preserve second
order of approximation. Under this procedure, one has to check if the
value S(x)eY" belongs to the computational domain on x. Otherwise, the
value of Z is set to the corresponding boundary value. For instance, in

case of a double barrier option it must vanish outside the barriers.
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Jumps with a finite activity (Cont’'d)
Bl Now let us introduce a grid in y - y;, ¢ = 1...N. If this grid is uniform or
adaptive in general it doesn’t coincide with the grid in variable x or
S(z). Therefore, to find the value of Z(S(xz)eY?, v, v, T) at least linear
interpolation has to be used at each point : =1, ..., N to preserve second

order of approximation. Under this procedure, one has to check if the

value S(x)e?" belongs to the computational domain on x. Otherwise, the

.. value of Z is set to the corresponding boundary value. For instance, in
e case of a double barrier option it must vanish outside the barriers.

E

o Bl When the activity is infinite (for instance, the VG model) it is

E =

well-known that last two terms under the integral can not be integrated
out, because they don’t exist under such a kernel. Therefore, we must

remain them under the integral and treat them as a part of the integral.
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Jumps with a finite activity (Cont’'d)
Bl Now let us introduce a grid in y - y;, ¢ = 1...N. If this grid is uniform or
adaptive in general it doesn’t coincide with the grid in variable x or
S(z). Therefore, to find the value of Z(S(xz)eY?, v, v, T) at least linear
interpolation has to be used at each point : =1, ..., N to preserve second

order of approximation. Under this procedure, one has to check if the

value S(x)e?" belongs to the computational domain on x. Otherwise, the

.. value of Z is set to the corresponding boundary value. For instance, in
e case of a double barrier option it must vanish outside the barriers.

E

o Bl When the activity is infinite (for instance, the VG model) it is

E =

well-known that last two terms under the integral can not be integrated
out, because they don’t exist under such a kernel. Therefore, we must

remain them under the integral and treat them as a part of the integral.

Bl In our FD scheme we treat the integral as a source term using its value
from the previous time step. In case of jumps of the finite activity we
could integrate the second and third terms out and add them to the
corresponding terms in the differential part, further applying the below
described method.
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FD scheme

Bl Crank-Nicholson scheme where approximation of the source term is

made by using a one-side finite difference to preserve the second order

approximation in time. Let W = W (z, v,, v;)

wrtt w1 . 3 1.
7 —§(L1dW T L gWh) I - S

2 2
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FD scheme

Bl Crank-Nicholson scheme where approximation of the source term is

made by using a one-side finite difference to preserve the second order

approximation in time. Let W = W (z, v,, v;)

wrtt w1 1 3 1 1
= —(L1gW" LygW"™) + =I" — 1",
0 2( 1d + LigW?") + 5 5
Bl As the initial (terminal) condition is not sufficiently smooth, at first
E- three steps we use a fully implicit Euler scheme
E
n—+1 n

— %4 4

FE = 9

providing O(#) approximation. This increases stability of the whole
scheme and often allows one to avoid oscillations inherent to the
Crank-Nicholson method.
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FD scheme

Bl Crank-Nicholson scheme where approximation of the source term is

made by using a one-side finite difference to preserve the second order

approximation in time. Let W = W (z, v,, v;)

Wn+1 . Wn
0

1 " n 3., 1 _,_
= S (LaaW"™™ 4 LigW™) + 21" — 21"

Em Bl As the initial (terminal) condition is not sufficiently smooth, at first
E- three steps we use a fully implicit Euler scheme
E 11
Wn T Wn n n
[ | = leW +1 + I
E = 9

providing O(#) approximation. This increases stability of the whole
scheme and often allows one to avoid oscillations inherent to the
Crank-Nicholson method.

Bl Alternative to the Crank-Nicholson scheme we also use the BDF2 scheme

(see Hundsdorfer and Verwer)

wntt = gwn — %W”_l + gﬁleW”“ + ge 21" — 1" 7]
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VOLANT 7ramimG

Approximation of derivatives

Bl We use standard second-order accurate central finite differences.

5. Wi = Wi—l—l,jh_lwi—l,j’ 5y Wiy = Wi,j—l};Wi,j—l (6D
hi h3
52 TV — Witij41 — Wit1,-1 — Wica 501 + Wi i1
zv VVij Ahs h2 )
E .
E
E .
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VOLANT 7ramimG

Approximation of derivatives

Bl We use standard second-order accurate central finite differences.

5o Wij = Wi+1,j}: Wiors 5w = Wi,j—lh— Wij—1 66
1 2
5§Wij _ Wz’—H,j - 2”2,3’ + Wz’—l,j7 512)sz _ Wz’,j—H — 2“2’73’ —+ W’i,j—l,
h’l h2
Wivijr1 — Wi -1 —Wioa j010 + Wi 5

62, Wij =

4h1h2

At 4 =0 and 7 = N2 we impose a Neumann-wise boundary condition

approzimated using the central finite difference operators

W = Wig1,-1 — 2V[2/z',0 + Wi—1.1 _ 0 (66)
hi
S Wiy = Wit1i, N+1 — 2“;;,N + Wi_1,n—1 _ 0
2

From this it follows that the fictitious grid point values W; _; and
W; n+1 that lies outside the computational domain could be
expressed via the known grid point values. We can use this
knowledge to eliminate all fictitious grid point values appearing in
the stencil.
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FD equation
Bl Therefore, for the internal points i = 1...N; — 1,7 =1...No — 1 we obtain

the following scheme

. k k k k
Lia(2,7) = [ = Wi_1,j—1+ (— S 11) Wi_1,; — iWi—l,j—i—l]

4hihe 2h1 h% 4hiho
ko koo ki1 koo ko koo
_ W, i 9 _ Wi 2 22
K %hs hé) ’ 1+( S hé) i (2hz " hé) ’“1]

k12 k1 ki1 k12
_ Wit i Wiit i + —2 Wit
+ { 27 o +1,5—1 + <2h1 + 12 ) +1,j T +1,]+1:|

+ O(hT + hi + hiho)
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FD equation s
Bl Therefore, for the internal points ¢ = 1...N; — 1,5 = 1...N5 — 1 we obtain

the following scheme

. k k k k
le(%J):[ = Wz‘—l,j—1+(— S 11)Wi—1,j_ L Wi—l,j+1]

4hihe 2h1 h% 4hiho
ko koo ki1 koo ko koo
_ W, i 9 _ Wi 2 22
K %J+@> ”1+(Td hy @) ”+(%?+@) ”“]

k12 k1 k11 k12
_ Wit i Wit s Wit s
+ { Ahihy Vit + <2h1 + B2 ) +1,5 T 2hi oo +1,g+1]

+ O(hT + hi + hiho)

Bl This system of equations can be represented in a matrix form as

— AP, +-C1P2 = F;
_qu)j—l -+ Cj(I)j — Bj(I)j_|_1 = Fj 13 =2,N>—1
—ANPN,—1 +CONPN = Fi

and can be effectively solved by a block LU factorization.

Itkin, Carr “New splitting FD method to efficiently price barrier options under Stochastic Skew Model”. Computational Methods in Finance, 2007. - p. 29/-



Bloomberg

Validation of the scheme against the
Heston model
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\/O / i da Ti On Bloomberg
Bl Heston model

dS = Sudt+ Svvdw™® (69)
dv = k(O —v)dt+ oy /vdW?,
where W1 and W) are Brownian motions with correlation p, & is
the rate of mean-reversion, o is the volatility of variance v, 6 is a

long term run value, u is the drift. All parameters in the Heston

model assume to be constant.
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VO / i da Ti On Bloomberg
Bl Heston model

dS = Sudt+ Svvdw™ (70)
dv = k(O —v)dt+ oy/rdW?,

where W) and W) are Brownian motions with correlation p, & is
the rate of mean-reversion, o is the volatility of variance v, 6 is a
long term run value, p is the drift. All parameters in the Heston

model assume to be constant.

As can be seen this equation looks exactly like our 2d PIDE if one
omits the integral term, put oy = 1,0 = 1 and use values of r; and
r¢ that are twice these values in the Heston model.
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Va / i da Ti On Bloomberg
Bl Heston model

dS = Sudt+ Svvdw™ (71
dv = k(O —v)dt+ oy/rdW?,

where W) and W) are Brownian motions with correlation p, & is

the rate of mean-reversion, o is the volatility of variance v, 6 is a

E =

.- long term run value, p is the drift. All parameters in the Heston
) model assume to be constant.

E .

= As can be seen this equation looks exactly like our 2d PIDE if one

omits the integral term, put oy = 1,0 = 1 and use values of r; and
r¢ that are twice these values in the Heston model.

Benchmarks: At p =0 and rq = r¢ an analytical solution and
calculator are available at

http://www.wilmott.com/messageview.cfm?catid=10&threadid=9893&STARTPAGE=1.
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VO / i da Ti On Bloomberg
Bl Heston model

dS = Sudt+ Svvdw™ (72)
dv = k(O —v)dt+ oy/rdW?,

where W) and W) are Brownian motions with correlation p, & is

the rate of mean-reversion, o is the volatility of variance v, 6 is a

E =

.- long term run value, p is the drift. All parameters in the Heston
) model assume to be constant.

E .

= As can be seen this equation looks exactly like our 2d PIDE if one

omits the integral term, put oy = 1,0 = 1 and use values of r; and
r¢ that are twice these values in the Heston model.

Benchmarks: At p =0 and rq = r¢ an analytical solution and
calculator are available at

http://www.wilmott.com/messageview.cfm?catid=10&threadid=9893&STARTPAGE=1.

Bl Ceneral case - FD solution of T.Kluge 2002

http://kluge.in-chemnitz.de/tools/pricer/
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Validation -analyfical resulfs

In our tests we used parameters of the Heston model given in the below
Table. We also used h1 = hs = 0.01,0 = 0.01 and V,q. = 0.5.

T Tq=Tf K L H oy K S p
0.3 0.05 100 90 110 0.2 5 0.02 0
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In our tests we used parameters of the Heston model given in the below
Table. We also used h1 = hs = 0.01,0 = 0.01 and V,q. = 0.5.

T Ty =Tf K L H oy K S p
0.3 0.05 100 90 110 0.2 5 0.02 0

Surprisingly, it turned out that condensing mesh points in the vicinity of the

barriers make the agreement worse. However, the accuracy significantly

E .

Em improves if we condense mesh points around the strike, the initial level of the
Em volatility, and in the vicinity of the boundary v; = 0. So in further

. calculations we used o, = ag = 0.1, axg = ap = o = 20.
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Validation -analyfical resulfs

In our tests we used parameters of the Heston model given in the below
Table. We also used h1 = hs = 0.01,0 = 0.01 and V,q. = 0.5.

T Ty =Tf K L H oy K S P
0.3 0.05 100 90 110 0.2 5 0.02 0

Surprisingly, it turned out that condensing mesh points in the vicinity of the

E =

- — barriers make the agreement worse. However, the accuracy significantly

Em improves if we condense mesh points around the strike, the initial level of the
Em volatility, and in the vicinity of the boundary v; = 0. So in further

E =

calculations we used ay, = ag = 0.1, ax = ag = a0 = 20.

92 94 96 98 100 102 104 106 108
A 0.20174 0.39878 0.58045 0.72785 0.81660 0.82353 0.73487 0.55263 0.29645
BDF2 0.20079 0.39716 0.57897 0.72468 0.81511 0.82385 0.73625 0.55458 0.29768
CN 0.20060 0.39683 0.57861 0.72445 0.81514 0.82417 0.73678 0.55513 0.29803
A-BDF2 0.00095 0.00162 0.00148 0.00317 0.00149 -0.00032 -0.00138 -0.00195 -0.00123
A-CN 0.00114 0.00195 0.00184 0.00340 0.00146 -0.00064 -0.00191 -0.00250 -0.00158

Table 3: Comparison of the analytical and our BDF2 and CN numerical solu-
tions at Vo = 0.03
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Vo 0.0001 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.1 0.4
A 1.36083 1.34814 1.18203 0.98650 0.81660 0.67575 0.55992 0.46453 0.22154 0.00088
BDF2 1.36642 1.36203 1.18424 0.98596 0.81512 0.67399 0.55813 0.46278 0.22067 0.00088
CN 1.36499 1.36057 1.18352 0.98575 0.81514 0.67412 0.55831 0.46300 0.22095 0.00090
A-BDF2 -0.00559 -0.01389 -0.00221 0.00054 0.00148 0.00176 0.00179 0.00175 0.00087 0
A-CN -0.00416 -0.01243 -0.00149 0.00075 0.00146 0.00163 0.00161 0.00153 0.00059 -0.00002

Table 4: Comparison of the analytical and our BDF2 and CN numerical solu-
tions at S = 100
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Validation - analytical results
Vo 0.0001 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.1 0.4
A 1.36083 1.34814 1.18203 0.98650 0.81660 0.67575 0.55992 0.46453 0.22154 0.00088
BDF2 1.36642 1.36203 1.18424 0.98596 0.81512 0.67399 0.55813 0.46278 0.22067 0.00088
CN 1.36499 1.36057 1.18352 0.98575 0.81514 0.67412 0.55831 0.46300 0.22095 0.00090
A-BDF2 -0.00559 -0.01389 -0.00221 0.00054 0.00148 0.00176 0.00179 0.00175 0.00087 0
A-CN -0.00416 -0.01243 -0.00149 0.00075 0.00146 0.00163 0.00161 0.00153 0.00059 -0.00002

Table 5:

Comparison of the analytical and our BDF2 and CN numerical solu-
tions at S = 100

FE =
Em In the below tests we used rq = 0.05,7¢ = 0.03, p = —0.5, Vo = 0.03.
[ |
[ | S 92 94 96 98 100 102 104 106 108
— Kluge 0.27799 0.54906 0.78915 0.95899 1.02546 0.97333 0.81068 0.56790 0.28458
BDF2 0.27846 0.54913 0.78888 0.95785 1.02812 0.97914 0.81804 0.57451 0.28795
Abs. error -0.00047 -0.00007 0.00027 0.00114 -0.00266 -0.00581 -0.00736 -0.00661 -0.00337
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Validation - analytical results
Vo 0.0001 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.1 0.4
A 1.36083 1.34814 1.18203 0.98650 0.81660 0.67575 0.55992 0.46453 0.22154 0.00088
BDF2 1.36642 1.36203 1.18424 0.98596 0.81512 0.67399 0.55813 0.46278 0.22067 0.00088
CN 1.36499 1.36057 1.18352 0.98575 0.81514 0.67412 0.55831 0.46300 0.22095 0.00090
A-BDF2 -0.00559 -0.01389 -0.00221 0.00054 0.00148 0.00176 0.00179 0.00175 0.00087 0
A-CN -0.00416 -0.01243 -0.00149 0.00075 0.00146 0.00163 0.00161 0.00153 0.00059 -0.00002

Table 6:

tions at S = 100

In the below tests we used rq = 0.05,7¢ = 0.03, p = —0.5, Vo = 0.03.

Comparison of the analytical and our BDF2 and CN numerical solu-

S 92 94 96 98 100 102 104 106 108

Kluge 0.27799 0.54906 0.78915 0.95899 1.02546 0.97333 0.81068 0.56790 0.28458
BDF2 0.27846 0.54913 0.78888 0.95785 1.02812 0.97914 0.81804 0.57451 0.28795

Abs. error -0.00047 -0.00007 0.00027 0.00114 -0.00266 -0.00581 -0.00736 -0.00661 -0.00337
Same at S = 100.

VO 0.0001 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.1 0.4
Kluge 0.69085 1.38448 1.55071 1.26475 1.02546 0.83472 0.68288 0.56085 0.26418 -0.01741
BDF2 1.78635 1.83843 1.56712 1.27043 1.02812 0.83532 0.68158 0.55801 0.25625 0.00092

Abs. error -1.09550 -0.45395 -0.01641 -0.00568 -0.00266 -0.00060 0.00130 0.00284 0.00793 -0.01833
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Validation - analytical results
Vo 0.0001 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.1 0.4
A 1.36083 1.34814 1.18203 0.98650 0.81660 0.67575 0.55992 0.46453 0.22154 0.00088
BDF2 1.36642 1.36203 1.18424 0.98596 0.81512 0.67399 0.55813 0.46278 0.22067 0.00088
CN 1.36499 1.36057 1.18352 0.98575 0.81514 0.67412 0.55831 0.46300 0.22095 0.00090
A-BDF2 -0.00559 -0.01389 -0.00221 0.00054 0.00148 0.00176 0.00179 0.00175 0.00087 0
A-CN -0.00416 -0.01243 -0.00149 0.00075 0.00146 0.00163 0.00161 0.00153 0.00059 -0.00002

Table 7: Comparison of the analytical and our BDF2 and CN numerical solu-
tions at S = 100

FE =
Em In the below tests we used rq = 0.05,7¢ = 0.03, p = —0.5, Vo = 0.03.
[ |
[ | S 92 94 96 98 100 102 104 106 108
— Kluge 0.27799 0.54906 0.78915 0.95899 1.02546 0.97333 0.81068 0.56790 0.28458
BDF2 0.27846 0.54913 0.78888 0.95785 1.02812 0.97914 0.81804 0.57451 0.28795
Abs. error -0.00047 -0.00007 0.00027 0.00114 -0.00266 -0.00581 -0.00736 -0.00661 -0.00337
Same at S = 100.
Vo 0.0001 0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.1 0.4
Kluge 0.69085 1.38448 1.55071 1.26475 1.02546 0.83472 0.68288 0.56085 0.26418 -0.01741
BDF2 1.78635 1.83843 1.56712 1.27043 1.02812 0.83532 0.68158 0.55801 0.25625 0.00092
Abs. error -1.09550 -0.45395 -0.01641 -0.00568 -0.00266 -0.00060 0.00130 0.00284 0.00793 -0.01833

1. Negative option price at Vo = 0.4. 2. Different boundary conditions at the
origin V' = 0.
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Numerical results
Bl Splitting for two-step FD schemes - how to choose C" ' (z, Vg, V1, 0)?

Our numerical experiments showed that the total solution is very

sensitive to this choice. Therefore, we use a one-step method - the

Crank-Nicholson method. But still 2nd order in time and space.
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Numerical results
Bl Splitting for two-step FD schemes - how to choose C" ' (z, Vg, V1, 0)?

Our numerical experiments showed that the total solution is very

sensitive to this choice. Therefore, we use a one-step method - the

Crank-Nicholson method. But still 2nd order in time and space.

Also despite theoretically the order of operators L1 and L2 doesn’t
matter, our test showed that there exist a slight difference in the results
when the order of the operators is changed. That is why we used the
sequence Li, L2 at every odd step in time, and the sequence L2, L1 at
every even step in time, thus providing an additional symmetry of

splitting.
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Numerical results
Bl Splitting for two-step FD schemes - how to choose C" ' (z, Vg, V1, 0)?

Our numerical experiments showed that the total solution is very

sensitive to this choice. Therefore, we use a one-step method - the

Crank-Nicholson method. But still 2nd order in time and space.

Also despite theoretically the order of operators L1 and L2 doesn’t

matter, our test showed that there exist a slight difference in the results

:: when the order of the operators is changed. That is why we used the
i sequence Li, L2 at every odd step in time, and the sequence L2, L1 at
— every even step in time, thus providing an additional symmetry of
Em splitting.

Further first we consider a pure diffusion process with no jumps. This is
a barrier call option which parameters were given in the Table before,
and rq = 0.05,ry =0.02,0 =0.2,pr = 0.7, p, = —0.2,k =0.1. We
choose the computational domain as £L <z <'H, 0 < Vg < 0.5 = Vjhaz,

0 <V <0.5 = V4. Parameters of the grid are same as in the previous
section. The grid steps in space and time are h; = 0.05, ho = 0.025,

6 = 0.02.
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Resulfs - no jumps

The double barrier option value as a function of . Parameters

are: 0 = 0.2,pr = 0.7, pr = —0.2, k = 0.1. Other parameters - see Table.
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Results - no jumps

The double barrier option value as a function of . Parameters

are: 0 = 0.2,pr = 0.7, pr = —0.2, k = 0.1. Other parameters - see Table.
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Results - no jumps

The double barrier option value as a function of .

Parameters of the test are: 0 = 0.2, pr = 0.7, pr = —0.2,k = 0.1.
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Resulfs - the Kou model

Bl Next we consider a jump diffusion process where jumps of the finite

activity. To simulate these jumps we use a Kou double exponential

model with the following values of parameters: a = —1,v; = 2, A = 10.
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Bl Next we consider a jump diffusion process where jumps of the finite

activity. To simulate these jumps we use a Kou double exponential

model with the following values of parameters: a = —1,v; = 2, A = 10.

Again we price a barrier call option which parameters were given in the
Table, and rq = 0.05,7f = 0.02,0 = 0.2, pr = 0.7, pr = —0.2. We choose
the computational domain as £L < x < 'H, 0 < Vg < 0.5 = Vinhaz,

0 < VL <0.4 = V4. Parameters of the grid are same as in the previous
section. The grid steps in space and time are h; = 0.05, he = 0.025,

6 = 0.02.
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Resulfs - the Kou model

Bl Next we consider a jump diffusion process where jumps of the finite

activity. To simulate these jumps we use a Kou double exponential

model with the following values of parameters: a = —1,v; = 2, A = 10.

Again we price a barrier call option which parameters were given in the
Table, and rq = 0.05,7f = 0.02,0 = 0.2, pr = 0.7, pr = —0.2. We choose
the computational domain as £L < x < 'H, 0 < Vg < 0.5 = Vinhaz,

E =

- 0 < VL <0.4 = V4. Parameters of the grid are same as in the previous
i section. The grid steps in space and time are h; = 0.05, he = 0.025,

. 0 = 0.02.

E =

The results are presented as a difference between the jump-diffusion
process and analogous process with no jumps. For convenience we

introduce the notation
0C(S,Vr, VL, T)=C,;(S,Vr, Ve, T) — Cr(S,Vr, V., T)

where C;(S, Vg, V5, T) is the option price for the jump-diffusion process
and Cy (S, Vg, VL, T) is the option price for a pure diffusion process with

no jumps.
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Resulfs - the Kou model

The value of 6C(S, Vg, VL, T) as a function of - Parameters of

the test are: 0 =0.2,pr =0.7,pr = —0.2,k = 0.1
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The value of 6C(S, Vg, VL, T) as a function of
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Conclusions
Bl For FX market Carr and Wu proposed a class of models (SSM) that capture

both stochastic volatility and skewness. They considered only the European

vanilla options while exotics could be of a great interest as well.
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Bl For FX market Carr and Wu proposed a class of models (SSM) that capture

both stochastic volatility and skewness. They considered only the European

vanilla options while exotics could be of a great interest as well.

Bl Standard numerical methods are too expensive to price this kind of options - 3d
unsteady PIDE.

[tkin, Carr “New splitting FD method to efficiently price barrier options under Stochastic Skew Model”. Computational Methods in Finance, 2007. - p. 43/«



VOLANT 7ramimG

Bloomberg

Conclusions
Bl For FX market Carr and Wu proposed a class of models (SSM) that capture

both stochastic volatility and skewness. They considered only the European

vanilla options while exotics could be of a great interest as well.

Bl Standard numerical methods are too expensive to price this kind of options - 3d
unsteady PIDE.

Bl We attacked this problem by first splitting the original 3d PIDE into two 2d
PIDE. This splitting is exact, i.e. doesn’t bring any numerical error into the
solution.
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Bl For FX market Carr and Wu proposed a class of models (SSM) that capture

both stochastic volatility and skewness. They considered only the European

vanilla options while exotics could be of a great interest as well.

Bl Standard numerical methods are too expensive to price this kind of options - 3d
unsteady PIDE.

Bl We attacked this problem by first splitting the original 3d PIDE into two 2d
PIDE. This splitting is exact, i.e. doesn’t bring any numerical error into the

solution.

B we developed a FD scheme for solving 2d PIDE which is of the second order in
time and space.
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Conclusions
Bl For FX market Carr and Wu proposed a class of models (SSM) that capture

both stochastic volatility and skewness. They considered only the European

vanilla options while exotics could be of a great interest as well.

Bl Standard numerical methods are too expensive to price this kind of options - 3d
unsteady PIDE.

Bl We attacked this problem by first splitting the original 3d PIDE into two 2d
PIDE. This splitting is exact, i.e. doesn’t bring any numerical error into the

solution.

B we developed a FD scheme for solving 2d PIDE which is of the second order in
time and space.

Bl We used coordinate transformations in order to better resolve the solution at

critical points.
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Conclusions
Bl For FX market Carr and Wu proposed a class of models (SSM) that capture

both stochastic volatility and skewness. They considered only the European

vanilla options while exotics could be of a great interest as well.

Bl Standard numerical methods are too expensive to price this kind of options - 3d
unsteady PIDE.

We attacked this problem by first splitting the original 3d PIDE into two 2d

. PIDE. This splitting is exact, i.e. doesn’t bring any numerical error into the
B solution.

o B we developed a FD scheme for solving 2d PIDE which is of the second order in
-

time and space.
-

We used coordinate transformations in order to better resolve the solution at

critical points.

Validation of the method against the Heston model (analytical and existing

numerical solutions) demonstrated its high accuracy.
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Conclusions
Bl For FX market Carr and Wu proposed a class of models (SSM) that capture

both stochastic volatility and skewness. They considered only the European

vanilla options while exotics could be of a great interest as well.

Standard numerical methods are too expensive to price this kind of options - 3d
unsteady PIDE.

We attacked this problem by first splitting the original 3d PIDE into two 2d

. PIDE. This splitting is exact, i.e. doesn’t bring any numerical error into the
B solution.

o We developed a FD scheme for solving 2d PIDE which is of the second order in
e time and space.

-

We used coordinate transformations in order to better resolve the solution at
critical points.

Validation of the method against the Heston model (analytical and existing

numerical solutions) demonstrated its high accuracy.

As it was expected computation of the integral term takes majority of time and
essentially slows down the calculations. For instance, at our PC computation of
one step in time of the pure diffusion process takes about a second while same

computation for the jump-diffusion process takes about 70 seconds.
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Thank youl
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