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Abstract

Analytical dependencies of critical supersaturation S� and oS�=oP on a carrier gas pressure P0 and temperature T

in a di�usion cloud chamber (DCC) are derived on the basis of the microscopic nucleation theory [A.L. Itkin,

E.G. Kolesnichenko, Microscopic Theory of Condensation in Gases and Plasma, World Scienti®c, New York, 1997],

specially modi®ed for the case of di�usion-limited nucleation [A. Itkin, Kinetic model of e�ect of a carrier gas on

nucleation in di�usion chamber, Aerosol Sci. Technol., in press], and a proper treatment of transport processes in a

DCC. These dependencies qualitatively reproduce available experimental data. In addition, an e�ect of nature of both

the carrier gas and condensing vapor on the observed phenomenon is discussed. The conclusion is made that the e�ect

of the carrier gas in the experiments in a DCC has no connection to the real rate of chemical reactions of clusterization

and, at other conditions (for instance, in expansion chambers), may not occur. Nevertheless, an existence of the carrier

gas in¯uence on the total nucleation rate can be of great importance for the control of nucleation. Ó 2000 Elsevier

Science B.V. All rights reserved.

1. Physical processes in a di�usion cloud chamber

Di�usion cloud chambers (DCCs) have fre-
quently been used when investigating homoge-
neous nucleation. The typical scheme of an
experiment on studying nucleation in DCCs is as
follows [3]. A DCC usually consists of two hori-
zontal plates ± top cold and bottom hot, but an
inverse scheme has also been utilized (for instance,
by Ref. [4]). Over the bottom plate, there is a liquid
whose vapor condensation is a subject of
the research. The space between plates is usually

®lled in with a background gas. By virtue of the
existing distribution of temperature and pressure,
the vapor evaporating from the bottom surface
moves due to di�usion through a chamber, then
cooling and again condensing. As a result of these
processes, an appropriate steady-state distribution
of supersaturation S over the height of the
chamber n (usually reckoned from the bottom
plate) is established. An occurrence of drops of
the condensed vapor is detected by some kind
of light-scattering or even visually. With the help of
such a system, it is possible to determine a steady-
state nucleation rate (i.e. a quantity of drops of the
detectable size formed in a unit volume in
time units). Other characteristics ± temperature,
pressure, supersaturation ± are usually found
solving appropriate equations of di�usion and
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heat conduction under appropriate boundary
conditions set on the walls of the chamber. The
equipment described was repeatedly applied to
research homogeneous nucleation of various sub-
stances. The experimental conditions are usually
chosen so that outside a narrow zone where S
reaches its maximum (zone N), the latter is prac-
tically equal to unity, and nucleation is not ob-
served there.

As the vapor concentration in the chamber is
low as compared with the concentration of the
bu�er gas, the processes of condensation do not
practically in¯uence the distribution of tempera-
ture and pressure over the height of the chamber,
which is determined only by the boundary condi-
tions at the walls and by the carrier gas pressure
P0. Moreover, it is possible to show that gradients
of the temperature d �ln T �=dn � 0:1 cmÿ1 and
density realized in the chamber are small as com-
pared with gradients of the clusters' concentra-
tions and, in the ®rst approximation, may be
neglected when describing the nucleation kinetics
in DCCs.

In the existing theories of homogeneous nucle-
ation, it is accustomed to consider that a concen-
tration of a noncondensible (background) gas
does not a�ect the rate of nucleation. For in-
stance, classical nucleation theory (CNT) origi-
nally treats the nucleation process as an
isothermal one. So, from the point of view of this
theory, a high concentration of the carrier gas just
provides such isothermal conditions while at low
concentrations, one should probably take care
about taking into account nonisothermal e�ects.
That is why when in Refs. [3,5] and some other
works, it had been discovered that critical super-
saturation of the condensible vapor linearly in-
creases with the increase of the background gas
pressure, it stimulated a new and signi®cant in-
terest in this problem. A number of investigators
have attempted to model these experimental re-
sults that have been published representing the
e�ect of the background gas on nucleation with
little or no success.

The author is aware of at least two main ap-
proaches exploited to explain the background gas
e�ect: The ®rst one considers an in¯uence of the
background gas pressure on thermophoretic forces.

It assumes that the more is this pressure, the
more droplets move to the top wall of the chamber
and are deposited on it that is reduced the counted
number of droplets and measured nucleation rate,
respectively. The other one takes into account that
the droplet growth rate at continuous regime is
inversely proportional to P0. Both approaches are
not able to predict quantitatively the observed
dependence of critical supersaturation of the
pressure variation. Moreover, nucleation rate
measured in DCC approximately exponentially
depends upon P0 while the discussed theories pre-
dict essentially a weaker e�ect.

One more theoretical approach presented in a
recent paper [6] accounts for the in¯uence of high
pressure background gases on the vapor-to-liquid
nucleation process. The key idea is to treat the
carrier gas pressure as a perturbation parameter
that modi®es the properties of the nucleating
substance. Two important mechanisms are identi-
®ed in this respect. With increasing carrier gas
pressure, the saturated vapor density tends to in-
crease (enhancement e�ect), whereas the surface
tension generally decreases. The authors use this
approach to explain the results of expansion wave
tube experiments. Note that the enhancement ef-
fect was already discussed in the literature as ap-
plied to nucleation in nozzles and jets (see, for
instance, Ref. [7]), but for DCC, it is small, or in
other words, P0 is small to turn such a mechanism
on.

In this paper, we propose a new model that
allows not only a qualitative but also a quantita-
tive explanation of the observed phenomenon. A
®rst part of this investigation is presented in
Ref. [2], and some preliminary results were re-
ported in Refs. [8,9] while here we derive a direct
dependence of critical supersaturation on the back-
ground gas pressure as well as some other depen-
dencies observed in experiments. Within this model,
as di�usion and nucleation are supposed to be main
processes in¯uencing behavior of the condensible
vapor in DCCs. Despite the dominant role of just
these processes being revealed more than 10 years
ago, so far in the existing literature, one can dis-
cover some attempts to explain the e�ect of the
background gas by making an impact on other
processes such as already mentioned thermopho-
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retic forces, droplets' growth, etc. That is why we
pay special attention brie¯y discussing in Appen-
dix A the role of other processes as well as under
what conditions they can play a signi®cant role in
DCCs.

1.1. Main physical idea of the model

First, we have to discuss the main physical idea
of our theory, which, in more detail, is given in
Ref. [2]. We consider nucleation process when a
certain molecule attaches a cluster. In the existing
theories, usually rate constant of this process is not
supposed to depend on any characteristic (for in-
stance, pressure) of background gas. This is true
unless transport of this molecule to the surface of
the cluster is regulated by di�usion of the molecule
through the background gas, and the rate of
chemical reaction (attachment of the molecule to
the cluster) is much more than the rate of di�usion.
As shown in Ref. [2], typical conditions in DCCs
just meet these requirements, and hence, this is the
case when nucleation kinetics is a di�usion-limited
one.

To give more substantial treatment of this
problem, let us consider a usual expression of the
nucleation theory for ¯ux Ij in a space of the
available cluster's sizes:

Ij � K�j njÿ1 ÿ Kÿj nj: �1�

Here K�j is the rate constant of the formation of
j cluster which consists of j molecules, from the
jÿ 1 one by attaching a monomer, Kÿj is the dis-
sociation rate constant of j cluster, nj is the con-
centration of j clusters. In view of low
concentration of dimers, trimers, etc. we neglect
their contribution to K�j ; therefore, K�j / n1,
monomer number concentration. Thus, if a certain
cluster transits to another sort by attaching a
monomer, the rate of this process in the usual
nucleation theory is proportional to the free-mo-
lecular ¯ux of monomers on the surface of this
cluster, and this ¯ux is determined by the numer-
ical concentration of monomers.

Under the conditions of DCC, this assumption
stops to be valid because the real concentration of

monomers at the external boundary of the
Knudsen layer over the cluster surface di�ers from
the concentration n1 determined far from the
cluster because of the presence of the background
gas. This is caused by the existence of a concen-
tration jump in the vicinity of the cluster surface,
and the value of this jump becomes considerable
when the mean free path of the condensing mole-
cules in the carrier gas is of the order of the cluster
radius.

In Fig. 1 borrowed from Ref. [2], an isolated
cluster surrounded by a mixture of the condensible
vapor and background gas is presented. For
DCCs, the number density of the background gas
n0 is a few orders more than the number density of
the vapor n1. Therefore, the mean free path of the
vapor molecule in its own vapor kv is about two
orders more in length than the mean free path of
this molecule in the carrier gas kvg. We consider
pointwise molecules so that at this assumption,

Fig. 1. Areas around a cluster, R is the radius of the cluster, l is

the radius of the condensing molecule, kv and kvg are mean free

paths of vapor molecules in the vapor and in the carrier gas,

T ; Td; Tk and n1; n01; nk are temperatures and numerical den-

sities of the vapor in the respective areas, F is the area of a free-

molecular ¯ow, D, the area of di�usion of the vapor through

the carrier gas, V, the a ¯uid dynamic area.
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collision between molecule and cluster occurs
when this molecule reaches the surface of the
absorbing sphere of the radius R� l, R is the
cluster radius. In Fig. 1, Tk and nk are the tem-
perature and concentration of the incident mole-
cules at the surface of the droplet, Td and n01 are
the corresponding parameters at the internal in-
terface which is located approximately at the dis-
tance kvg from the surface of the absorbing sphere,
T and n1 are the corresponding parameters at
the external interface which is located approxi-
mately at the distance of kv from the surface of the
sphere.

In area V, a behavior of both the vapor and the
carrier gas is described by usual ¯uid dynamic
models. In area D, vapor molecules collide only
with the carrier gas while in area F, vapor mole-
cules move as in vacuum without collisions with
the velocity u0. Therefore, the actual ¯ux of the
vapor molecules per unit time on j cluster in
the simplest approximation could be written in the
form,

Kj � 4pcc�R� l�2�u0n01 ÿWo�; �2�

where cc is a condensation coe�cient, R is the
droplet radius, Wo is the ¯ux of outcoming mole-
cules (evaporating and re¯ecting from the cluster
surface), n01 should be found from the solution of
the Knudsen layer problem with boundary con-
ditions established at the external interface and at
the surface of the absorbing sphere. As shown in
Ref. [2], in a rough approximation,

n01 �
n1 � n1eaj

1� aj
;

aj � u0�R� l�2kv

D1�R� l� kvg��R� l� kv�Dj
; �3�

R � R�j�;

and hence,

K�j � 4p�R� l�2u0n1

S � aj

S�1� aj� ; �4�

where S � n1=n1e is supersaturation, n1e is a
monomer equilibrium concentration, D1 is a co-
e�cient of binary di�usion of vapor through the

carrier gas. It is also shown that u0 is equal to the
free-stream velocity of the carrier gas at the in-
ternal interface (Fig. 1), i.e.

u0 � 8kBTd

pm0

� �1=2

�5�

with m0 being a molecular mass of the background
gas and kB, the Boltzmann constant. As far as Dj is
concerned, as one can see from Fig. 1, only a
certain fraction of the vapor molecules having
di�used to point ``a'' from the external interface
can collide with the cluster, namely those that have
the direction of the velocity within the angle h. On
the other hand, in point ``a'', all directions of the
velocity are equiprobable, and hence, as follows
from Fig. 1, the fraction of the collided molecules
is Dj � arcsin��R� l�=�R� l� kvg��=p. Strictly
speaking, to estimate this fraction more precisely,
one has to consider a multidimensional di�usion
equation, but for a qualitative estimation, our
consideration is su�cient. This problem has been
explored in more detail in Ref. [10].

From Eq. (4), we see that if aj � 1, i.e. if the
di�usion rate is much more as compared with the
rate of the chemical reaction, this formula gives a
commonly used expression of the rate constant of
the cluster formation. On the contrary, if aj � 1,
the rate of the cluster formation is determined
by the transfer of the reacting molecules to the
surface of the cluster.

In Ref. [2], it is shown that under conditions of
DCC, aj is of the order of unity for monomers and
increases as j increases. This gives rise to a new
expression of the rate constant of the cluster for-
mation which has never been utilized in the theory
of nucleation. Using a general expression of the
coe�cient of binary di�usion of monoatomic gases
given by kinetic theory [11,12] based on the fol-
lowing assumptions made: (i) molecules interact
like hard spheres with the Maxwellian distribution
of velocities, (ii) the concentration of the carrier
gas is much more than the concentration of the
vapor, (iii) the attractive part of the potential de-
scribing the interaction between vapor molecules is
taken into account by introducing the Sutherland
correction, we obtained in Ref. [2]
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Here C is the Sutherland constant, m1 is a vapor
molecular mass, ql is liquid density, pr2

vg=4 is a
collision cross-section of the vapor and gas mole-
cules; therefore, rvg is approximately a half of the
sum of e�ective diameters of the vapor and gas
molecules. We also introduced notation K�

j for
the traditional (kinetic) rate constant, 1 and Hj is
our correction for the case of the di�usion-limited
kinetics. As follows from analysis of Ref. [2],
Hj < 1 and is inversely proportional to P0, the
pressure of the carrier gas because the di�usion
coe�cient is inversely proportional to P0. For the
sake of convenience in what follows, we will use
the old notation K�j for the traditional rate con-
stant, but, instead in our equations, the product
K�j �SHj � 1�=S appears.

As far as for the rate constant of the inverse
process Kÿj is concerned, it does not depend on the
external environment of the cluster and is deter-
mined only by intracluster processes. A convenient
approximation of Kÿj derived using the approach of
the RRKM theory has been obtained in Refs. [1,13].

1.2. Solution of kinetic equations

Despite the fact that we derived a new repre-
sentation for the cluster formation rate constant
which now depends on the background gas pres-
sure, we cannot proceed just substituting this ex-
pression into the nucleation rate, for instance,
provided by CNT. Rather, we need to reconsider

kinetic equations describing transport and nucle-
ation of vapor in DCC and try to ®nd their solu-
tions. This program has also been carried out in
Ref. [2], and below, we give only the main results
of that investigation.

According to our microscopic nucleation theory
(MNT) [1], studying mixture of gases and clusters
is treated as a mixture of ideal gases each of which
is characterized by the size of the identical clusters
composing it. Usually, MNT operates with a sys-
tem of equations describing evolution of mass
fraction of clusters which contain j molecules and
have an average internal vibrational energy cor-
responding to a quantum state k (so, actually aj�k�
is a population of this state). We assume that the
cluster mass fraction changes due to processes of
di�usion, condensation and relaxation of vibra-
tional intracluster states. However, under condi-
tions of DCC, when n0 � n1, relaxation of
intracluster vibrations is fast as compared with the
rate of nucleation limited by di�usion of the con-
densing molecules to each other. Thus, in this case,
vibrational levels of clusters are in equilibrium. In
other words, the main parameter of MNT, r, that
just speci®es size of cluster for which relaxation
rate at high levels is of the same order as con-
densation rate [1] is equal to unity. That is why
from the very beginning, we may simplify the
original system of equations given in Refs. [1,14]
expressing equilibrium populations aj�k� through
mass fractions aj according to the Boltzmann
equilibrium distribution. If so, the following con-
tinuity and di�usion equations for the mixture
components obtained in the Navier±Stokes ap-
proximation may be considered:

K�j �K�
j

SHj � 1

S�1�Hj� �K�
j

SHj � 1

S
; Hj � 1;

Hj � �R� l� kvg��R� l� kv�
�R� l�2

3kvg

32kv

��������������
1� m1

m0

r
arcsin

R� l
R� l� kvg

� �
� 3

2p2�1� C=T �
kBT

�R� l�P0r2
vg

� H
1

�j1=3 � 1� � Hjÿ1=3 at R < kv;

H � 3

2p2�1� C=T �
kBT

P0r2
vg

4pql

3m1

� �1=3

: �6�

1 It is proportional to R2 while K�j in Eq. (2) is proportional

to �R� l�2, but here we neglect this correction.

A.L. Itkin / Chemical Physics 256 (2000) 61±83 65



Here q; P ; T are the mass density, pressure and
temperature of the mixture, t is the time, v is the
mass-average velocity vector, ai and Vi are the
mass fraction and di�usion velocity vector of i
clusters, Xi is their mole fraction, f i is the mass
force acting on these clusters, Dij is the coe�cient
of binary di�usion of the gas composed of i clus-
ters through the gas composed of j clusters, DT;i is
the thermal di�usion coe�cient, ni are the corre-
sponding numerical densities (concentrations), in-
dex i � 1; . . . ;N represents the cluster gases, and
i � 0, the neutral gas, Ui is the kinetic source term
associated with condensation. In accordance with
Refs. [1,14,15] at r � 1, Ui can be written as fol-
lows:

Uj � Ij ÿ j
j� 1

Ij�1�1ÿ djN �; j > 1;

U1 � ÿ
XN

j�2

1

j
Ij�1� dj2�; U0 � 0;

Ij � K�j hjÿ1ajÿ1a1

qj
m1�jÿ 1� ÿ Kÿj aj; hj � SHj � 1

S�1�Hj� ; �8�

however, here in contrast to usual kinetic equa-
tions of nucleation, a new term hj is presented in
the de®nition of the ¯ux Ij because as described
above, under our conditions, the nucleation ki-
netics is di�usion limited. In Eq. (8), dij is Kro-
necker's symbol.

When deriving Eq. (8), the processes of forma-
tion (dissociation) of the cluster by attaching (de-
taching) dimer, trimer, etc. as well as triple
collisions were neglected. But the law of conser-
vation of the total number of molecules in the
system has been already taken into account, be-
cause Eq. (8) holds the relationship

P
j aj � 1.

Using a method originally proposed in Refs.
[1,14], an explicit asymptotical solution of this

system is obtained in Ref. [2]. In particular, quasi-
steady concentrations of the clusters nj have a
form,

nj � njeSj
Yjÿ1

i�1

hi � njeS
Yjÿ1

i�1

i1=3 � SH
i1=3 �H

; j 6 y;

nj � nyeSy
Yyÿ1

i�1

Hi

Yjÿ1

k�y

o ln K�j�1

oj � o ln nje=nj�1;e

oj

o ln K�j�1

oj � o ln Hj

oj

; j > y; �9�

where K�j is a usual rate constant of the monomer
attachment to �jÿ 1�th cluster K�j � ccKj2=3; K �
K1�3m1=4pql�2=3

and K1 � �kBT=2pm1�1=2
is a free

molecular ¯ux per surface of a unit sphere.
In Eq. (9), parameter y is introduced as a cluster

size being a boundary between two kinds of solu-
tion. In Ref. [2], an equation for y is derived which
takes a simple form if S exceeds approximately 1.5
(as usually takes place in a zone N of active nu-
cleation in experiments in DCCs)

2b
3y1=3

ÿ ln�Shj� � 0: �10�

Two remarks have to be made: First, note that
the above formulae can be used for any arbitrary
relation between the rates of di�usion and chemi-
cal reactions because the term hj yields SHj � 1 at
small Hj � 1 (di�usion-limited nucleation), while
at high Hj (usual nucleation), it yields 1. It is in-
teresting that at high Hj, and intermediate S,
Eq. (10) yields y � j�;cl where j�;cl is critical size, a
parameter inherent to all nucleation theories. From
the physics standpoint, it is easy to see that an
individual droplet with size y is in equilibrium with
the surrounding vapor at the di�usion-limited ki-
netics, and hence, y is an analog of j�;cl in this case.

o�qai�=ot �r�qvaj� � qUi ÿr qaiVi� �

rXi �
XN

j

XiXj

Dij

� �
�Vj ÿ Vi� � ai� ÿ Xi�rp

p
� qai

p
f i

 
ÿ
XN

j�0

ajfj

!

�rT
T

XN

j�0

XiXj

qDij

DT;j

aj

�
ÿ DT;i

ai

�
; i � 0; . . . ;N ; ai � niim1=q: �7�
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But at arbitrary S and hj, the value of y di�ers
from j�;cl.

Concern of the second note is that, as shown in
Ref. [2], the quasi-steady distribution of clusters is
established within the speci®c time of evolution of
supersaturation. This time could be evaluated by
the term,

sÿ1 � ny�1;eSy�1Kÿy�2

2b
9y7=3

Yy

i�1

hi; �11�

where nje is an equilibrium concentration of j
cluster [1], bj � nje=n1e, b � 4prg2=kBT , g �
�3m1=4pql�1=3

.

1.3. What is the measured nucleation rate?

In Appendix A, we consider two sorts of clus-
ters. For large clusters (sort 1), gravity prevails
thermophoretic forces; therefore, they move to the
bottom plate, grow within this movement and, in
principle, could be registered by the detecting ap-
paratus. Small clusters, on the contrary, move to
the top plate. During this movement, they con-
tinue to grow and their further behavior is two-
fold. If before they are deposited by the wall some
drops manage to reach the so-called ``radius of
soaring'' at which the resulting force vanishes, in
what follows, such drops (sort 2) will fall down
and can be registered. Otherwise, they will be de-
posited by the wall and cannot be registered.

As follows from Eq. (9), cluster distribution of
sizes monotonously decreases. Therefore, in zone
N, the concentration of clusters of sort 1 is much
lower than that of clusters of sort 2 (because the
size of the clusters of sort 2 is less than that of the
clusters of sort 1). The cluster concentration
slightly varies far from zone N (because S � 1)
that holds this relationship up to the zone of
detection (zone D). Thus, while clusters of sorts
1 and 2 reach zone D in di�erent times after a
certain induction period, mainly clusters of sort 2
should be detected in the experiment.

To understand what is the nucleation rate
measured in the experiment, we use the following
consideration: At the initial stage of the DCC
work, a certain quasi-steady distribution of clus-
ters is formed corresponding to the established

distribution of S and T over the height of DCCs.
After that, clusters (droplets) start to move due to
gravity, the drag and thermophoretic forces that
results in a violation of this quasi-steady distri-
bution. A certain amount of clusters reaches zone
D and is detected. They could belong to sort 1 or
2, but in any case, all clusters capable of falling
down or reaching the top wall leave the zone of
active nucleation.

If nucleation stopped, only this falling droplets
would be registered during a short period of time
while after this period, no droplets should be vis-
ible (all of them reach either the bottom or top
plates). The ¯ux of droplets per unit square per
unit time is vgnj, where nj is their concentration.
However, experimentalists present another value ±
the number of droplets per unit volume per unit
time. For instance, it could be found by counting
the falling drops within a certain (apparently
rather long) period of time and then by dividing
this number of droplets by the time, the square of
the chamber and the width of the laser beam. If the
period of detection is more than the time necessary
for droplets to reach the bottom plate, but the
droplets are still detected, it means that, due to a
transport of vapor molecules to clusters (di�usion)
and chemical reactions between them (nucleation),
the quasi-steady distribution of clusters is restored
and new formed droplets fall down following the
previous ones. In what follows, the process is fre-
quently repeated.

From the mathematical point of view, S is a
slow variable while all nj are fast variables. This
means that at time scale of the S evolution s
variables nj do not depend on t explicitly but only
through the dependence of S�t� and T �t�. It is vice
versa at time scales of the nj evolution tj super-
saturation S is practically constant while nj vary
with time. Certainly tj � s for all j, and one can
consider s as a period of time necessary to estab-
lish a quasi-steady regime over nj.

Thus, in order to ®nd the necessary average
¯ux, we should ®nd a ratio of the concentration of
the falling droplets to the average time of re-
laxation of the quasi-steady distribution of drop-
lets:

J � njd
=s; �12�
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where J is the number of detected drops per unit
volume and time, s according to its physical sense
coincides with that given by Eq. (11), njd

approx-
imately is the concentration of clusters of a mini-
mum detectable size jd (the radius of such drops is
approximately equal to a half of the wavelength of
the detecting laser kw=2), because in view of the
exponential decrease of nj, they give the maxi-
mum contribution to the counted number of
droplets. Note that the concentrations of these
clusters in zone D is practically equal to their
concentration in zone N where they have been
formed having another size j0, i.e. if the clusters of
a certain size can be registered they are registered
all together. 2

Often experimentalists cannot detect directly
the number of droplets. For instance, if the pres-
ence of the droplets is determined by light-
scattering with the help of the Mie theory, the in-
tensity of a scattered light is proportional to the
square of the droplet. In this case (12), should be
modi®ed a little:

J � njd
qj2=3

d =s � nj0
qj2=3

d =s; �13�

where q is a respective coe�cient. Because usually
experimentalists represent their results (in partic-
ular, J) as a function of S�; T� and P0 where sub-
script ``�'' marks the point of the maximum
supersaturation or a close point of the maximum
nucleation rate, the main goal of this section is to
express explicitly J through these parameters.
However, for this purpose, a certain kinetic model
of nucleation should be introduced. Thus, we
should study in more detail processes in the zone
of active nucleation because they determine the
number of droplets which are then measured in the
experiment. But this problem has already been
considered above, and we can directly apply all the
results obtained. The only unknown parameter yet
in Eq. (13) is j0.

What is the number j0? From the physical point
of view, this is the size of a certain droplet in zone

N which reaches a visible size in zone D. In a
general case, in order to restore this number, one
should consider (i) a thermophoretic movement of
the droplet to the top of the chamber until it
reaches the radius of soaring, then (ii) precipita-
tion of this droplet with a constant velocity vg

followed by the further growth of the droplet until
it reaches the size jd, and ®nally (iii) to invert the
time (or more accurately the coordinate n) and
integrate the corresponding equations of the
movement with the following boundary condition:
the droplet has the size jd at the height of detection
nd where this drop is detected.

This is a common scheme, but let us consider a
typical experiment on nucleation of n-butanol in
helium [16] with the speci®c pressure and temper-
ature of the mixture P0 � 2±20 bar and
T0 � 300±350 K, S � 3. Direct calculations show
that under these conditions, rs is about of 0.1 lm,
kv is of the same order, kvg almost 10 times
less. Thus, droplets reach the size kvg when they
are mainly a�ected by di�usion in zone N, and
after that, grow at the transition and continual
regimes.

If one neglects gravity, we may ®nd a majorant
of the path where a certain droplet grows from kvg

to rs moving to the top wall. Indeed, the steady
velocity of the droplet is determined by equating
the drag and thermophoretic forces. Combining
this equality with the Maxwell formula (see Ap-
pendix A), we obtain

dR
dn
� Xm 1� � 3Cm� 1

�
� 2

kg

kp

� 2Ct

�
� 2CslkBT

P0m0

kg

kp

��
� Ct

�rT
T

�ÿ1

: �14�

Calculations show that the droplet reaches the
radius rs at the length about 1 lm. If we take
gravity into account, this length would be some-
what less. Thus, droplets reach the size rs imme-
diately in zone N, and therefore, no droplets
precipitate on the top wall under the conditions of
these experiments despite such a possibility has
been discussed above. In other words, while rs in
accordance with Eq. (A.9) depends on the carrier
gas pressure, this dependence cannot in¯uence

2 A small portion of these clusters certainly is deposited by

the side walls, but it does not signi®cantly change the detecting

¯ux.
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the experimental results. Hence, in what follows,
we do not consider a restricted role of the radius of
soaring and assume that the droplet grows at the
continual regime everywhere outside of zone N.

Further in order to reveal the dependence of jd

on the parameters in zone N, we should integrate
the equation,

vg

dR
dn
� Xm;

which, with allowance for the de®nition of vg and
Xm transforms, to the following one:

R4 � R4
0 � 4

Z
D1

ql

Ps�T ��S ÿ 1�
�kBT=m1�

9l
2qlg

� �
dn: �15�

Here the integral is taken from zone N to zone
D and R0 is the initial radius of the droplet in zone
N. In order to determine the integral on the right-
hand side, let us assume that T depends linearly on
n i.e. dT=dn � const. The results of more precise
numerical calculations (see, for instance, Ref. [16])
give some evidence for the assumption made. The
dependence of S on n can be found if, in the
equation describing the variation of the mass
fraction of monomers, we neglect the in¯uence of
nucleation on the distribution of monomers over
the height of the chamber that yields

d

dn
D1

d

dn
a1

a0

� �
� 0: �16�

Here a1 and a0 are mass fractions of molecules
of the condensing vapor and carrier gas, respec-
tively. Eq. (16) should be integrated with allow-
ance for the condition dT=dn � const and with the
boundary condition that S� is treated in the liter-
ature as either the maximum supersaturation over
n or supersaturation in the maximum nucleation
rate plane. Having in mind that (i) the nucleation
rate is treated by experimentalists as that predicted
by the classical theory, and (ii) according to the
experimental results, these two planes are very
close to each other, we can choose any of this
de®nitions. For instance, we choose supersatura-
tion in the maximum nucleation rate plane as S�.

In accordance with Ref. [17], the classical nucle-
ation rate is written in the form,

J � C�T �S2 exp

�
ÿ 4b3

27 ln2 S

�
;

C�T � � cc

2m1

ql

r
2pm1

� �1=2

n2
1e: �17�

Thus, the maximum of J over the vertical
coordinate of DCC n is determined by the equa-
tion,

o ln C�T �
oT

dT
dn
� 2

S
dS
dn
ÿ 4b3

27 ln2 S
3

1

T

��
� r2

r

�
dT
dn

ÿ 2

S ln S
dS
dn

�
� 0; �18�

where a commonly used linear dependence of r on
T is utilized r � r1 ÿ r2T . It is easy to show that
the ®rst two terms in Eq. (18) are small as com-
pared with the last one; that is, in other words,
means that the exponent in Eq. (17) strongly de-
pends on S� rather than the pre-exponent term.
Therefore, Eq. (18) can be reduced to the following
one:

dS
dn

����
S�S�
� ÿ 3

2

1

T�

�
� r2

r

�
dT
dn

S� ln S�: �19�

Using this relation as the boundary condition
for Eq. (16) and integrating Eq. (16) at
dT=dn � const, one gets (see Appendix B)

S�n� � S�
T
T�

1

�
� 2

L
RgT�

1

�
ÿ

�����
T
T�

r ��
� exp

�
ÿ L

RgT
T ÿ T�

T�

�
: �20�

Here L is a latent heat of the vapor, Rg is the gas
constant. It is seen from Eq. (19) that in the
maximum rate plane dS=dn has a sign opposite to
dT=dn. As for usual DCC dT =dn < 0 so
dS=dn > 0 in the maximum rate plane.

Now, substituting Eq. (20) into Eq. (15) and
integrating it, we obtain an approximate formula:
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where _T � dT=dn � const and n � 0 is a coordi-
nate of zone N. From here, we ®nally obtain

j0 � j4=3
d

�
ÿ 4g4=3 D1�

ql�

Ps�T��S�
kBT�=m1

9l�
2ql�g

f �hd�
�3=4

�22�

with hd being a coordinate of zone D and
g � �3m1=4pql�1=3

. Note that gj1=3
d may di�er from

kw=2 if an experimental procedure is designed to
detect larger sizes of the droplets in order to pro-
vide a certain level of the signal of the detector.

Direct calculations of j0, based on Eq. (22),
show that under the mentioned experimental
conditions, even monomers have the time to grow
above kw. On the other hand, as it is easy to see
from Eq. (10), individual droplets tend to evapo-
rate if j < y and grow if j > y. Thus, in this case, y
is a certain analog of the classical critical size. As
we already mentioned, among all growing clusters,
y clusters have the maximum concentration;
therefore, it is reasonable to assume j0 � y.

Now, we have all formulae to get a direct the-
oretical prediction of the nucleation rate supposed
to be measured in DCCs. We start from Eq. (12)
and substitute into it s from Eq. (11) and njd

from Eq. (9) having in mind that as we discussed
in the paragraph after Eq. (12) njd

� nj0
, but in

turn, j0 � y (see a previous paragraph). Parameter
y can be found by solving Eq. (10). Finally, it
yields

J � A�T�� exp
ÿ"
ÿ by2=3

�Yy

j�1

SH� j1=3

H� j1=3

#2

� qj2=3
d S2Kÿy�2

2b
9y7=3

; �23�

where all variables in Eq. (23) are related to zone
N, and now,

jd � y4=3

�
� 4g4=3 D1�

ql�

Ps�T��S�
kBT�=m1

9l�
2ql�g

f �hd�
�3=4

� g 4
D1 �
ql�

Ps�T��S�
kBT�=ml

9l�
2ql�g

f �hd�
� �3=4

: �24�

Note that for experiments of Heist et al.
[3,16,18], where the falling droplets were registered
visually by a telescope, Eq. (23) should be modi®ed
a little because in this case, the term qj2=3

d has to be
removed from this equation.

2. E�ect of a carrier gas

As the experimental investigations of the carrier
gas e�ect on the nucleation rate in DDCs became
relatively popular, it is possible to note from the
literature that there is a trend to present the ex-
perimental data in coordinates S��P0� or S��T��
where S� is supersaturation corresponding to J � 1
drop/cm3/s. In order to reduce the expressions of
our theory to such a form, we should insert this
value into Eq. (23), and take the logarithm of both
sides of this equation. It yields

R4 � R4
0 � 4

D1

ql

Ps�T �S
�kBT=m1�

9l
2qlg

� �����
n�0
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1
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2
� L

3RgT�

)
T�
_T
; �21�
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Here we took into account that Kÿy �
Wd�T �y2=3 exp�ÿEa=kBT � [1] where Ea is an activa-
tion energy of the molecule capable of dissociating
from the cluster, Wd�T � is a certain coe�cient de-
termined in Ref. [1]. We also neglected the term
proportional to ln y as compared with by2=3 be-
cause, under usual experimental conditions, y is of
the order of the classical critical size j�;cl, i.e. about
200±700. In addition, term qjd weakly depends on
P0 (see Eq. (24)) or even should be removed at all
(see the end of Section 1).

Our next assumption is that we consider the
case of the di�usion-limited nucleation, i.e. as was
shown above the case when Hj 6 1. This inequal-
ity is valid at least for large j while according to the
previous analysis for DCCs we might expect it as
j > 2±5. But for the sake of simplicity, we further
suppose that it is valid even for j � 2.

The assumptions made allow one to rewrite
Eq. (25) in the form,

0 � ÿby2=3 �
Z y

1

ln 1

�
� SH

j1=3

�
dj

� 1

2
ln f �T�� � ln S: �26�

Here y depends on T�; P0 and S� and is deter-
mined by Eq. (10). Thus, generally speaking,
solutions of Eq. (25) lie on a surface in a three-
dimensional space S�; T�; P0. Therefore, any
dependence such as S��P0� or S��T�� is a certain
cross-section of this surface. Further, we consider
in more detail an explicit form of such dependen-

cies and try to interpret the available experimental
data based on this consideration.

Before we pass onto a further discussion, it is
necessary to make an important note. We have
already mentioned that, under the conditions of
experiments in DCCs, the main parameter of
MNT r is about unity everywhere in the chamber.
Therefore, the only sources of the dependence of J
on P0 are the dependencies D1�P0� and H�P0�. It is
clear that these dependencies do not have a kinetic
nature but are born by a speci®city of the trans-
port processes in DCCs. It should be underlined
that such a situation is inherent to experiments in
DCCs (or HPCC) while, for instance, in nozzles
the opposite relationship usually takes place
[1,19,20] i.e. Hj is high and r�T ; S; P0� is about few
tens, and therefore, there is another ± kinetic
source of the dependence of S on P0. The physical
nature of this dependence is that the carrier gas
does not explicitly a�ect the elementary processes
of the cluster formation and decay but a�ects the
relaxation of intracluster vibrational states. But as
shown in Ref. [1], the rate of the cluster attach-
ment or detachment depends on the vibrational
state of the cluster and thus implicitly on the car-
rier gas pressure. For a more detailed discussion of
this problem see Ref. [1].

2.1. Dependence of S� upon P0

Di�erentiating Eq. (26) with respect to P0 with
allowance for Eq. (10) we obtain

�
ÿ 2b

3y1=3
� ln 1

�
� SH

y1=3

��
oy
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� 3
oSH
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1

2
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2
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ÿHy1=3 � �H�2 ln

y1=3 �H
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� o ln S
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� 0: �27�
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j�1
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H� j1=3
� 1

2
ln f �T�� � ln S ÿ 5

6
ln y � 1

2
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d

� ÿ by2=3 �
Z y

1

ln Shjdj� ln S � 1

2
ln f �T��; f �T�� � 2

9
A�T��Wd�T � exp�ÿEa=kBT �b: �25�
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Here the term in square brackets vanishes due
to the de®nition of y in Eq. (10) and the last term
on the left-hand side is small as compared with the
previous one because y � 1 and H 6 1. For just
the same reason, the leading term in braces is
y2=3=2. Thus, the solution of Eq. (27) is H�S ÿ 1� �
const or with allowance for the de®nition of H

S� ÿ S�1�T � � c1�T � 2p2�1� C=T �
3

� r2
vg

kBT
3m1

4pql

� �1=3

�P0 ÿ P01�; �28�

where S�1 and P01 are certain initial values of S�
and P0 at T� � const. As follows from Eq. (28),
S� linearly increases as P0 increases, which re-
produces the available experimental data of
Refs. [3,16,18,21]. Thus, we theoretically derived
the well-known experimental fact that in order to
provide the constant rate of nucleation J super-
saturation in the point ``�'' should be linearly in-
creased as the pressure of the background gas P0

increases.

2.2. Dependence of S� upon T�

Here we start again from Eq. (26) di�erentiating
it with respect to T�.

where again the term in the square brackets van-
ishes due to the de®nition of y in Eq. (10), and the
last term is small. As S� is about 2±3, we also omit
the terms in the second braces as compared with
the terms in the ®rst ones.

In what follows, in order to simplify the re-
maining part of Eq. (29), let us introduce a com-
monly used linear dependence of r on T:
r � r1 ÿ r2T , where r1 is a certain constant spe-

ci®c for the given substance, r2 � r1=Tc and Tc is
the temperature at the critical point. Then,

oS�H
oT�

� 1

3
y2=3 db
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or
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In order to estimate the value of d ln f �T��=dT�,
we utilize an explicit form of coe�cients
Wd�T��; A�T��;Ea and b given in Ref. [1]. It yields

o ln f �T��
oT�

� ÿ 3

T

�
� r2

r�

�
� 2l1Eb

kBT 2
;

where Eb is the dissociation energy per one bond in
cluster (Eb � e0�2� where the latter is the depth of
the potential well for the linear dimer), l1 is the

average number of bonds per molecule in a mac-
rocluster. Direct calculations show that, for in-
stance, for water at T � 350 K, typical values are
l1 � 4; e0�2�=kBT � 10 while y is about 500 and
b � 8. Hence, the term �1=2y2=3��d ln f �T��=dT��
(the second term in the square brackets in Eq. (31))
is small as compared with the ®rst one at y � 1
and in what follows, we neglect it. Thus, we may
rewrite Eq. (31) in the form,
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o ln S�
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An analysis of Eq. (32) together with Eq. (10) re-
sults in a few interesting conclusions, namely:

(1) If under the conditions of DCCs, SH� 1,
then SH � c1�T �, and y depends only on T and
does not depend on P0 and S. In such a case,
function o ln S�=oT does not depend on P0. More-
over, as S� / P0, the following dependence takes
place oS�=oT / P0.

(2) Critical supersaturation S� increases as T�
decreases because, under conditions of the exper-
iments, the expression in the ®rst braces is positive,
and hence, o ln S�=oT� < 0.

The last conclusion is well con®rmed by the
available experimental data.

Here we have to make an interesting remark. It
surprisingly turns out that a similar-in-form
equation can be obtained independent of this
model. Indeed, an analysis of the experimental
data shows that at some T�, the value of 2b=3S�H is
about ln S� while y is large. But it is easy to see
from Eq. (19) that, if the nucleation rate is deter-
mined by the classical nucleation theory and we
neglect a pre-exponential factor in the nucleation
rate, then the following equation at T� � const
expresses the relationship which is valid at the
maximum nucleation rate plane.

o ln S�
oT�

� ÿ 3

2

1

T�

�
� r2

r�

�
ln S�: �33�

A similar form of Eqs. (33) and (32) in such a
case is caused by the circumstance that the con-
centrations of y clusters in MNT ny and the nu-
cleation rate in the classical theory are both
proportional to Synye. Apparently, this is the rea-
son why classical nucleation theory can be used to
treat the experimental dependence of S� on T� at
the constant carrier gas pressure in a narrow in-
terval of T�.

Integrating Eq. (33) further, one has

ln S� � T�0r�
T�r0

� �3=2

ln S�0: �34�

Here S�0 and T�0 are certain initial (already
known) values of S� and T� at a given pressure P0.
When varying the total pressure or the nature of
the background or condensible gas, S�0 and T�0
also alter their values.

It is necessary to underline that if we do not
neglect the pre-exponential factor in the nucleation
rate given by CNT, then CNT fails to predict the
available experimental data (see below). But
Eq. (34) can be directly derived from Eq. (26) if
Hj � 1. Thus, it is more reasonable to say that
Eq. (34) is more inherent to the present theory
while it could be obtained from CNT only under
certain (non-evident) assumptions made.

Using Eq. (34), it is possible to explore the be-
havior of S� as T� decreases at constant P0 and J. It
is seen that S� sharply increases as T� decreases
because it results in the increase of r. In Table 1
and Figs. 2±6 the results of experiments [16] at
several total pressures for 1-propanol and 1-buta-
nol in He, H2 and N2 are reproduced as the de-
pendence of critical supersaturation Se on T. Using
the value of Se at the lowest given temperature as
S0, we substituted it into Eq. (34) and calculated Sm

(dashed line in the ®gures). A similar procedure
has been used to get S� from Eq. (32) (solid lines in
the ®gures). It is seen that Eq. (34) reproduces the
experimental data with high accuracy (better than
2%) for a light background gas and with an ac-
curacy of about 10±20% for a more dense back-
ground gas.

An emphasis has to be made that at the inter-
mediate pressures when Hj � 1, Eq. (26) trans-
forms to Eq. (34) while at high pressures, when
Hj 6 1, it results in Eq. (32). In other words,
Eq. (26) gives the value Sm at low pressures and S�
at high pressures. This is well demonstrated by
the data presented in the ®gures because at the
intermediate pressures and temperatures when
Hj P 1, the experimental data lie closer to Sm

while at high pressures they approach to S�.
As the same as pointed out in Ref. [22],

the denser background gas can lead to unstable
density layering inside the chamber which
can then result in buoyancy driven convection.
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Unfortunately, the authors of Ref. [16] do not
bring an accuracy of the experiment, but it is
reasonable to expect that experimental errors in-
crease for the heavy background gas. Nevertheless,
we bring the calculated Sm even for the heavy
background gas, and it is seen that the experi-
mental and calculated results do not deviate so
much.

What is the sense in comparing the presented
experimental results with the classical nucleation
rate as is usually done in the literature? The idea of
experimentalists was that due to a sharp depen-
dence of supersaturation on n in DCCs all droplets
are formed in zone N where the nucleation rate
reaches its maximum and further their total num-
ber is not changed. Thus, if the optic system counts
about 1 droplet/cm3/s, it is suspected that at point
N, the nucleation rate is also about 1 droplet/cm3/s.

Table 1

Dependence of critical supersaturation on temperature T0 at several pressures P0 of the background gas for 1-propanol and 1-butanol

in He, H2 and N2. Se: experiments [9], Sm: our prediction made on the basis of Eq. (36), S�: our prediction made on the basis of

numerical solving of Eq. (33), the initial point with T01 and S01 is taken on the experimental curve from Ref. [9], Sc is calculated based

on the classical nucleation rate at J � 1 droplet/cm3/s (thermophysical properties of substances are taken from Refs. [3,9,11])

Substance T(K) P � 5 bar P � 10 bar P � 20 bar P � 30 bar CNT

Se Sm S� Se Sm S� Se Sm S� Se Sm S� Sc

1-PROH/

H2

319.9 2.83 2.83 2.83 2.99 2.99 2.99 ± 3.37 ± ± 3.73 ± 17.8

334.6 2.42 2.40 2.31 2.54 2.51 2.27 2.78 2.78 2.78 3.03 3.03 3.03 11.1

362.5 ± 1.86 1.63 1.94 1.92 1.38 2.11 2.07 1.94 2.23 2.20 2.24 5.43

387.9 ± 1.56 1.25 ± 1.60 ± 1.70 1.68 1.42 1.80 1.75 1.70 3.31

1-PROH/

He

321.7 2.91 2.91 2.91 ± 3.57 ± ± 4.17 ± 16.8

334.2 2.50 2.51 2.35 3.00 3.00 3.00 3.43 3.43 3.43 11.3

363.1 1.89 1.91 1.49 2.12 2.16 2.20 2.33 2.37 2.43 5.36

387.6 ± 1.60 ± 1.70 1.74 1.70 1.82 1.87 1.78 3.33

P � 4 bar P � 6 bar P � 10 bar

1-PROH/

N2

334.3 2.60 2.60 2.60 2.94 2.94 2.94 ± 3.20 ± 11.3

348.4 2.13 2.24 2.00 2.45 2.48 2.31 ± 2.67 ± 7.6

362.8 ± 1.96 1.53 1.93 2.14 1.82 2.27 2.27 2.27 5.40

375.0 ± 1.78 1.24 1.57 1.91 1.50 1.93 2.01 1.96 4.19

P � 5 bar P � 10 bar P � 20 bar P � 30 bar

1-BUOH/

H2

334.4 3.36 3.36 3.36 3.69 3.69 3.69 4.22 4.22 4.22 4.77 4.77 4.77 8.79

348.7 2.78 2.81 2.60 3.08 3.04 3.08 3.49 3.41 3.53 3.83 3.79 3.83 5.92

362.8 ± 2.41 2.03 2.60 2.58 2.59 2.90 2.84 2.96 3.18 3.10 3.02 4.51

P � 2:5 bar P � 4 bar P � 6 bar

1-BUOH/

N2

334.3 3.27 3.27 3.27 3.90 3.90 3.90 ± 4.45 ± 8.81

348.4 2.52 2.75 2.54 3.00 3.20 3.04 3.58 3.58 3.58 5.95

362.8 ± 2.36 1.96 2.30 2.68 2.38 2.80 2.95 2.90 4.51

Fig. 2. The plot of S� vs. T� at constant P0 and J � 1 drop /cm3/

s for 1-propanol in H2. Se: experimental data of Ref. [16], S�:
our prediction according to Eq. (32), Sm: our prediction ac-

cording to Eq. (34).
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As it is easy to check this statement, we choose
J � 1 droplet/cm3/s and cc � 0.01 further re-
storing the dependence of S on T from the usual
expression of the classical nucleation rate equation
(17). The last lines of Table 1 just contain the

values of Sc found in such a way (obviously Sc does
not depend on P0). From the results obtained one
can see a disagreement between CNT and the ex-
perimental data. On the other hand, at J � 1
droplet/cm3/s from Eq. (17), we obtain

Fig. 3. The plot of S� vs. T� at constant P0 and J � 1 drop /cm3/

s for 1-propanol in He. Se: experimental data of [16], S�: our

prediction according to Eq. (32), Sm: our prediction according

to Eq. (34).

Fig. 4. The plot of S� vs. T� at constant P0 and J � 1 drop /cm3/

s for 1-propanol in N2. Se: experimental data of Ref. [16], S�:
our prediction according to Eq. (32), Sm: our prediction ac-

cording to Eq. (34).

Fig. 5. The plot of S� vs. T� at constant P0 and J � 1 drop /cm3/

s for 1-butanol in H2. Se: experimental data of Ref. [16], S�: our

prediction according to Eq. (32), Sm: our prediction according

to Eq. (34).

Fig. 6. The plot of S� vs. T� at constant P0 and J � 1 drop /cm3/

s for 1-butanol in N2. Se: experimental data of Ref. [16], S�: our

prediction according to Eq. (32), Sm: our prediction according

to Eq. (34).
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ln S� � r
T

� �3=2 1

C�T �
4p
kB

� �3=2
2m1
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���
3
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pql

: �35�

This expression coincides with Eq. (34) if one as-
sumes that H � 1 and

ln S�0 � 4p
kB

� �3=2
2m1

4
���
3
p

pql

r0

T0

� �3=2
1

C�T � ; �36�

however, there is no evidence for such an as-
sumption at all, because C�T � depends on T and
weakly on S. This dependence explains a deviation
observed in Table 1. In other words, despite ny in
our approach and Jc being proportional, the
counted ¯ux of droplets is not a nucleation rate in
its classical sense.

Finally, in order to verify our theory proposed,
we performed direct calculations of S� as a func-
tion of T� at P0 � const solving numerically cou-
pled equations (31) and (10). In doing so, we used
the following data. Thermophysical properties
of the condensing vapor were taken from
Refs. [3,16,18,23]. In particular, for butanol, we
used ql � 0:936331ÿ 8:775192� 10ÿ5t ÿ 1:16705
�10ÿ6t2; m1 � 74:123. To determine the other
parameters, we used some correlations from Refs.
[12,23] built on the basis of the critical parameters
of the vapor. For butanol, the temperature, pres-
sure in the critical point and the normal boiling
temperature (at P� 1 atm) are, respectively,
Pc � 43:6 atm, Tc � 562:9 K, Tb � 390:9 K. Then,
coe�cients determining the dependence of r� on T�
are obtained as follows: r1 � P 2=3

c T 1=3
c �0:1207�1�

Tbr ln Pc�=�1ÿ Tbr� ÿ 0:281�; r2 � r1=Tc, where
Tbr � Tb=Tc. The Sutherland constant C is deter-
mined according to the formula [12] C �
1:47

������������
TbvTb0

p
with Tbv and Tb0 being the normal

boiling temperatures of the vapor and the back-
ground gas, respectively. We put the condensation
coe�cient to be equal to unity and did not vary it
in order to ®t our prediction to the experimental
data.

At low temperatures, to get more precise re-
sults, we did not neglect the term proportional to
d ln f �T��=dT� in Eq. (31) that corrects S� about
3%. For such calculations, we used Eb � 4.5 kcal/
mol, l1 � 4. These values were chosen to be equal
to those for water vapor because, on the one hand,

we did not ®nd this data for butanol and propanol
in the literature, but on the other hand, they cor-
rectly reproduce the order of magnitude of the
energy of the hydrogen bond.

For experiments with butanol, the collision
cross-section of the vapor molecules with the
background gas was obtained from the data on the
binary di�usion coe�cient that yields rvH2

� 7:2 A
and rvN2

� 8 A.
The results of such calculations are presented in

Table 1 as S�. It is seen that they predict the ex-
perimental results at high pressure with the same
accuracy as formula (34). At low pressures, the
di�erence is a bit more, but nevertheless, our pre-
diction reproduces the experimental data with an
accuracy of about 10%.

Calculations performed for propanol revealed a
certain disagreement (about 30% at low pressures
and high temperatures) between the experimental
data and our prediction while formula (34) better
predicts this data. Note that we did not ®nd reli-
able data on the cross-section rvg for propanol
when hydrogen, helium and nitrogen are used as
the background gases. That is why in contrast to
experiments with butanol, we considered this value
as a parameter further ®tting it in order to get the
best agreement with the experimental results. These
®tted values are rvH2

� 4:94 A, rvHe � 6:06 A,
rvN2

� 6:85 A. Note that at P0 � 5 bar and
T� � 319:9 K for propanol in hydrogen the value
of H=y1=3 is of about 3 in contrast to the intro-
duced assumption that this ratio is less than unity.
On the other hand, when deriving all our formu-
lae, we actually did not use this assumption except
the only point when the dependence S��P0� was
obtained. Thus, in the vicinity of these parameters,
our theory either does not predict at all or predict
a weak dependence of S� on P0. However, at T� �
const with P0 growth already at P0 � 1 atm, the
above assumption becomes valid again.

2.3. Dependence of oS�=oP on T

One more experimental fact is that slopes of the
straight lines S��P0� decrease as the temperature T�
increases. In order to reveal this dependence, we
can take a derivation of Eq. (31) with respect to P0

at T� � const. Direct solving of Eq. (10) shows that
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for experiments of Ref. [16] at high pressures
y1=3 � SH; therefore,

Hence, the slopes of oS�=oP0 decrease as T in-
creases; this is in good agreement with the avail-
able experimental data.

At low pressures, we should also take into ac-
count the dependence of SH=y1=3 on P0. The de-
pendence of S� and H on P0 is already known while
an explicit form of oy=oP0 at T� � const can be
obtained from Eq. (10). Finally, easy but tedious
algebra shows the value of the term that appears
by taking a derivative of the terms in braces in the
denominator of Eq. (31), to be small as compared
with the terms in Eq. (37). Therefore, the allow-
ance for the dependence of SH=y1=3 on P0 does not
change the result that o2S�=oP0 oT� < 0.

2.4. Dependence of S� on the nature of the carrier
gas and condensing vapor

From the viewpoint of the above-developed
theory, the main source of the in¯uence of the
carrier gas on S� is the dependence of H on P0.
According to Eq. (28), the only cross-section rvg is
related to the speci®c properties of the carrier gas.
In particular, the heavier the carrier gas, the larger
is the e�cient diameter of its molecule, and hence,
a more pronounced dependence of S� on P0 should
occur as well as the slopes of the lines
S��P0� should increase. This fact is also in good
qualitative agreement with the experimental data
of Ref. [16].

As far as the nature of the condensing vapor is
concerned, it is clear that g � r1v=2, and hence, in
Eq. (28) r2

vgg � r3
vg where rvg increases as the

molecular mass of the condensing vapor increases.
In addition, in a similar way as when deriving
Eq. (29), one may obtain

oc1

og
� oS�H

og
� 1

3

ob
og

1

2

(
ÿ S�H

y1=3

� S�H
y1=3

� �2

ln
y1=3 � SH
1� SH

� �)ÿ1

> 0: �38�

Thus, as the molecular mass of the molecule of the
condensing vapor decreases, it usually gives rise to
the decrease of the carrier gas e�ect. Such a situ-
ation has also been observed in experiments. For
instance, in Ref. [5], it was experimentally discov-
ered that, for all alcohols, the e�ect of the back-
ground gas becomes greater as the formula weight
of this gas increases and vice versa, i.e. for meth-
anol, this e�ect is practically negligible.

3. Conclusions

For the ®rst time, a model of the nucleation
process under conditions when a transport of
condensing molecules to the cluster surface is de-
termined by their di�usion through a carrier gas is
proposed. A qualitative and even quantitative ex-
planation of the dependence of critical supersatu-
ration on the temperature, pressure and nature of
the background gas and condensing vapor is pre-
sented. The approach in use is strongly based on
the microscopic theory of nucleation [1] which al-
lows an analytical representation of the cluster's
concentrations through supersaturation, the gas
temperature and, that is quite new, the carrier gas
pressure. As shown in this paper, usual conditions
of experiments in DCCs meet the requirements of
the model validity, which means that this model
can be adopted to explain a mechanism of the
carrier gas pressure in¯uence on the nucleation
kinetics observed in experiments.

o2S�
oT�oP0

� ÿ �Hÿ1 c1�T��
�

� 2b
3

1

T�

�
� r2

r�

��
< 0;

�Hÿ1 � c1�T � 2p2�1� C=T �
3

r2
vg

kBT
3m1

4pql

� �1=3

; T � const; P0 � const: �37�
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On the basis of this approach, we have managed
to derive analytical dependencies of S� and oS�=oP
on P0 and T� in DCCs. In particular, these de-
pendencies show that
· S� linearly increases as P0 increases at T� �

const that reproduces the available experimental
data of Refs. [3,16,18,21].

· Critical supersaturation S� increases as T� de-
creases at P0 � const (also in accordance with
the experiments).

· If under the conditions of DCC, SH� 1
then SH � c1�T � and y depends only on T and
does not depend on P0 and S. In such a case,
the function o ln S�=oT does not depend on P0.
Moreover, as S� / P0, the following dependence
takes place oS�=oT / P0.

· The slopes of the straight lines S��P0� decrease as
the temperature T� increases.

· The heavier the carrier gas, the more is the e�-
cient diameter of its molecule, and hence, the
more pronounced is the dependence of S� on
P0 which occurs as well as the slopes of the lines
S��P0� increase. This fact is also in good qualita-
tive agreement with the experimental data of
Ref. [16].

· As the molecular mass of the molecule of the
condensing vapor decreases, it usually gives rise
to the decrease of the carrier gas e�ect. Such a
situation has also been observed in experiments
[5].
The main conclusion which is made here based

on the results obtained is that the dependence of S�
on P0 observed in the experiments in DCCs has no
connection with the nucleation kinetics itself and is
determined by the peculiarities of the transport
processes in DCCs.

Another interesting problem related to this
conclusion is why in some experiments in expan-
sion chambers the dependence of the nucleation
rate on the carrier gas pressure has not been de-
tected at all, or if detected was comparatively
slight [24] while in experiments [16], it was pro-
nounced. We intend to publish a detailed review of
this problem elsewhere, but as a preliminary ex-
planation, we suspect that the transport processes
in expansion chamber di�er from that in DCCs. A
similar explanation could be proposed for nozzles
where the transport of condensible molecules to

the cluster surface is not determined by di�usion.
On the other hand, a slight e�ect of the carrier gas
pressure in nozzles and jets [25] (see also a more
extensive description of this problem in Ref. [1])
has to be associated with the dependence of the
parameter r, the main parameter of MNT, on P0.

The physical meaning of this parameter is
rather simple because r is the number of molecules
contained in the cluster for which the rate of its
dissociation from the top-most level Mr is of the
same order as the vibrational relaxation rate at the
same level. For clusters with j > r, the rate of re-
laxation of intracluster vibrations is much greater
than the rate of the cluster dissociation but at j < r
there is an opposite situation. Details of this model
are discussed in Ref. [13]. But what we should have
in mind is that at r > 1, kinetic equations de-
scribing nucleation (evolution of the cluster con-
centrations) as well as their solutions has a
di�erent form at j < r as compared with that
considered in this paper. The reason why, for in-
stance, in nozzles r > 1 is that under the conditions
of that experiments n0 � n1 and thus for small
clusters their intracluster vibrations are nonequi-
librium because of the limited number of collisions
with both the carrier gas and vapor molecules.
Thus, another kinetic theory is needed to describe
this situation, for instance, MNT in its original
treatment [1].

The model and formulae derived here permit a
consistent explanation of the available experi-
mental results. We also derived a dependence of S�
on T� at P0 � const using the classical nucleation
theory under the assumption made that S� is su-
persaturation in the maximum nucleation rate
plane which predicts the experimental results with
accuracy about 2±10%. However, the classical
nucleation rate at such supersaturations is not
equal to 1 drop/cm3/s as it is counted in the ex-
periments; therefore, the good accuracy of Eq. (34)
does not mean the validity of the classical nucle-
ation theory in such a case. In addition, CNT does
not predict the dependence of S� on P0 at all. That
is why at the moment, within the framework of our
theory, the only explanation of the good accuracy
of Eq. (34) is the following. The counted ¯ux of
droplets within CNT is proportional to Sxnxe, where
x � j�;cl�T ; S� is the classical critical size. In MNT,
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this ¯ux is also proportional to Synye; however,
here y is determined by Eq. (10) rather than j�;cl,
and in addition at low supersaturations about 2±4
strongly depends on P0. But at low temperatures
and pressures accidentally under the conditions of
the discussed experiments in DCCs and high-
pressure di�usion chambers, the product 2b=�3SH�
is of about unity as well as ln S. This results in a
similar structure of the equations describing such a
dependence for both CNT and our theory.

Direct numerical calculations made on the basis
of formula (31) derived in this paper revealed that
it predicts the experimental data of Refs. [3,16,18]
on the dependence of S� on T� at P0 � const with
an accuracy of 2±10% for butanol in hydrogen.
The data on nucleation of butanol in nitrogen are
predicted with the same accuracy despite in
Ref. [22] the authors suspecting that the denser
background gas can lead to unstable density lay-
ering inside the chamber which can then result in
buoyancy driven convection and a large error in
the data obtained. Apparently, it gives a reason to
suspect that either the convection does not
strongly in¯uence the measured supersaturation or
the in¯uence of convection lies within the double
accuracy of our prediction, i.e. 5±20%.

As far as the experiments with propanol are
concerned, the agreement is worse (up to 30%), but
at some temperatures and pressures, it is still good.
We might propose two explanations of this fact.
The ®rst one is that we used the linear dependence
of the surface tension on the vapor temperature
while for polar mediums like spirituous this is not
valid. In order to examine this point, we used more
complicated correlations presented in Refs. [12,23]
that take into account the dipole momentum of the
condensing molecule and its acentric factor. We
have obtained an improvement of about 5% that
in our opinion is not very essential.

Another possible e�ect that was not considered
here at all is that the surface tension of liquid in
the mixture depends also on the concentration and
the nature of molecules over the liquid surface [12].
In particular, in Ref. [12], the work of J. Gielessen
and W. Schmatz (in 1961) is cited wherein the
authors studied the in¯uence of nitrogen, argon
and helium on the surface tension of hydrocarbons
of a normal structure. They revealed that rv de-

creases as the argon or nitrogen pressure increases
while rv linearly increases when the helium pres-
sure increases. Unfortunately, at present, there is
no appropriate theory to take this e�ect into ac-
count as well as the amount of the available ex-
perimental results is not su�cient to ®t such a
dependence on a self-empirical basis.

We also mentioned that the ®nal results
strongly depend on the collision cross-section of
the vapor and gas molecules that is presented in
the de®nition of H. Fortunately, for butanol mixed
with either hydrogen or nitrogen, usage of the
same value of the cross-section allows a good
prediction of the experimental data, but this is not
the case for propanol. That is why for numerical
calculations, it is necessary to carefully choose the
corresponding data.

It is also important to underline that despite the
formulae derived in this paper describing the de-
pendencies of S�; oS�=oP0 and oS�=oT� on P0 and T�,
they contain an uncertain coe�cient (see, for in-
stance, Eq. (28)). It could be speci®ed in two ways:
First, if we develop a more consistent theory of the
kinetic and transport processes in DCCs, espe-
cially with allowance for the peculiarities of the
design of the chamber, we could explicitly express
this coe�cient through the temperature of the
system. The idea of the second approach used in
this work is to exclude this coe�cient from our
consideration. It can be done if two values of S�
are already known either at a constant pressure of
the background gas but at di�erent temperatures,
or at a constant temperature of the mixture but at
di�erent pressures of the background gas. Gener-
ally speaking, to compare our prediction with the
experimental data, the best way is to have not two
but many experimental points obtained in such a
manner. That is the reason why we used experi-
ments of Heist et al. to verify our theory, because
they just meet such requirements. At the same
time, these experiments were performed at rela-
tively high pressures of the background gas
while there is a lot of experiments at low pressures
where the e�ect of the background gas has also
been found. Unfortunately, these experiments
were provided at arbitrary temperatures and
pressures; therefore, it is di�cult to make a con-
sistent comparison between our theory and these
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experimental results in view of the above-men-
tioned problem.
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Appendix A. Role of various processes in a di�usion

cloud chamber

Here we consider various processes in DCCs
that can a�ect a distribution of macroparameters
in DCCs as well as the nucleation process itself.

A.1. Brownian di�usion

Brownian di�usion is important for small
droplets whose radius is of order of 10ÿ6 cm or
less. The mean square displacement of the particle
in a certain volume within the time t under di�u-
sion is [26,27]

s2 � 4

p
D1t �A:1�

with D1 being a di�usion coe�cient. We use a
general expression of the coe�cient of the binary
di�usion of monoatomic gases given by the kinetic
theory [11] under the assumptions made that (i)
molecules interact like hard spheres with the
Maxwellian distribution over velocities and (ii) the
concentration of the carrier gas is much more than
the concentration of the vapor. It yields

D1 � 3

8n0

kBT
2pm0

� �1=2

Rÿ2; �A:2�

where n0 � P0=kBT , m0 are the numerical density
and the molecular mass of the background gas, kB

is the Boltzmann constant, R is the radius of the
particles. Hence, the average velocity of the par-
ticles is

vd �
��������
4D1

pt

r
: �A:3�

A.2. Forces a�ecting the drops

All clusters are a�ected by three forces ± grav-
ity, a drag force and a thermophoretic one, and the
value of these forces depends on the cluster size or
the Knudsen number speci®c for droplets of a
certain size.

A convenient approximation of the thermoph-
oretic force for an arbitrary Knudsen number is
given in [26,28]

Ft � ÿ12p
l2

q
RCs
rT
T

kg

kp

�
� Ct Kn

�
1� � 3Cm Kn�ÿ1

� 1

�
� 2

kg

kp

� 2Ct Kn

�ÿ1

: �A:4�

Here Ct; Cm; Cs are certain kinetic coe�cients of
order unity, Kn � kvg=R, kvg is the mean free path
of the vapor molecule in the carrier gas, l; q are
the viscosity and density of the carrier gas, rT is
the temperature gradient in the vicinity of the
droplet, kg; kp are coe�cients of thermal conduc-
tivity for the gas and droplets.

For the drag force, we use the Stokes±
Cunningham expression [26,28],

Fv � 6pluR
1� aKn

; �A:5�

where u is the gas velocity and a is a constant of
order unity.

For small droplets, a thermophoretic accelera-
tion prevails the gravitational one while for large
droplets, the opposite relationship takes place.

A.3. Nucleation

As the vapor in DCCs is supersaturated, vari-
ous clusters are formed because of nucleation. The
speci®c feature of this processes is that the vapor
molecules are transferred to the clusters by means
of di�usion. To describe nucleation in DCCs we
use a special modi®cation of our microscopic
theory of nucleation (MNT) [1] whose main
statements as applied to DCCs are given in the
previous sections.
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A.4. Droplet growth

Separate droplets formed under nucleation in
what follows move to the top or bottom wall of the
chamber and grow or evaporate during this
movement. As shown in Ref. [2] in whose regime ±
free molecular or di�usion ± the droplet growth is
approximately determined by the ratio

m � D1

�����������
2pm1

kBT

s
R2cckv

�R� kvg��R� kv�
� �ÿ1

:

If m > 1, the growth of the droplet follows the
Hertz±Knudsen formula, and the rate of the
growth does not depend upon R.

dR
dt
� cc

ql

Ps�T ��S ÿ 1����������������������
2pkBT=m1

p � Xh; �A:6�

where it is assumed that the temperature of the
droplet is equal to the gas temperature, Ps is the
saturation vapor pressure, S is supersaturation, ql

is the liquid density. Generally speaking, for small
droplets, the dependence of Ps on R should be
taken into account:

Ps � P1�Ts� exp
2rv1

RkBTs

� �
; �A:7�

where P1 is the saturation pressure at the plain
surface, r is the surface tension, v1 is a volume per
molecule in liquid. Thus, at R > r�;cl, where
r�;cl � 2rv1=kBTs ln �P=P1� is the classical critical
radius the droplets are previously growing while at
R < r�;cl they tend to evaporate.

If m < 1, the Maxwell formula follows from the
common expression given in Ref. [2] where the
growth of the droplet is determined by the di�u-
sion coe�cient D1 and the rate of the growth is
inversely proportional to R.

dR
dt
� D1

ql

Ps�T ��S ÿ 1�
�kBT=m1�R � Xm: �A:8�

A.5. Stages of the droplet formation and growth

In the vicinity of the zone where active nucle-
ation occurs (or where S or the rate of nucleation

reach their maximum), zone N, it is possible to
separate two sorts of clusters (see Refs. [26,29]).
For large clusters (sort 1), gravity prevails ther-
mophoretic forces; therefore, they move to the
bottom plate, grow within this movement and, in
principle, could be registered by the detecting ap-
paratus. Small clusters, on the contrary, move to
the top plate. During this movement, they con-
tinue to grow and their further behavior is two-
fold. If before they are deposited by the wall, some
drops manage to reach the so-called ``radius of
soaring'' at which the resulting force vanishes, in
what follows such drops (sort 2) will fall down and
can be registered. Otherwise, they will be deposited
by the wall and cannot be registered.

The radius of soaring can be determined by
equating the gravitational and thermophoretic
forces because at v � 0, the drag force vanishes. It
yields [26,29]

rs � 9l2CskBrT
P0qlgm0

kg

kp

�"
� Ct Kn

�
1� � 3Cm Kn�ÿ1

� 1

�
� 2

kg

kp

� 2Ct Kn

�ÿ1
#1=2

: �A:9�

For precipitating clusters, the thermophoretic
force is less than gravity but an equality of gravity
and the drag force is reached rather fast that re-
sults in a steady velocity of the cluster precipita-
tion. Under the conditions of DCC (Re� 1), it
yields [27]

vg � m1gj
6plR

� 2qlg
9l

R2; �A:10�

where j is the number of molecules in the cluster, g
is the gravity acceleration.

Appendix B. Equation for S�n�

This appendix aims to integrate Eq. (16) at
dT=dn � const. Integrating Eq. (16) for the ®rst
time, we immediately get

d

dn
a1

a0

� c1

D1

�B:1�
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with c1 � const. As a1 and a0 are mass fractions of
vapor and background gas, we can rewrite their
ratio in the form

a1

a0

� m1n1e

m0n0

S; �B:2�

whence

d

dn
a1

a0

� m1n1e

m0n0

S
d ln n1e

dT
dT
dn
� m1n1e

m0n0

dS
dn
: �B:3�

According to Ref. [1] n1e can be represented as
follows:

n1e � C
kBT

exp

�
ÿ L

RgT

�
;

where L is latent heat of the vapor, Rg is the gas
constant and C � const. Therefore,

d ln n1e

dT
� ÿ 1

T
� L

RgT 2
: �B:4�

Substituting Eq. (B.4) into Eq. (B.3), then into
Eq. (B.1) and making some transformations, we
arrive at the following equation:

dS
dn
� c1m0n0

D1m1n1e

ÿ S
T

L
RgT

�
ÿ 1

�
dT
dn

: �B:5�

This equation is linear on S and can be directly
integrated at dT=dn � const. In doing so we
represent it in the form,

dS
dT
� a1�T �S � a2�T �;

a1�T � � ÿ 1

T
L
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�
ÿ 1

�
;

a2�T � � c1m0n1e

D1m1n0

dT
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� �ÿ1
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whence an integration yields

S � T exp
L

RgT

� �
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����
T
p

l� c2�;

l � 2c1m0n0kB

m1C�dT=dn�D0

;

�B:7�

where D0 � D1

����
T
p

does not depend on T and c2

and c1 are integration constants. These could be

found from appropriate boundary conditions. For
instance, we assume that S � S� at T � T� and that
dS=dn in the point �T�; S�� is given by Eq. (19).
Thus, substituting these values into Eq. (B.7), we
obtain two equations to determine c1 and c2.
Omitting intermediate algebra, we arrive at the
expression,

S�n� � S�
T
T�

1

�
� 2

�����
T
T�

r�
ÿ 1

�
1

�
ÿ L

RgT�
ÿ 3

2

� 1

�
� r2T�

r

�
ln S�

��
exp

�
ÿ L

RgT
T ÿ T�

T�

�
� S�

T
T�

1

�
� 2

L
RgT�

1

�
ÿ

�����
T
T�

r ��
� exp

�
ÿ L

RgT
T ÿ T�

T�

�
: �B:8�

References

[1] A.L. Itkin, E.G. Kolesnichenko, Microscopic Theory of

Condensation in Gases and Plasma, World Scienti®c, New

York, 1997.

[2] A. Itkin, Kinetic model of e�ect of a carrier gas on

nucleation in di�usion chamber, Aerosol Sci. Technol., in

press.

[3] R. Heist, M. Janjua, J. Ahmed, E�ects of background

gases on the homogeneous nucleation of vapors. I, J. Phys.

Chem. 98 (1994) 4443.

[4] A. Lushnikov, private communication, 1997.

[5] V.N. Chukanov, A.P. Kuligin, Teplo®zika Visokich Tem-

peratur 25 (1987) 70 (in Russian).

[6] C.C.M. Luijten, M.E.H. van Dongen, Nucleation at high

pressure. I. Theoretical considerations, J. Chem. Phys. 111

(1999) 8524.

[7] A.L. Itkin, U.G. Pirumov, Y.A. Rijov, Modi®ed homoge-

neous nucleation model. Comparison of the theoretical and

experimental results. Proc. 14th RGD Symp., Tsukuba

University, 1984, pp. 937±943.

[8] A.L. Itkin, E�ect of a carrier gas on nucleation in di�usion

chambers, J. Aerosol Sci. 29 (1) (1998) S359±S360.

[9] A.L. Itkin, Kinetics of di�usion-limited nucleation in a

di�usion cloud chamber, J. Aerosol Sci. 29 (1) (1998) S357±

S358.

[10] R.E. Sampson, G.S. Springer, Condensation on and

evaporation from droplets by a moment method, J. Fluid

Mech. 36 (3) (1969) 557.

[11] J. Ferziger, H. Kaper, Mathematical Theory of Trans-

port Processes in Gases, North-Holland, Amsterdam,

1972.

82 A.L. Itkin / Chemical Physics 256 (2000) 61±83



[12] S. Bretsznajder, Wlasnosci gazow i cieczy. Wydawnictwa

naukowo-techniczne, Warszawa, 1966.

[13] A.L. Itkin, The rate constants of the unimolecular decay

and condensation coe�cients of neutral clusters and claster

ions. Proc. 19th Symp. Rare®ed Gas Dynam., vol. 1,

Oxford, pp. 323±330.

[14] A.L. Itkin, E.G. Kolesnichenko, Y.E. Gorbachev, Toward

the theory of the nucleation inside the thermodi�usion

chamber. Technical report 1503, A.Io�e FTI Acad. Sci.

USSR, 1991 (in Russian).

[15] A.L. Itkin, E.G. Kolesnichenko, Calculation of condensing

gas ¯ows by means of the monomolecular condensation

theory, Fluid Dynam. 25 (5) (1990) 765±774.

[16] A. Bertelsmann, R. Stuczynski, R. Heist, E�ects of

background gases on the homogeneous nucleation of

vapors 3, J. Phys. Chem. 100 (1996) 9762.

[17] J. Frenkel, Kinetic Theory of Liquids, RAS, Moscow±

Leningrad, 1945.

[18] R. Heist, M. Janjua, J. Ahmed, E�ects of background

gases on the homogeneous nucleation of vapors 2, J. Phys.

Chem. 99 (1995) 375.

[19] V. Gorbunov, U. Pirumov, Y. Ryzhov, Nonequilibrium

Condensation in High Speed Gas Flows, Mashinostroenie,

Moscow, 1984.

[20] A. Binnie, M. Woods, The pressure distribution in a

convergent±divergent steam nozzle, Proc. Inst. Mech.

Engrs. (London) 138 (1938) 229.

[21] D. Kane, M. El-Shall, Condensation of supersaturated

vapors of hydrogen bonding molecules. Ethylene glycol,

propylene glycol, trimethylene glycol and glycerol, J. Chem.

Phys. 105 (1996) 7617.

[22] A. Bertelsmann, R. Heist, Two-dimensional transport

and wall e�ects in the thermal di�usion cloud chamber.

II. Stability of operation, J. Chem. Phys. 106 (1996)

624.

[23] R. Reid, J. Prausnitz, T. Sherwood, The Properties of

Gases and Liquids, McGraw-Hill, NY, 1977.

[24] P. Wagner, R. Strey, Homogeneous nucleation rates of

water vapor measured in a two piston expansion chamber,

J. Phys. Chem. 85 (1981) 2694.

[25] B.E. Wyslouzil, G. Wilemski, M.G. Beals, M.B. Frish,

E�ect of carrier gas presssure on condensation in a

supersonic nozzle, Phys. Fluids 6 (1994) 2845.

[26] N. Fuchs, Mechanics of aerosols, Acad. Sci. USSR,

Moscow, 1955.

[27] P. Reist, Introduction to Aerosol Science, Macmillan, NY,

1984.

[28] L. Talbot, R. Cheng, R. Schefer, D. Willis, Thermopho-

resis of particles in a heated boundary layer, J. Fluid Mech.

101 (4) (1980) 737.

[29] J. Vitovec, N.V. Pavlukevich, I. Smolik, S.P. Fisenko,

Motion and growth of new-phase particles formed in a

thermodi�usion chamber, J. Engng. Phys. Thermophys. 56

(1989) 648.

A.L. Itkin / Chemical Physics 256 (2000) 61±83 83


