
Foreword

In the present book we discuss various problems of the existing nucleation
theories and a new common microscopic (nonempirical) approach to overcome
them. First, basic statements of the classical nucleation theory (CNT) as well
as the quasichemical one are reviewed to demonstrate the internal difficulties
of these agreed-upon approaches. Furthermore, a lot of experimental results
on condensation in nozzles, jets, thermal diffusion chambers etc. are discussed
that so far have not been explained in the frame of CNT. This is made in
order to introduce our main idea which we discussed for many years with our
colleagues that it is impossible (or, at least, very hard) to surmount these
problems working at the level of macroscopic description of the condensible
gas.

Here we describe a possibility to solve the problems stated accounting for
nonequilibrium excitation of the cluster internal degrees of freedom and its
influence on condensation kinetics. Below a new approach which we conven-
tionally named a “microscopic condensation theory” (MCT) is presented. The
basic statements of the theory proposed are described as well as the compari-
son with the existing models is given. We demonstrate that there is a natural
explanation of the mentioned experimental facts within the frameworks of this
new theory of condensation. Comparison with the experiment is made on the
basis of scaling relations of the condensation processes, that are also discussed
here.
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Preface

The present work summarizes certain results of the authors’ activity on creat-
ing a new theory of condensation which makes an impact on consideration of
some microscopic effects left aside in the usual nucleation theories. In partic-
ular, the main idea of our microscopic condensation theory (MCT) is that it
considers the violation of the equilibrium cluster distribution over the internal
degrees of freedom due to co-occurring condensation and decay reactions of
the clusters.

In this section we would like to give the extended contents of the work and
describe its structure. In our opinion, reader should read this section in order
to decide which chapter of the book is useful or interesting to him. We could
suggest the following scheme:

• for experimenters - chapter ??, sections ??.??, ??.??, ??.??, conclusions;

• for physicians-theoreticians - all sections except Appendices and, perhaps
sections ??.??, ??.??;

• for mathematicians - all sections except, perhaps sections ??.??, ??.??;

• for engineers and programmers - sections ??.??, ??.?? and, perhaps,
Appendix ??.

For the last group of readers we present the FORTRAN code which makes it
possible to compute the condensation processes in various systems and devices
based upon our approach.

The structure of the paper logically reproduces stages of the new theory
development. The following aspects are discussed consequently:

1. Firstly, a brief review of the quasichemical and classical nucleation the-
ories (CNT) is given that leads to the necessity to elaborate a new one.
In addition, we bring a lot of experimental results on condensation in
nozzles, jets, thermal diffusion chambers etc. that cannot be explained
in the framework of the existing nucleation theories.
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2. Further we put in the basis of our new theory governing kinetic equations
for populations of the intermolecular vibrations of clusters and explore
their equilibrium and quasisteady solutions. The equilibrium distribution
obtained here exists both in the stable and metastable areas and describes
an equilibrium phase transition at crossing the coexisting curve. In addi-
tion, all parameters of our equilibrium function are obviously expressed
through microscopic parameters of condensible molecules. In what fol-
lows we discussed in detail why our global equilibrium distribution is
distinguished from the cluster equilibrium function usually exploited by
CNT.

3. In the subsequent chapter an analytical asymptotic solution of the sys-
tem proposed is obtained both for populations and concentrations of the
clusters. In the case of rapid relaxation of monomers all these variables
can be expressed in terms of supersaturation S and the gas temperature
T . It can be shown that the kinetic equation for concentrations of clus-
ters of size j < R (R being a parameter of MCT) strongly differ from
the quasichemical ones. Finally in this way one is allowed to solve the
only kinetic equation for S further analytically restoring the cluster size
distribution function.

4. In order to make our theory suitable for practical applications we pro-
pose a new approach for calculating the rate constant of the unimolecular
decay of clusters which appeared in our reduced kinetic equation, devel-
oping the RRKM theory for such a case. Based on the result obtained
while using the microscopic reversibility law and the expressions for the
equilibrium cluster concentrations 1 we have got a rate constant of the
reverse process — the growth of cluster gaining a single molecule. The
ratio of this constant and a free molecular flux on the cluster surface
gives the value of the cluster condensation coefficient α depending upon
the cluster size j and T . In the limit of high j we get the extreme value
of α. When carrying out this idea a model representation of clusters
as “loosen complexes” is employed to account for an anharmonicity of
the intermolecular vibrations and free rotations of dissociated fragments
around the axis perpendicular to the reaction coordinate. In addition,
some physical assumptions are made to obtain an analytical expression
of the constants considered. In particular: i) We divide all intermolecular
vibrations in the cluster into librational and translational ones replacing
all normal mode frequencies of each group with the average one. ii) The
activation energy of the molecule leaving the cluster depends upon j be-
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cause its average number of bonds y(j) with the other molecules in the
cluster depends on j. For instance, for small water clusters having a ring
structure y(j) = 2 and having a linear structure - y(j) = 1 though the
maximum number of the hydrogenous bonds for the water molecule in a
large cluster is equal to 4. Accounting for this fact we introduce the sim-
plest approximation for y(j). The final expressions for the rate constants
of unimolecular decay and formation of the neutral cluster with size j as
well as for the condensation coefficients are presented in the book. Note
that for the large cluster the condensation coefficient does not depend on
j. The explicit expression of R also follows from this method. In addi-
tion, in this way the rate constants of formation and decay for cluster’s
ions can be obtained. In such a case the dissociation energy in addition
depends upon the sign and value of the ion charge.

5. In the next chapter in order to verify the theory developed and to un-
derstand how it regards to the existing theories we analyze the CNT
assumptions from the standpoint of the results obtained. After that we
bring a short summary of our main results and the basic formulae which
allow the reader which is not interested in these details or has no back-
ground in this field to utilize these expressions “as they are” in practical
computing left aside all the other material of this work.

6. The next step is concerned with the comparison between our prediction
and the experimental data for nozzles, jets, thermal diffusion chambers
and mixtures of the vapor with a carrier gas. Certainly, first of all it
requires to generalize our method for the condensible vapor flows in such
devices that is done at the beginning of that chapter. After that it turns
out that the comparison made shows a good agreement of our prediction
with the gas parameters in the Wilson point for water, argon, nitrogen,
moist air especially for regimes where the existing theories were failed.
In addition it is shown that the experimental data obtained at the con-
densation study in nozzles, jets and thermal diffusion chambers can be
quite naturally interpreted within the framework of MCT 2−7. The com-
parison with the experiment was made using the scaling of condensation
processes the basic statements of which are given in 8−11.

It should be noted that in the framework of MCT there is no so-called
“Lothe–Pound paradox”. Indeed, we determine the equilibrium cluster
distribution in a similar manner like Lothe and Pound based upon the
micromolecular approach. However, our prediction of the condensible
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gas parameters made with the help of MCT which uses our equilibrium
function, demonstrates a good agreement with the experimental data for
many substances. Moreover, the most important fact is that these sub-
stances include those for which the Lothe and Pound theory prediction
strongly differs from the available data of experiments.

7. As a consequent generalization of MCT we describe a new theory of het-
erogeneous condensation on charged particles — ions and electrons. Since
1899 when Wilson observed this phenomenon it has been well known that
the rate of water vapor condensation is dramatically accelerated in the
presence of free electrons. So far the adequate theory of such processes
was absent but in the existing attempts to describe it based on the clas-
sical nucleation theory all restrictions of CNT are presented. Therefore,
we demonstrate the effectiveness of developing the heterogeneous con-
densation theory on the basis of the consistent theory of homogeneous
condensation.

In doing that we consider the kinetic equation describing simultaneously
condensation and relaxation processes as well as recombination and ion-
ization of molecules and clusters. However, the cluster ions having two
or more charges were left aside. In addition, we take into account only
formation and decay of clusters gaining or losing a single molecule or ion.
We derive common expressions for the equilibrium cluster concentrations
and populations of the energetic levels of intermolecular vibrations both
for the neutral and charged clusters as well as for monomers, free ions
and electrons. To reduce them to the explicit form within the simplest
model the charged particle is assumed to be located in the center of the
cluster, all clusters are suggested to have a shape close to a sphere, the
influence of the electric field of an ion on frequencies of the intermolecular
vibrations and the gas polarization is omitted but the contribution of the
spontaneous polarization of the cluster molecules is taken into account.

The analysis of the results obtained follows the well known phenomenon
that there is a situation when the vapor in an equilibrium state with-
out ions and electrons becomes the supersaturated one in their presence.
Using the ideas of MCT we have managed to find an analytical represen-
tation for all populations and concentrations of the neutral and charged
clusters through the gas temperature and three supersaturations of the
neutral molecules, free ions and electrons, respectively 12,13. For these
variables the closed system of the ordinary differential equations is de-
rived admitting both a numerical solution and a qualitative analysis. In
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particular, an example of the test calculations of the gas flow with het-
erogeneous condensation is given. The analysis of the equations obtained
gave an interesting result. It turns out that the condensation process on
ions is extraordinary different from condensation on electrons. It can be
shown that the rate of condensation depends upon the sign of the spon-
taneous polarization. For water vapor this sign coincides with the sign
of the electron charge and condensation elapses immediately after the
moment when the vapor becomes supersaturated. The typical value of
supersaturation in the Wilson point in such a case is about 1.1 although
in the absence of electrons it is about 5–6. This result is in good agree-
ment with the Wilson data. On the contrary the positive ions weakly
influence the water condensation.

8. The subsequent chapter is devoted to the generalization of the model
for photonucleation. In such a case clusters with different electronic and
vibrational states have to be taken into account. It is shown that the
common approach of MCT allows one to interpret the experimental data
qualitatively.

9. Another aspect of the problem — how to control the condensation pro-
cess. For example, for modern technologies it is very important to pro-
duce clusters of certain sizes and properties for many substances. The
well known source of clusters is the gas streams in nozzles and jets. So
far there was a complexity to measure experimentally the cluster size
distribution function (CSDF) especially for the large clusters. However,
the possibility to predict the CSDF form theoretically is also very lim-
ited in the framework of both CNT (because of some of its artificial as-
sumptions) and the quasichemical model (a numerical calculation of the
time-dependent CSDF for a multidimensional flow requires very powerful
computers). In the present report we demonstrate the advantage of our
model for computing the condensible gas flows in nozzles and jets. As
a typical example results of numerical simulation of the two-dimensional
water vapor flow with condensation in a supersonic nozzle with a wall
bend are presented that allow one, in principle, to draw mass fractions
for any size of clusters existing in the stream. It turns out that the shock
wave created by the wall’s bend considerably affects the condensation.
Thus, there appears a new possibility to control CSDF varying the nozzle
contour in a certain manner.

Let us mention that besides the experiments described here there exists an
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extensive available but non-systematized experimental material on nucleation
in thermal diffusion chambers. The generalization of theoretical representa-
tions of MCT for TDC and the comparison of our prediction obtained in such
a way with the experimental results 14−16 was given in 7 in detail and in the
present book we only describe these results briefly.

In conclusion we should recommend the readers who are only interested
in applications to skip the chapters where the equilibrium and quasisteady
solutions are considered.
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Chapter 1

Kinetic theory of
ion–induced nucleation

In this chapter we describe briefly a new theory of ion–induced nucleation.
Since 1899 when Wilson observed this phenomenon it has been well known
that the rate of water vapor condensation is dramatically accelerated in the
presence of free electrons, however so far there has been no adequate theory
of such processes. In the existing attempts to describe it based on CNT all
restrictions of CNT are presented.

Heterogeneous condensation accompanies a number of processes because
real condensing gases not subject by a special purification always contain con-
taminants (dust particles, ions, ionic complexes, aerosols, etc.). Generally
speaking, the number of admixture types may be high enough, and hence
conceivable mechanisms of heterogeneous condensation are very diverse. An
adequate theory of these processes is not complete yet. One of the possible
reason is that this macroscopic theory must describe a great variety of the pro-
cesses caused by interactions between the condensible molecules and a surface
of heterogeneous centers, namely: adsorption, desorption, surface diffusion, re-
laxation of various degrees of freedom etc. Thus, heterogeneous condensation
on ions can be considered as one of the rare fairly simple cases.

Our approach which is described below is a generalization of MCT. In
what follows the main principles of the theory are formulated (see also 12,17,13)
and a diversity between heterogeneous condensation on positive and negative
ions is explained.

1



2 1. Kinetic theory of ion–induced nucleation

1. Short review of the existing approaches

Heterogeneous condensation on ions has been studied in several works
(see reviews 18 and 19−23). We shall briefly discuss their main results. It is
commonly accepted in these works that an individual cluster can be considered
as a thermodynamic system. Vapor condensation on an ion results in formation
of a cluster whose core is an ion of a given radius ra, and the work of formation
of this cluster is

∆Gi =
4π

3v1

(
r3 − r3

a

)
(µv − µl) + 4π

(
r2 − r2

a

)
σ +

e2

2

(
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r
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(1.1)
Here e is the charge of the electron, i is the number of molecules incorpo-

rated in the cluster, r is the cluster radius, µv and µl are the chemical potentials
of the vapor and liquid, σ is the surface tension, v1 is the effective volume of
a molecule in the liquid and εv and εl are the dielectric permittivities of the
vapor and liquid, respectively. The heterogeneous nucleus of the size equili-
brated with the surrounding vapor is defined by the condition ∂∆Gi/∂i = 0,
or
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)
= 0. (1.2)

This equation has two roots: ra and r∗ > ra. Values of r∗ and the rate of
formation of these critical nuclei I can be found based on the concept of the
classical homogeneous condensation theory
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∗
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. (1.3)

Here αc is the condensation coefficient, m1 is the molecular weight, Pv and
T are the vapor pressure and temperature, and kB is the Boltzmann constant.
Equation (1.3) is insensitive to the sign of the ion charge. To remove this
disadvantage White and Kasner 24 modified the electrostatic term to take into
account dipole–dipole and dipole–quadrupole interactions between molecules
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being condensed. Numerical calculations carried out in 24 qualitatively de-
scribe the effect of the ion charge sign on the nucleation rate.

The above cited approaches developed to solve the problem of heteroge-
neous nucleation are based on the classical ideas of the crucial role played by
the critical nucleus in the condensation kinetics. Because of this, they suffer all
the shortcomings of the classical nucleation theory primarily associated with
difficulties in substantiating the basic assumptions introduced in the theory
and with the procedure used to derive the formula for the rate of formation of
the critical nuclei Eq. (1.3). These shortcomings were discussed in the previ-
ous sections of this book. For this reason, of importance is the development
of more consistent theoretical models of heterogeneous condensation. One of
such approaches based on the quasichemical model was suggested in 23. The
appropriate kinetic equations were solved assuming a linear dependence of the
rate constant for formation and decomposition of clusters on the number of
molecules in them and the final solution was written as a series in terms of the
Wittaker functions. The author of 23 studied a particular class of canonically
invariant solutions obtained with specially selected initial size distribution of
the clusters.

Despite the attractiveness of the approach suggested in 23, it should be
emphasized that its results are valid only within the applicability limits of the
quasichemical condensation model that disregards nonequilibrium distribution
of the cluster internal energy. Moreover, the case with a linear correlation be-
tween the rate constant and the number of molecules in the cluster is of purely
academic interest whereas an extension of the procedure proposed in 23 for
solving the kinetic equations to dependencies of other types causes difficulties.
Finally, no allowance was made in 23 for the formation of homogeneous clusters
along with heterogeneous aggregates. An attempt to overcome these disadvan-
tages leads to an idea of developing a theory of heterogeneous condensation
on ions based on generalization of our microscopic condensation theory. These
problems are discussed in the following sections of this chapter.

2. Formulation of the problem

We consider a spatially uniform system consisting of N molecules confined
in volume V . The system is a mixture of ideal molecular and cluster gases. The
volume also contains Ω admixture positive ions that are either present as free
particles or may be incorporated in some clusters. We assume that the system
is quasineutral, i.e. it also contains Ω electrons which either exist in the form of
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free particles or are incorporated in some clusters. The ensemble of these ions,
electrons and mixed clusters is assumed to be an ideal gas. We consider the
cases in which translational and rotational relaxation of all molecular and ion
components is so fast that we can introduce a single translational–rotational
temperature of the mixture T . This supposition may not hold for very large
clusters or nucleation centers. But the concentration of such clusters is low,
therefore the single-temperature approximation must at least not affect the
integral characteristics of the system. As for the electron gas, its temperature
Te may significantly differ from T . We also assume that T and Te vary with
time slowly.

The vibrational energy distribution in clusters may be essentially nonequi-
librium when the rate of vibrational transitions between the upper levels is
comparable with the rate of the cluster formation and decomposition. The
problems relevant to description of the vibrational degrees of freedom of clus-
ters have already been discussed in the previous chapters. We use the results
reported there which demonstrate that with no admixture particles the state of
the particles in the studied system can be specified by their total vibrational
energy, and the state of the whole system — by a set of number densities
xj(k) = Nj(k)/V , where Nj(k) with j = 1, ..., N and k = 0, ..., Gj , is the
number of homogeneous clusters comprising j molecules and possessing the
vibrational energy Ej(k). In what follows, the term “homogeneous cluster”
means a cluster consisting of only vapor molecules. Clusters containing admix-
ture particles (ions and electrons) will be referred to as heterogeneous ones. In
the presence of ions and electrons one should obviously take into account the
mixed clusters comprising j vapor molecules and several admixture species.
In this work for the sake of simplicity we confine ourselves to a model which
considers only those heterogeneous clusters that contain either an admixture
ion or an electron. Their populations are denoted by yj(k) and zj(k), where
y0(k) is the populations of the vibrational states of free ions, z0(0) = z0 is the
number density of free electrons and z0(k) = 0 at k 6= 0.

In further calculations we neglect collisions between the clusters and a pos-
sible formation (or decomposition) of a cluster by attaching a dimer, trimer etc.
The three-body collisions are also disregarded. Furthermore, we assume that
the probability of an ion or electron attachment to a heterogeneous cluster is
low 20. Finally, we consider only the case where the processes of recombination
and ionization can be neglected for all particles.

Based on the results obtained earlier let the mixture of clusters be charac-
terized by a set of numerical densities xν

j (k) where superscript ν = 0 denotes
the homogeneous clusters, ν = e — the heterogeneous ones including an ad-
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ditional electron (electronic clusters) and ν = i — the heterogeneous clusters
with an additional positive ion (ionic clusters), Gν

j denotes the topmost ener-
getic level of the corresponding cluster. In particular, xi

1(k) is a population
of the vibrational states of free ions, xe

1(0) ≡ xe
1 — a concentration of free

electrons; by definition xe
1(k) ≡ 0 if k 6= 0. Governing equations describing the

evolution of the mixture are the following

dxν
j (k)
dt

= Jν
j (k) + Iν

j (k), j ≥ 2. (1.4)

In Eq. (1.4) the first term describes processes of collisional relaxation of the
cluster vibrational energy, the second one — a variation of the cluster popu-
lations due to condensation and evaporation. In detail they can be written as
follows

Jν
j (k) =

∑
µ

Jνµ
j (k) ≡

∑
µ

∑

l,i,m

Jνµ
j (l, i | k, m)

Iν
j (k) = Iν0

j−1(k)− Iν0
j (k) + I0ν

j (k)(1− δν0)−
∑

µ=e,i

Iνµ
j (k)δ0ν , (1.5)

where

Iνµ
j−1(k) =

∑

l,i

Iνµ
j−1(l, i | k)(1 + δj1δli)

Jνµ
j (l, i | k, m) = Rνµ

j (l, i | k,m)x̄ν
j (l)x̄µ

1 (i)−Rνµ
j (k,m | l, i)x̄ν

j (k)x̄µ
1 (m)

Iν0
j−1(l, i | k) = Cν0

j−1(l, i | k)x̄ν
j−1(l)x̄

0
1(i)− Eν0

j (k | i, l)x̄ν
j (k), ν = 0, e, i

I0µ
j (l, i | k) = C0µ

j (l, i | k)x̄j(l)x̄
µ
1 (i)− E0µ

j+1(k | i, l)x̄µ
j+1(k), µ = i, e.

(1.6)

Equations for monomers, free ions and electrons can be written in the form

dx0
1(k)
dt

= −
∑

j

∑
ν

Īν0
j (k)−

∑

j

∑
ν

J̄ν0
j (k)

dxµ
1 (k)
dt

= −
∑

j

Ī0µ
j (k)−

∑

j

∑
ν

J̄νµ
j (k), µ = e, i

J̄νµ
j (k) =

∑

l,i,m

Jνµ
j (l, k | i,m)(1 + δlkδj1δνµ)

Īνµ
j−1(k) =

∑

l,i

Iνµ
j−1(l, k | i)(1 + δj1δlk). (1.7)

Here t is the time; C00
j−1(l, i | k) is the rate of formation of the homogeneous j-

mer with energy Ej(k) from the homogeneous (j−1)-mer with energy Ej−1(l)
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by the monomer attachment with energy E1(i); E00
j (k, | l, i) is the rate of the

reverse process; R00
j (l, i | k, m) is the rate of relaxation of the homogeneous

j-mer from the state with energy Ej(l) into that with energy Ej(k) together
with the relaxation of the monomer from the state with energy E1(i) into that
with energy E1(m); x̄ν

j (k) = xν
j (k)/sν

j (k), sν
j (k) is a statistical weight of the

k-th vibrational level of the cluster, Cν
j , Eν

j , Rν0
j , ν = i, e are the respective

constants for ionic and electronic clusters describing the processes of their in-
teraction with monomers, Rνµ

j , ν, µ = i, e is the relaxation constant describing
the interaction between the heterogeneous clusters and ions or electrons.

The populations xν
j (k) are to be normalized by the condition

N∑

j=1

j
∑

ν

Gj∑

k=0

xν
j (k) ≡

N∑

j=1

j
∑

ν

xν
j = n ≡ N0/V,

N+1∑

j=1

Gj∑

k=0

xi
j(k) ≡ ω ≡ N i/V,

N+1∑

j=0

Gj∑

k=0

xe
j(k) ≡ ω ≡ Ne/V, (1.8)

where for a quasineutral mixture N i = Ne and xν
j are concentrations of the

corresponding clusters. a

3. Equilibrium solutions

An equilibrium state of the system is attained at those values of popula-
tions that make all the right hand sides of Eq. (1.4) vanish. Clearly, the equilib-
rium populations are related to the equilibrium concentrations xν

j =
∑

k xν
j (k)

by the relationships

xν
je(k) = xν

jes
ν
j (k)Zν

j (k). (1.9)

Here Zν
j (k), ν = 0, i, e are the Boltzmann factors of the k-th level in

homogeneous and heterogeneous clusters.
awe introduce notation xν

j =
∑

k
xν

j (k) for concentrations because it is easy to distinguish
these concentrations from populations where the number of the vibrational level is presented
in parentheses.
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3.1. Equations for determining the equilibrium concentrations

To calculate the equilibrium concentrations xν
je we use the procedure de-

scribed in section ??.??. Since Eqs. (1.9) make all fluxes Jνλ
j vanish, the

vanishing of all the right hand sides of Eqs. (1.4) reduces to a set of algebraic
equations

I00
j = I0i

j = I0e
j = 0, j = 1, ..., N. (1.10)

This condition also makes fluxes Ii0
j and Ie0

j vanish. Indeed, these fluxes
characterize not the appearance of new clusters, but another channel of forma-
tion of heterogeneous clusters. However, the number of the reaction channels
is of no importance for the equilibrium state. It is easy to ascertain (see below)
that the introduction of an additional channel is equivalent to the existence of
some additional relations between the reaction rate constant.

In what follows in order to make the physical sense of some formulae more
transparent we introduce a special notation xj ≡ x0

j , yj ≡ xi
j , zj ≡ xe

j ,Mj ≡
G0

j , Lj ≡ Gi
j , Oj ≡ Ge

j . To derive the closed set of equations for concentrations
we sum up all the equations for x0

j (k) with respect to k = 0, ...,Mj , for xi
j(l)

with respect to l = 0, ..., Lj and for xe
j(m) with respect to m = 0, ..., Oj . Then

from the equations

∑

i,l,k

I00
j (i, l | k) =

∑

i,l,k

I0i
j (i, l | k) =

∑

i,l,k

I0e
j (i, l | k) = 0, j = 1, ..., N

(1.11)
we obtain the following relations

xje = K0
j (T )xj−1,ex1e

yje = Ki
j(T )y0exje

zje = Ke
j (T, Te)z0exje,

K0
j =

∑

i,k,l

C00
j−1(l, i | k)Z0

j−1(l)Z
0
1 (i)

∑

i,k,l

E00
j (k | l, i)Z0

j (k)
,

Ki
j =

∑

i,k,l

C0i
j−1(l, i | k)Z0

j−1(l)Z
i
0(i)

∑

i,k,l

E0i
j (k | l, i)Zi

j(k)
,
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Ke
j =

∑

i,k,l

C0e
j−1(l, i | k)Z0

j−1(l)Z
e
1(i)

∑

i,k,l

E0e
j (k | l, i)Ze

j (k)
. (1.12)

To find x1e, y0e and z0e we express xje, yje and zje through these variables
using Eq. (1.12). Then we obtain

xje = (x1e)j

j∏

i=1

K0
i , j ≥ 2,

yje = y0e(x1e)jKi
j

j∏

i=1

K0
i , j ≥ 1,

zje = z0e(x1e)jKe
j

j∏

i=1

K0
i , j ≥ 1 (1.13)

with K0
1 = 1. Substituting these equalities into the normalizing condition

Eq. (1.8) yields equations for determining x1e, y0e, and z0e:
N∑

j=1

j(xje + yje + zje) = n

=
N∑

j=1

j(x1e)j

j∏

i=1

K0
i

(
1 + y0eK

i
j + z0eK

e
j

)

N∑

j=0

yje = ω =
N∑

j=1

y0e(x1e)j

j∏

i=1

K0
i Ki

j + y0e,

N∑

j=0

zje = ω =
N∑

j=1

z0e(x1e)j

j∏

i=1

K0
i Ke

j + z0e. (1.14)

Expressing y0e and z0e through x1e from the second and third equations
of Eq. (1.14)

y0e = ω


1 +

N∑

j=1

(x1e)j

j∏

i=1

K0
i Ki

j



−1

,

z0e = ω


1 +

N∑

j=1

(x1e)j

j∏

i=1

K0
i Ke

j



−1

, (1.15)

and substituting Eq. (1.15) into the first of Eqs. (1.14) we find a closed equation
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for x1e:
N∑

j=1

j (x1e)
j
Fj

{
1 + ωKi

j

[
1 +

N∑

k=1

(x1e)
k
FkKi

k

]−1

+ ωKe
j

[
1 +

N∑

k=1

(x1e)
k
FkKe

k

]−1
}

= n,

Fj =
j∏

i=1

K0
i . (1.16)

At ω = 0 (no heterogeneous centers are present) this equation is identical
with Eq. (??). If we disregard the formation of homogeneous and negatively
charged clusters, unity in the brackets in Eq. (1.16) should be replaced by
δj1 and the third term should be omitted (Ke

j = 0), and then Eq. (1.16) is
transformed into the equation derived in 23.

By solving Eq. (1.16) we may determine the equilibrium concentration of
monomers x1e, then from Eq. (1.15) — the equilibrium concentration of free
ions and electrons, and finally all the equilibrium concentrations of homoge-
neous and heterogeneous clusters can be calculated from Eq. (1.13).

3.2. Equilibrium constants Kν
j , ν = 0, i, e

To find the explicit solution of Eq. (1.16) we should express the equilibrium
constants Kν

j , ν = 0, i, e through the partition functions of the corresponding
ideal gas. In accordance with Eqs. (??) and (1.16) we get

Fj =
(
λ0

1

)3j
Z0

j /
(
λ0

j

)3 (
Z0

j

)j
. (1.17)

By analogy for the equilibrium constants Kν
j , ν = i, e it is possible to write

Kν
j =

(
λν

0λ0
j

λν
j

)3 (
Zν

j

Z0
j Zν

0

)
, ν = i, e, (1.18)

where λe
j = λe

j(Te), λi
j = λi

j(T ). Further we can use the well known represen-
tation Zν

j = exp(−Ψν
j /kBT ), ν = 0, i, e, Ze

0 ≡ 1 that with allowance for the
following definition

λ0
j =

(
h2/2πmjkBT

)1/2
= j−1/2λ0

1

λi
0 =

(
h2/2πm0kBT

)1/2

λi
j =

[
h2/2π (mj + m0) kBT

]1/2
= λ0

j (1 + m0/mj)
−1/2
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= λ0
j (1 + m0/m1j)

−1/2
, j ≥ 1,

λe
j =

(
h2/2πmjkBT

)1/2
= j−1/2λ0

1,

λe
0 =

(
h2/2πmekBTe

)1/2
, j ≥ 1,

yields

Ki
j =

(
λ0

1

)3
(

1
j

+
m1

m0

)3/2

exp

(
−∆Ψi

j

kBT

)

Ke
j =

(
λ0

1

)3
[

T

Te

(
1
j

+
m1

me

)]3/2

exp
(
−∆Ψe

j

kBT

)
,

∆Ψi
j = Ψi

j −Ψ0
j −Ψi

0, ∆Ψe
j = Ψe

j −Ψ0
j , (1.19)

where m0 is the ion mass and h is the Planck constant.
We must specify the cluster model more precisely in order to derive explicit

expressions for Fj , ∆Ψi
j and ∆Ψi

j . Let us assume that:

1. the charge of an ion (or electron) incorporated in the heterogeneous clus-
ter is located at the cluster center;

2. all the clusters have a spherical shape;

3. in the first approximation we may neglect the effect of the electric field on
the vibrational frequencies of the molecules incorporated in the cluster;

4. the gas polarization by the ion and electron fields is insignificant since
the vapor is assumed to be ideal;

5. the electrostatic interactions between the ions (electrons) can be ne-
glected since free energy corresponding to such an interaction drops as
1/r.

As in the preceding chapters we divide all molecular vibrations into two
groups, translational and librational ones, and consider these vibrations within
the harmonic approximation assuming the corresponding normal frequencies
within each group to be identical. Then for the free energy of homogeneous
clusters Ψ0

j the previously obtain representation Eq. (??) is valid as well as the
expression for Fj following from Eq. (??)

(x1e)
j
Fj =

(
λ0

1

)−3
Dj3/2+µ exp

(
Aj − bj2/3

)

= Āj exp
(
Aj − bj2/3

)
. (1.20)
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As far as the free energy of heterogeneous clusters Ψi
j and free ions are

concerned they can be written as follows

Ψi
0 = Ψ0

1i +
2e2

3ev

(
1
ra
− 1

R

)

Ψi
j = jΨ0

1(T ) + Ψ0
1i +

2e2

3el

(
1
ra
− 1

r

)
+

2e2

3ev

(
1
r
− 1

R

)

+αi
jS

i
j + Ψi0 − kBT ln

(
Zi

jRZ0
jV

)
(1.21)

where according to 21

αi
j = σ +

Be2

r3 − e

r2P(r), B =
1

16π

(
1
εl
− 1

εv

)
,

r =
(
η3j + r3

a

)1/3
, η = (3m0/4πρl)

1/3
, Si

j = 4πr2.

Here R is the radius of the system under consideration, ρl is the liquid
phase density, P is polarization, Ψi0 is the free energy of vibrations along the
ion — neutral molecule bond in heterogeneous clusters, Ψ0

1i is the free energy of
the recombined ion, ZjR and ZjV are the rotational and vibrational partition
function. Substituting these expressions into Eq. (1.19) we obtain

∆Ψi
j =

2e2

3

(
1
εl
− 1

εv

)(
1
ra
− 1

r

)
+ αi

jS
i
j − α0

jS
0
j + Ψi0

−kBT ln
(
Zi

jR/Z0
jR

)
,

Ψi0 = −kBT ln Zi0 = −kBT ln
6∏

i=1

exp
(

hνi − ε0

2kBT

)[
1− exp

(
hνi

kBT

)]−1

,

S0
j = 4πη2j2/3, Zi

jR/Z0
jR =

(
m0j

m0j + mi

r2

η2j2/3

)3/2

, (1.22)

where ε0 is the depth of the potential well of the interaction between two
molecules, νi is the frequencies of intracluster translational and librational
oscillations.

By analogy it is possible to obtain an explicit representation of ∆Ψe
j if one

has in mind that me ¿ m0, re ¿ r0 ≡ η and hence Ze
jR ≈ Z0

jR, Se
j ≈ S0

j .
Furthermore, in a physical sense Ψe0 = 0. Thus

∆Ψe
j = −2e2

3

(
1
εl
− 1

εv

)(
1
re
− 1

r

)
+ 4πe

[
Be

r
− P (r)

]
,

r ≡ ηj1/3. (1.23)

Thus, we have determined all the thermodynamic functions appearing in
Eq. (1.16). Further on we may show in full accordance with section ??.??, that
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in the thermodynamic limit N →∞, V →∞, N/V = n =const the solution
of Eq. (1.16) at n > x1e,s is x1e ≈ x1e,s where x1e,s is exactly identical with
the Clapeyron–Clausius formula. In this case

xje = Āj exp
(
−bj2/3

)
, j ≥ 2,

yje = y0eĀj exp
(
−bj2/3

)
K+

j , j ≥ 1,

zje = z0eĀj exp
(
−bj2/3

)
K−

j , j ≥ 1,

y0e = ω


1 +

N∑

j=1

Āj exp
(
−bj2/3

)
K+

j



−1

,

z0e = ω


1 +

N∑

j=1

Āj exp
(
−bj2/3

)
K−

j



−1

. (1.24)

At n < x1e,s the major contribution to the sum in Eq. (1.16) is made by
the term with j = 1. Then, instead of Eq. (1.16), we approximately have

x1e

[
1 +

ωKi
1

1 + x1eK
i
1

+
ωKe

1

1 + x1eK
e
1

]
≈ n. (1.25)

The exact solution of this equation may be found from the Cardano for-
mula. For some limiting values of the parameters of Eq. (1.25) we may obtain
even simpler estimates suitable for a qualitative analysis. Thus, if n À ω then
x1e = n that is identical to the result of section ??.??. If ω À n then

x1e ≈ (n/ω)
(
Ki

1 + Ke
1

)−1
. (1.26)

This solution is valid at n/
[
ω

(
Ki

1 + Ke
1

)]
< x1e,s.

Note also that for many substances (such as water vapor and nitrogen)
x1eK

i
1 ¿ 1 and x1eK

e
1 ¿ 1, so that from Eq. (1.25) at (n/ω)

(
K+

1 + K−
1

)−1 ≤
x1e,s we have

x1e ≈ n/
[
1 + ω

(
Ki

1 + Ke
1

)]
. (1.27)

An analysis of Eqs. (1.25)–(1.27) shows that a vapor saturated in the
absence of ions and electrons may be converted into a supersaturated one by
adding heterogeneous nucleation centers. Hence, an introduction of charged
particles shifts the phase equilibrium point. Indeed, let the whole vapor phase
initially consists of monomers with a density n < x1e,s with no heterogeneous
nucleation centers present. Then, it follows from Eqs. (1.26)–(1.27) that x1e ≈
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n, i.e. S = n/x1e < 1. Addition of ions or electrons to the vapor reduces x1e,
so that S becomes greater than unity.

4. Solution of the kinetic equations. Quasisteady states

In this section we derive analytical expressions for the quasisteady solu-
tions of these kinetic equations. As usual the quasisteady-state method as
applied to the problem at issue can be divided into two stages. Within the
first stage we look for the analytical expressions of the quasisteady populations
of the vibrational states of clusters that reduce the original kinetic equations
to a closed set of equations for concentrations of the clusters of all sizes and
types. In the second stage, this set is reduced to three equations describing
the evolution of the concentrations of monomers and free ions (i.e. positively
and negatively charged molecules).

4.1. The first stage of the quasisteady-state method

To solve Eq. (1.4) we employ the quasisteady-state method developed in
the previous chapters. The method is essentially as follows. First we replace
the variables. The populations of the ground state xj(0), yj(0) and zj(0) are
eliminated from the equations and replaced by concentrations xj , yj and zj .
Populations xj(0), yj(0) and zj (0) are related to xj , yj and zj according to
the relationship

xj =
∑

k

xj(k), yj =
∑

k

yj(k), zj =
∑

k

zj(k),

xj(0) = xj −
∑

k 6=0

xj(k), yj(0) = yj −
∑

k 6=0

yj(k),

zj(0) = zj −
∑

k 6=0

zj(k). (1.28)

Equations for xj are obtained from Eq. (1.4) by summing up all the equa-
tions for populations xj(k) over k. Equations for yj and zj are derived in a
similar way. All relaxation terms thus drop out from the final equations, and
these equations take the following form

dxj

dt
=

M1∑

k=0





M1∑

i=0




Mj−1∑

l=0

I00
j−1(l, i | k)−

Mj+1∑

l=0

I00
j (k, i | l) (1− δjN )



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−
L0∑

i=0

Lj∑

l=0

I0i
j (k, i | l)−

O0∑

i=0

Oj∑

l=0

I0e
j (k, i | l)



 , j = 2, ..., N,

dyj

dt
=

L1∑

k=0





M1∑

i=0




Lj−1∑

l=0

Ii0
j−1(l, i | k)−

Lj+1∑

l=0

Ii0
j (k, i | l) (1− δjN )




+
L0∑

i=0

Mj∑

l=0

I0i
j (l, i | k) (1− δj1)



 , j = 1, ..., N,

dzj

dt
=

O1∑

k=0





M1∑

i=0




Oj−1∑

l=0

Ie0
j−1(l, i | k)−

Lj+1∑

l=0

Ie0
j (k, i | l) (1− δjN )




+
O0∑

i=0

Mj∑

l=0

I0e
j (l, i | k) (1− δj1)



 , j = 1, ..., N. (1.29)

As it has been shown earlier when no heterogeneous clusters present in the
system all the xj(k), k = 1, ..., Mj , j = 2, ..., N variables are fast as compared
to the slow variables xj , j = 1, ..., N and x1(k), k = 1, ..., M1. A similar con-
clusion applies to yj(k), k = 1, ..., Lj , j = 1, ..., Ω (fast variables with respect
to yj , j = 0, ..., Ω, y0(k), k = 1, ..., L0) and to zj(k), k = 1, ..., Oj , j = 1, ..., Ω
(fast variables with respect to zj , j = 0, ..., Ω, z0(k), k = 1, ..., O0). Now, in ac-
cordance with general methods of solving singularly perturbed ordinary differ-
ential equations to obtain the quasisteady solutions, instead of the ordinary dif-
ferential equations we may use for xj(k), k = 1, ...,Mj , j = 2, ..., N, yj(k), k =
1, ..., Lj , j = 1, ..., Ω, zj(k), k = 1, ..., Oj , j = 1, ..., Ω so-called “reduced” ones
which follow from the original differential equations by setting the respective
R.H.S. equal to zero. Solving these reduced algebraic equations it is possible to
express all the quasisteady populations through the slow variables which ap-
pear in the reduced equations due to the second line of Eq. (1.28). If one further
substitutes these quasisteady populations into Eq. (1.29) then the closed sys-
tem of equations for concentrations xj , yj , zj follows. This idea is a core of
the proposed approach.

Now we proceed to realization of the above mentioned approach. To find
the quasisteady populations one should solve the truncated equations derived
from Eqs. (1.4). These equations are algebraic, rather than differential, how-
ever, it is hardly possible to solve them analytically. We find an approximate
solution using the method suggested in chapter ?? and based on some simpli-
fying assumptions.
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Attachment of ions and electrons to a cluster. The original equations
take into account formation of heterogeneous clusters due to attachment of ions
and electrons to the homogeneous clusters. However, the rate constant of this
process is much lower than that for the growth of the homogeneous cluster via
the attachment of a monomer to it. In order to give some evidence to this point
let us consider a reverse process — detachment of one molecule or ion from a
heterogeneous cluster. Let this cluster contain j molecules and one ion. Then
the probability of detachment of a molecule from the cluster is j times more
than that of an ion. Moreover, the dissociating ion is tied by the polarization
forces with all the molecules in the cluster, whereas the molecule is bound
only with the ion. Finally, we assume that the ion is solvated at the cluster
center, whereas the cluster dissociates predominantly via the detachment of the
surface molecules. All these considerations suggest the following inequality

E0i
j (k | i, l) ¿ E0i

j (k | i, l) ¿ E00
j+1(k | i, l), (1.30)

and hence

I0i
j (l, i | k) ¿ Ii0

j (k | i, l) ¿ I00
j (l, i | k). (1.31)

The higher the number j, the more confidently we may assert that inequal-
ities Eq. (1.31) hold. At low j the validity of Eq. (1.31) should also be proved.
We accept a model which assumes that the inequality Eq. (1.31) holds up to
j ≥ 2, and that at j = 1 constants E0i

1 (k | i, l), Ei0
1 (k | i, l) and E00

2 (k | i, l)
are of the same order of magnitude (I0i

1 (k | i, l), Ii0
1 (k | i, l) and I00

2 (k | i, l),
respectively).

Now we proceed to a heterogeneous cluster comprising j molecules and an
electron. As a rule, the electron is localized on one of the cluster monomers,
therefore we assume that the overall cluster consists of j − 1 monomeric units
and one negative ion formed from a monomer molecule by the electron attach-
ment. Then, based on the above consideration we may write

E0e
j (k | i, l) ¿ Ee0

j (k | i, l) ¿ E00
j (k | i, l), j ≥ 3,

I0e
j (l, i | k) ¿ Ie0

j (l, i | k) ¿ I00
j−1(l, i | k), j ≥ 3,

E0e
2 (k | i, l) ¿ Ee0

2 (k | i, l) ∼ E00
2 (k | i, l),

I0e
2 (l, i | k) ¿ Ie0

2 (l, i | k) ¿ I00
1 (l, i | k). (1.32)

We do not specify the constant E0i
1 (k | i, l) so far and retain the appropriate

terms in the truncated equations.
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Parameter r. We introduced number r for homogeneous clusters such that
the rate of relaxation of the clusters with a number of molecules j > r at high
levels is much higher than the rate of their dissociation from the same levels;
at j < r the ratio of these rates reverses, whereas at j = r the relaxation and
dissociation rates of the clusters at high levels are of the same order of magni-
tude. The expressions for r as a function of P, T and individual properties of
condensible molecules are presented in section ??.??.

In the case of a mixture of heterogeneous and homogeneous clusters we may
obviously introduce numbers r0, ri and re. They are defined by equations

Θν
j (k) =

∑

i,l

E0ν
j (k | i, l)/

∑

i,l,p

[Rνi
j (k, p | l, i)Zi

0(p)y0e

(1.33)

+ Rν0
j (k, p | l, i)Z0

0 (p)x1e + Rνe
j (k, p | l, i)Ze

0(p)z0e, ν = 0, i, e,

Θν
j (Gν) =





< 1, j > rν ,
1, j = rν ,

> 1, j < rν ,

ν = 0, i, e,
G0 = M, Gi = L, Ge = O.

(1.34)

The presence of an ion or electron in a heterogeneous complex enhances
the attraction forces binding the condensible molecule with the complex (due
to polarization of this molecule), i.e. it reduces the dissociation rate constant.
The relaxation rates Rii

j (k, p | l, i), Ree
j (k, p | l, i) and R00

j (k, p | l, i) can be
assumed to be of the same order. Hence, ri and re are lower than r0.

The relaxation rate of monomers and ions. Here we consider Eq. (1.4)
for the populations of monomers x1(k), k = 1, ..., M1 and ions y0(k), k =
1, ..., L0, and formulate a number of additional simplifying assumptions based
on an analysis of these relations. First, as shown in chapter ?? inequality
I00
0 ¿ I00

j , j ≥ 2 takes place. This inequality follows from the fast decay of the
equilibrium distribution function xje. Similar relations for Ie0

j and Ii0
j follow

from Eq. (1.19), (1.22), thus Ie0
0 ¿ Ie0

j , Ii0
0 ¿ Ii0

j , j ≥ 1.
Using just the same procedure (see Appendix ??) we obtain the following

inequalities

J00
1 À J00

j , j ≥ 2,

Je0
0 À Je0

j , J i0
0 À J i0

j , j ≥ 1,

J0e
1 À J0e

j , J0i
1 À J0i

j , j ≥ 1. (1.35)

Thus, the terms responsible for the relaxation and condensation of the
ions, monomers, and electrons in their collisions with each other dominate in
Eq. (1.4) for x1(k), k = 1, ...,M1, y0(k), k = 1, ..., L0 and z0.
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The above discussion has been concerned with the ratio between the rate of
dissociation of the clusters and that of relaxation of intermolecular vibrations
in the cluster. As for the ratio between the characteristic rate of intramolecular
relaxation of monomers and ions and that of dimerization, it may be differ-
ent for various types of molecules. Because of this we introduce the second
assumption in this paragraph, i.e. that the intramolecular relaxation is much
faster than dimerization. Some physical ideas that support this assumption for
water molecules has been discussed in chapter ??. Rejection of this assump-
tion implies that one should consider monomers and ions being in a certain
vibrational state as an individual particle. This case was studied in chapter
?? as applied to the homogeneous condensation.

The assumptions made allow us to omit all the terms in Eqs. (1.4) for
x1(k), k = 1, ..., M1, y0(k), k = 1, ..., L0 and z0 except those pertaining to
relaxation of monomers and ions in collisions between each other and with
electrons. Moreover, the populations x1(k) and y0(k) are fast variables as
compared to concentrations x1, y0 and z0, since only flows Iµν

j describing con-
densation appear in the equations for concentrations that contain no relaxation
terms under these conditions. Thus, the number of fast variables in Eq. (1.4) in-
creases, and the corresponding truncated equations for the x1(k), k = 1, ..., M1

and y0(k), k = 1, ..., L0 variables must be solved together with the above trun-
cated set of equations.

Quasisteady equations. With due regard for the assumptions introduced
above we can rewrite the truncated equations supplemented by equations for
x1(k), k = 1, ..., M1 and y0(k), k = 1, ..., L0 as follows

Monomers and ions

M1∑
p=0




Mj∑

l,i=0

J00
1 (l, k | i, p)(1 + δlk) +

Lj∑

l,i=0

J i0
0 (l, k | i, p)

+
Oj∑

l,i=0

Je0
0 (l, k | i, p)


 = 0, k = 1, ...,M1;

L0∑
p=0




Lj∑

l,i=0

J ii
1 (l, k | i, p)(1 + δlk) +

Mj∑

l,i=0

J0i
0 (l, k | i, p) +

Oj∑

l,i=0

Jei
0 (l, k | i, p)
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+
Oj∑

l,i=0

Jei
1 (l, k | i, p)


 = 0, k = 1, ..., L0;

x1(0) = x1 −
M1∑

k=1

x1(k), y0(0) = y0 −
L0∑

k=1

y0(k);

Oj∑

l=0




M1∑

i,p=0

Je0
1 (l, i | k, p) +

L0∑

i,p=0

Jei
1 (l, i | k, p) +

O0∑

i,p=0

Jee
1 (l, i | k, p)


 = 0,

k = 1, ..., O1. (1.36)

Neutral clusters (k = 1, ..., Kj)

M1∑

i=0




Mj−1∑

l=0

I00
j−1(l, i | k)−

Mj+1∑

l=0

I00
j (k, l | i)


 = 0, j = 2, ..., r0 − 1;

Mj∑

l=0




M1∑

i,p=0

J00
j (l, i | k, p) +

L0∑

i,p=0

J0i
j (l, i | k, p) +

M0∑

i,p=0

J0e
0 (l, i | k, p)




+
M1∑

i=0




Mj−1∑

l=0

I00
j−1 −

Mj+1∑

l=0

I00
j (k, i | l)


 = 0, j = r0;

Mj∑

l=0




M1∑

i,p=0

J00
j (l, i | k, p) +

L0∑

i,p=0

J0i
j (l, i | k, p) +

O0∑

i,p=0

J0e
j (l, i | k, p)


 = 0,

j = r0 + 1, ..., N. (1.37)

Ionic clusters (k = 1, ..., Lj)

M1∑



Lj−1∑
Ii0
j−1(l, i | k)−

Lj+1∑
Ii0
j (k, i | l)


 = 0, j = 1, ..., ri − 1;

Lj∑

l=0




M1∑

i,p=0

J i0
j (l, i | k, p) +

L0∑

i,p=0

J ii
j (l, i | k, p)

O0∑

i,p=0

J ie
j (l, i | k, p)




+
M1∑

i=0




Lj−1∑

l=0

Ii0
j−1(l, i | k)−

Lj+1∑

l=0

Ii0
j (k, l | i)


 = 0, j = ri;
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Lj∑

l=0




M1∑

i,p=0

J i0
j (l, i | k, p) +

L0∑

i,p=0

J ii
j (l, i | k, p) +

O0∑

i,p=0

J ie
j (l, i | k, p)


 = 0,

j = ri + 1, ..., N. (1.38)

Electronic clusters (k = 1, ...,Mj)

M1∑

i=0




Oj−1∑

l=0

Ie0
j−1(l, i | k)−

Oj+1∑

l=0

Ie0
j (k, i | l)


 = 0, j = 2, ..., re − 1;

Oj∑

l=0




M1∑

i,p=0

Je0
j (l, i | k, p) +

L0∑

i,p=0

Jei
j (l, i | k, p) +

O0∑

i,p=0

Jee
j (l, i | k, p)




M1∑

i=0




Oj−1∑

l=0

Ie0
j−1(l, i | k)−

Oj+1∑

l=0

Ie0
j (k, i | l)


 = 0, j = re;

Oj∑

l=0




M1∑

i,p=0

Je0
j (l, i | k, p) +

L0∑

i,p=0

Jei
j (l, i | k, p) +

O0∑

i,p=0

Jee
j (l, i | k, p)


 = 0,

j = re + 1, ..., N. (1.39)

Now we resort to solving Eqs. 1.36)–(1.39). Equations (1.36) are obviously
the easiest to be solved because quasi-equilibrium values of populations are
among their solutions

x1(k) = x1Z
0
j (k)s0

j (k), y0(k) = y0Z
i
j(k)si

j(k),

z1(k) = z1Z
e
j (k)se

j(k). (1.40)

As far as the subsets specified by Eqs. (1.37)–(1.39) are concerned they are
independent and their structure is precisely identical with those considered in
chapter ??. The only distinction is that in this case molecular vibrations in the
clusters relax due to collisions of the clusters with monomers, ions and electrons
whereas in chapter ?? only one relaxation term presents in the corresponding
equations. This diverse, however, does not prevent us from utilizing the method
developed in chapter ?? to solve Eqs. (1.37)–(1.39). Note that two models of
the relaxation kinetics (single-quantum transitions and BGK models) were
used in chapter ?? to find the solution at j = r. It turns out that the structure
of the solution thus found is identical in both cases and the corresponding terms
in the solution differ only in the coefficients. Moreover, these coefficients drop
out from the final expressions for the quasisteady concentrations. Bearing this
in mind here for the sake of simplicity we use the BGK model in which the
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relaxation times for each level are equal and the relaxation terms are written
as follows

∑

l,i,p

Jνµ
j (l, i | k, p) = −H̄ν

j (k)−HjZ
ν
j (k)

τνµ
j

, µ = 0, i, e, ν = 0, i, e, (1.41)

where H0
j (k) ≡ xj(k), Hi

j(k) ≡ yj(k), He
j (k) ≡ zj(k), Hν

j ≡
∑

k Hν
j (k). By

analogy with chapter ?? the solution of Eqs. (1.36)–(1.39) is written as follows.

at j = rν + 1, ..., N

H̄ν
j (k) = HjZ

ν
j (k), k = 1, ..., Gν , ν = 0, i, e;

at j = 2, ..., rν − 1

H̄ν
j (Gν) =

[
ξν
j + αν

j Cν
rν ,Gν ,Gν

H̄ν
rν (Gν)

+
(
ξν
j αν

rν−1 − αν
j ξν

rν−1

) Cν
rν−1,Gν ,Gν

x1

]
/κν ,

H̄ν
j (k) = H̄ν

j+1(Gν)Eν
j+1,Gν ,k/Cν

j,k,Gν
x1, k = 1, ..., Gν − 1;

Hν
j (0) = Hν

j −
Gν∑

k=1

Hν
j (k), ξν

j = Hν
jeZ

ν
j (Gν)Sj ,

Eν
j,Gν ,k =

∑

i

Eν0
j (Gν | i, k), Cν

j,Gν ,k =
∑

i

Cν0
j (k, i | Gν)Zν

1 (i),

αν
j =

[
1 + Cν

j−1,Gν ,Gν
x1α

ν
j−1

]
/Eν

j,Gν ,Gν
,

αν
2 =


∑

i,l

Eν0
2 (Gν | i, k)



−1

,

κν = 1 + Cν
rν−1,Gν ,Gν

x1α
ν
rν−1, S = x1/x1e,

at j = rν

H̄ν
j (k) = −Hν

j

(
1− fν

j

) Cν
j,k,Gν

x1Z
ν
j (k)

Cν
j,k,Gν

x1 + τ−1
j

+ Hν
j Zν

j (k),

H̄ν
j (Gν)

Hν
jeZ

ν
j (Gν)

=
[Cν

j,Gν ,Gν
x1eH̄

ν
j+1 + Cν

j−1,Gν ,Gν
x1ξ

ν
j−1/κνHν

jeZ
ν
j (k)

+ H̄ν
j (τj)−1

] [Cν
j,Gν ,Gν

x1 + Eν
j,Gν ,Gν

/κν + (τj)−1
]−1

,

(τj)−1 ≡ (τν0
j )−1 + (τνi

j )−1 + (τνe
j )−1, fν

j = H̄ν
j+1/(SH̄ν

j ),

H̄ν
j ≡ Hν

j /Hν
je. (1.42)



4.2. The second stage of the quasisteady-state method 21

4.2. The second stage of the quasisteady-state method

Equations for the slow variables can be obtained by substituting solutions
Eq. (1.41) into Eq. (1.29). As in chapter ?? we find

dHν
j

dt
= I

ν(2)
j +

dν
jeγ2S

Hν
re

Hν
r (1− fr)− dν

jeγ
ν
2 θντν

r

(
1− Eν

r,Gν ,Gν

κνθν

)
I

ν(2)
r+1 ,

j = 2, ..., r − 1, ν = 0, i, e,

dHν
r

dt
= γν

1 Hν
r (1− fr)− γν

2 I
ν(2)
r+1 ,

γν
1 =

1
τν
r

[
Zν

r (Gν)(1− τν
r θν)

τν
r θν

−
Gν−1∑

k=1

Zν
r (k)

Cν
r,kGν ,ex1

Cν
r,kGν

x1 + (τν
r )−1

]
,

γν
2 =

Eν
r,Gν ,Gν

Hν
reZ

ν
r (Gν)

κνSθντν
r

,

dHν
r+1

dt
= −γν

2 S

Hν
re

Hν
r (1− fν

r ) + γν
2 θντν

r

(
1− Eν

r,Gν ,Gν

κνθν

)
I

ν(2)
r+1 − I

ν(1)
r+1 −

dHν
r

dt

dHν
j

dt
= I

ν(1)
j − I

ν(1)
j+1 (1− δjN ), j > r + 1, (1.43)

where by analogy with chapter ?? I
ν(1)
j and I

ν(2)
j are the fluxes that can be

generally represented as

I
ν(1)
j = Kν+

j Hν
j−1x1 −Kν−

j Hνj ,

I
ν(2)
j+1 = Lν+

j xj+1
1 − Lν−

j Hν
j x1. (1.44)

Coefficient dν
je arises when substituting the steady-state monomer distri-

bution in the definition of dj that yields

dν
je =

Cν
j,0Gν

x1eα
ν
j+1

sν
j (0)Zν

j+1(Gν)
Hν

je

Hν
j+1,e

− Cν
j,0Gν

sν
j (Gν)

Cν
j,Gν ,Gν

sν
j (0)

=
Cν

j,0Gν

Cν
j,Gnu,Gν

sν
j (0)Zν

j (Gν)
(
1 + Cν

j,Gν ,Gν
x1α

ν
j − sν

j (Gν)Zν
j (Gν)

)

≈ Cν
j,0Gν

Cν
j,Gν ,Gν

sν
j (0)Zν

j (Gν)
(1 + Cν

j,Gν ,Gν
x1α

ν
j ),

and the definition of α is given in Appendix B.
Equations for Hi

1 ≡ y1 and He
1 ≡ z1 are not presented in Eq. (1.43).

The corresponding equation for y1 has the same form as the first equation in
Eq. (1.43) while for z1 one could get

dz1

dt
= I

e(1)
1 −Ke+

2 z1ex1(z̄1 − S)− Îe, (1.45)
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and Îν is the linear combinations of fluxes I
ν(1)
j and I

ν(2)
j which can be written

by analogy with Eq. (??)

Îν = −Hν
r (1− fν

r )
Eν

r,Gν ,Gν
Zν

r (Gν)
τν
r κνθν

−E
ν
r,Gν ,Gν

ων
r+1(Gν)H̄ν

r+1

κνSθν
Hν

re(Gν)Zν
r (Gν)

(Cν
r,Gν ,Gν ,e − Cν

r,Gν ,Gν

)
x1

+
Eν

r,Gν ,Gν
Hν

reZ
ν
r (Gν)

κνS
I

ν(2)
r+1

(
1− Eν

r,Gν ,Gν

κνθν

)
(1.46)

and throughout this formula r = rν .
Substituting the quasisteady populations found in the previous section

transforms the equations for the slow variables x1, y0 and z0 into the following
ones

dy0

dt
= −

N∑

j=1

L∑

i,k=0

M∑

l=0

I0i
j (l, k | i)

≈ −
L∑

i,k=0

M∑

l=0

I0i
1 (l, k | i) = Ki+

1 x1y0e (1− Si)− Îi, Si = y0/y0e,

dz0

dt
= −

N∑

j=1

O∑

i,k=0

M∑

l=0

I0e
j (l, k | i) ≈ −

M∑

i,k=0

M∑

l=0

I0e
1 (l, k | i) = −I

e(1)
1

dx1

dt
= −

N∑

j=0

M1∑

k=0




M∑

i,l=0

I00
j (l, k | i) (1 + δlkδj1) (1− δj0)

+
L∑

i,l=0

Ii0
j (l, k | i) +

O∑

i,l=0

Ie0
j (l, k | i)




= −
∑

ν=0,i,e




rν∑

j=2

j
dHν

j

dt
+ rνI

(
rν+1ν0) +

N∑

j=rν+2

Iν0
j




−Ki+
1 x1y0e(1− Si) + Îi − I

e(1)
1 + Ke+

1 z1ex1(z̄1 − S) + Îe

= −
∑

ν=0,i,e




rν∑

j=2

j
dHν

j

dt
+ rν Îν +

N∑

j=rν+1

I
ν(1)
j




−Ki+
1 x1y0e(1− Si) + Îi − I

e(1)
1 + Ke+

1 z1ex1(z̄1 − S) + Îe. (1.47)

Here dHν
j /dt denotes the right hand part of the corresponding equation in

Eq. (1.43).
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To solve Eqs. (1.43)–(1.47) we use our quasisteady-state method already
described in chapter ??. Below we take a liberty once again to dwell briefly
on the essence of this method. Since Eq. (1.43) can hardly be solved ex-
actly it seems expedient to seek for asymptotic solutions. In doing this one
has to divide all the concentrations appearing in Eq. (1.43) into fast and
slow ones. As shown earlier this cannot be done with the original variables
(concentrations), therefore we should rewrite the initial equations with the
help of the following nonlinear substitution of variables x0 → S0, y0 →
Si, z0 → Se, S0 ≡ S, Se = z0/z0e, x2, ..., xN → f0

1 , ..., f0
N−1, y2, ..., yN →

f i
1, ..., f

i
N−1, z2, ..., zN → fe

1 , ..., fe
N−1, where

fν
j−1 =

{
H̄ν

j /Sj
0, kν ≤ j ≤ rν ,

H̄ν
j /S0H̄

ν
j−1 j ≥ rν ,

(1.48)

and kν = 2, ν = 0, kν = 1, ν = i, e. In new variables Eq. (1.43) reads

dfν
j

dτ
= Y ν

j − (j + 1)fν
j

d ln S

dτ
, j = 1, ..., rν − 1

dfν
r

dτ
= Y ν

r −
(

fν
r +

Hν
re

SHν
r+1,e

)
Y ν

r−1 − fν
r

d ln S

dτ
,

dfν
j

dτ
= R(fν

j )− fν
j

d

dτ
ln

(
SHν

j+1,e

Hν
je

)
+ µν

j

+ δj,r+1
Hν

re

Hν
r+1,eS

fν
r+1

fν
r

[
Y ν

r−1 +
γ̄

Kx1e
Îν
u

]
,

j = rν + 1, ..., N − 1 (1.49)

Here Y ν
j are the fluxes that turn to zero at fν

j = 1.

Y ν
j =

C̄ν
j+1,0Gν

S

sν
j+1(0)

(
1− fν

j + γν
3

fν
r−1

Sθντν
r

Îν
u

)
, j = 1, ..., rν − 2

γν
3 =

[Cν
r−1,Gν ,Gν

Hν
r−1,eZ

ν
r−1(Gν)

Cν
j+1,Gν ,Gν

Hν
j+1,eZ

ν
j+1(Gν)

] [
1 + Cν

j+1,Gν ,Gν
x1α

ν
j+1

1 + Cν
r−1,Gν ,Gν

x1α
ν
r−1

]
Sr−j−1,

Y ν
r−1 = − γ̄ν

Kx1e
(1− fν

r−1f
ν
r ) +

γν
1

x1eK
(1− fν

r )fν
r−1,

γ̄ν =
Eν

r,Gν ,Gν
Zν

r (Gν)
κνθντν

r

,

γν
1 =

1
τν
r

[
Zν

r (Gν)(1− τν
r θν)

τν
r θν

−
Gν−1∑

k=1

Zν
r (k)

Cν
r,kGν

x1

Cν
r,kGν

x1 + (τν
r )−1

]
,
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Y ν
r = − γ̄ν

Kx1e

Hν
re

SHν
r+1,e

Îν
u − K̄ν+

r+2Sfν
r (1− fν

r+1),

Îν
u = −θντν

r

(
1− Eν

r,Gν ,Gν

κνθν

)
1− fν

r fν
r−1

fν
r−1

+ 1− fν
r

The bar over parameters means that they are dimensionless. As a unit of
time (x1eK)−1 is chosen while as the characteristic formation rate K — the
value of the free molecular flux per unit of the cluster surface area is used. All
the other notations are determined by the relations

R(fν
j ) = (aν

j fν
j − cν

j )(fν
j − 1),

aν
j =

[
K̄ν+

j+2(1− δj,N−1)− K̄ν+
j+1

]
S, cν

j =
K̄ν−

j+1 −Kν−
j (1− δj,r+1)
x1e

µν
j = K̄ν−

j (x1e)−1

(
1− fν

j

fν
j−1

)
(1− δj,r+1)

−K̄ν+
j+2S(fν)2j

(
1− fν

j+1

fν
j

)
(1− δj,N−1), ν = 0, i, e. (1.50)

In new variables an equation for fe
0 has a special form

dfe
0

dτ
= −fe

0

d ln S

dτ
+ K̄e+

1

z0e

z1e
S(Se − fe

0 ) + K̄e+
2 S2(1− fe

0 )− Îe

Kx1ez1eS
. (1.51)

In order to derive equations for supersaturations S, Si, Se in new variables
let us present the flux Îν in the form

Îν =
Eν

r,Gν ,Gν
Zν

r (Gν)
κντν

r θν Hν
reS

rfν
r−1

[
1− fν

r − τν
r θν

(
1− Eν

r,Gν ,Gν

κνθν

)
1− fν

r−1f
ν
r

fν
r−1

]

(1.52)
where we took into account that the last term in Eq. (1.46) vanishes for the
equilibrium distribution x1(k) = x1Z

0
1 (k), y0(k) = y0Z

i
0(k). Using this repre-

sentation we may rewrite Eq. (1.47) as follows

dSi/dτ = K̄i+
1 S(1− Si) +

yre

y0e

E i
r,L,LZi

r(L)

κiτ
i
rθ

IKx1e

Srf i
r−1

·
[
1− fν

r − τν
r θν

(
1− Eν

r,Gν ,Gν

κνθν

)
1− fν

r−1f
ν
r

fν
r−1

]
, r ≡ ri,

dSe/dτ = −K̄e+
1 S(Se − fe

0 ),

dS/dτ = −
N∑

j=r0+2

[1 + (r + 1)δj,r+2] K̄0+
j Sjβ0

j−1(1− f0
j−1)

j−1∏

i=r0−1

f0
i
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−
N∑

j=ri+2

[1 + (r + 1)δj,r+2] K̄i+
j Sjβi

j−1(1− f i
j−1)

j−1∏

k=ri−1

f i
k

−
N∑

j=re+2

[1 + (r + 1)δj,r+2] K̄e+
j Sjβe

j−1(1− fe
j−1)

j−1∏

k=re+1

fe
k

−K̄i+
1

y0e

x1e
S(1− Si)− K̄e+

1

z0e

x1e
S(Se − fe

0 )

−K̄e+
2

z1e

x1e
S(1− fe

0 )− r0

Kx2
1e

Î0 − (ri − 1)
Kx2

1e

Îi − (re − 1)
Kx2

1e

Îe

−
∑

ν=0,i,e

rν∑

j=2

jβν
j Sjfν

j−1Y
ν
j−1

−
∑

ν

(r + 1)βν
r Srfν

r−1

[
Y ν

r − Hν
r+1,e

Hν
reS

Y ν
r

]

βν
j = Hν

je/x1e. (1.53)

As shown in chapter ?? and section ??.?? at vapor condensation under
adiabatic conditions in nozzles, jets, and thermal diffusion chambers fj is a
smooth function of number j, so that µj ¿ 1. On the strength of this the
equations under consideration in variables fj split into independent subsets.
By full analogy with the case of homogeneous condensation it can be shown
that among all the new variables only supersaturation S and fj , j > j̄ ≈
(2/3ε)3, ε ¿ 1 are slow, while the rest of fj including fN are fast. This
feature of Eqs. (1.49)–(1.53) allows us to apply again the asymptotic methods
developed for singularly perturbed system of ordinary differential equations.
The corresponding solution is

fν
j = min

j

[
1, cν

j /aν
j

]
, j = rν + 1, ..., j̄,

fν
j = 1, j < rν , ν = 0, i, e,

fe
0 =

K̄e+
2 S + K̄e+

1 z0eSe/z1e

K̄e+
2 S + K̄e+

1 z0e/z1e

. (1.54)

In what follows we denote by hν the size of a cluster for which cν
j /aν

j = 1.
Equations (1.49) and (1.53) for slow fj are the Riccati equations with the

known partial solution fj = 1. Hence, we can write their explicit solution in
quadratures 6. Using relation βj ≡ nje/n1e ¿ 1, j ≥ 2 proved in section ??.??
and Eq. (1.53) for supersaturation S we arrive at a closed equation

dS/dτ = −
N∑

j=r0+2

[1 + (r + 1)δj,r+2] K̄0+
j Sjβ0

j−1(1− f0
j−1)

j−1∏

i=r0+1

f0
i
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−
N∑

j=ri+2

[1 + (r + 1)δj,r+2] K̄i+
j Sjβi

j−1(1− f i
j−1)

j−1∏

k=ri+1

f i
k

−
N∑

j=re+2

[1 + (r + 1)δj,r+2] K̄e+
j Sjβe

j−1(1− fe
j−1)

j−1∏

k=re+1

fe
k

− K̄i+
1

y0e

x1e
S(1− Si)− K̄e+

1 Ke+
2 z0e/x1e

K̄e+
2 S + K̄e+

1 z0e/z1e

S(1− Se)(1− S).

(1.55)

In order to decide to which type of variables, fast or slow, Si and Se belong,
we might estimate the characteristic rates K̄i+

1 and K̄e+
1 are needed, but their

finding is not an easy task. Therefore we retain the differential form of the
equations describing evolution of these variables rather than the use of the
truncated equations. This does not contradict the general idea of the method
of singular perturbations since the truncated equations, that follow from the
full differential equations at K̄i+

1 = O(1) and K̄e+
1 = O(1), are particular cases

of the latter. Substituting the values of fν
j found in Eq. (1.53) yields

dSi/dτ = K̄i+
1 S(1− Si)

dSe/dτ =
K̄e+

2 SK̄e+
1 z0e/z1e

K̄e+
2 S + K̄e+

1 z0e/z1e

S(1− Se). (1.56)

Thus, the set of Eqs. (1.43) reduces to three equations Eqs. (1.55)–(1.56)
governing the evolution of supersaturations S, Si and Se. The remaining
concentrations xj , yj and zj of heterogeneous and homogeneous clusters may
be found by means of already known supersaturations and fν

j according to
analytic formulae given in this section.

The closed set of equations for concentrations of heterogeneous and homo-
geneous clusters derived here and the equations for supersaturations Sν , ν =
0, i, e that follow from this set enable one to qualitatively analyze the kinet-
ics of heterogeneous condensation within the microscopic condensation model.
This problem is discussed in the following section.

5. An analysis of specific features of heterogeneous condensation on
ions and electrons

In the previous sections we have formulated the basic equations governing
evolution of the populations of neutral and charged (both positive and neg-
ative) clusters and found their equilibrium and quasisteady solutions. These
results substantially simplify the original kinetic equations for populations of
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the vibrational states of clusters reducing their number to three equations de-
scribing the evolution of the concentrations of monomers and free electrons and
ions. The concentrations and populations of the other clusters are evaluated
from the known concentrations of monomers and free electrons and ions using
the analytical formulae derived. This section is devoted to an analysis of the
aforesaid three equations for the concentrations of free molecules, ions, and
electrons or for supersaturations S0 = x1/x1e, Si = y0/y0e and Se = z0/z0e

related to these concentrations. We also discuss the qualitative peculiarities of
heterogeneous condensation in expanding flows. It is found that the conden-
sation processes involving ions and electrons differ significantly.

5.1. An analysis of equations for supersaturations

Applying Eqs. (1.55)–(1.56) we may qualitatively analyze and provide
physical interpretation of the peculiarities of vapor condensation in the pres-
ence of ions and electrons. However, for this purpose one should derive an
explicit expression for quantity hν , ν = 0, i, e. This can be done using the equa-
tions for the equilibrium concentrations of the homogeneous and heterogeneous
clusters Eq. (1.24) and definitions of hν , aν and cν provided by Eq. (1.54).

5.1.1. Calculation of h0

Constants K0−
j and K0+

j appearing in the expressions that define a0
j and

c0
j are related by the detailed balance equation:

K0+
j =

∑

l,i

C00
j−1 (l, i | M)Z0

j−1Z
0
1 (i)

=
xje

xj−1,ex1e

∑

l,i

E00
j (M | l, i)Z0

j (M) =
xje

xj−1,ex1e
K0−

j

therefore it is sufficient to specify only one of these constants. To find K0−
j we

use the results of section ??.?? in which an explicit expression Eq. (??) of this
dissociation rate constant has been obtained based on the statistical theory of
reactions. Further it is easy to note that the definition of h0 is exactly equal
to the definition of j∗ in Eq. (??). Thus, we can utilize the final representation
of j∗ obtained in section ??.?? (see also section ??.??) and put that h0 is the
root of Eq. (??)

1
S

exp
(

2b

3j1/3

)
= 1 + δj ,
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that yields

j∗ =
{

j∗,cl/8, at low S
j∗,cl, at high S

(1.57)

where as usual j∗,cl is the classical critical size. We recall that at j < j∗
the quasisteady solution takes the form fj = 1 while at j > j∗ it looks like
fj = S−1 exp

(
2b/3j1/3

)
.

5.1.2. Calculation of hν , ν = i, e

By analogy with the previous paragraph, we find

ci
j/ai

j ≈ yje/yj+1,e = xjeK
i
j/xj+1,eK

i
j+1 ≈ ϕi

jc
0
j/a0

j ,

ϕi
j ≡ Ki

j/Ki
j+1 ≈ exp

[
1

kBT

(
∂∆Ψi

j

∂j

)]
,

ce
j/ae

j ≈ ϕe
jc

0
j/a0

j , ϕe
j ≡ Ke

j /Ke
j+1 ≈ exp

[
1

kBT

(
∂∆Ψe

j

∂j

)]
.(1.58)

Using representation Eq. (1.22) for ∆Ψe
j and ∆Ψi

j we specify the terms in
brackets:

∂∆Ψe
j

∂j
= −44πBe2

9ηj4/3
− 4πe

∂P(j)
∂j

. (1.59)

A similar expression can be written for ∂∆Ψi
j/∂j provided r3

a ¿ η3j. In
particular, the last inequality obviously holds for heterogeneous condensation
of water vapors.

To find ∂P(j)/∂j according to 21 we expand polarization P(j) into a series
in terms of charge e retaining only quadratic terms

P = P0 + a1e + a2e
2,

a1 = 4Bη̄/r (r + η̄) , a2 = k2 (r + ξ)−4
. (1.60)

Here η̄ is the shift of the phase interface from the state with a1 = 0 to
the state with a1 6= 0, k2 and ξ are parameters of the model and P0 is the
spontaneous polarization. Quantity k2 was expressed in 21 by the following
approximate equation

k2 = − P0

8π2P2
∞

(
1− 1

εl

)2

, (1.61)

where P∞ = pρl and p is the dipole moment of the molecule. Thence,
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∂P(j)
∂j

=
∂P(r)

∂r

∂r

∂j
≈ − 8Bη̄e

3η2j5/3

(
1− 8BeP0

η̄η2P2
∞j

)
. (1.62)

Then we have for ϕν
j , ν = i, e

ϕν
j = exp

{
− 44πBe2

9ηj4/3kBT

[
1− 24η̄

11η
j−1/3

(
1− 8BeP0

η̄η2P2
∞j

)]}
. (1.63)

Thus, to find hν one should solve the equation that follows from Eqs. (??),
(1.57), and (1.63)

− 44πBe2

9ηj4/3kBT

[
1− 24η̄

11η
j−1/3

(
1− 8BeP0

η̄η2P2
∞j

)]
+

2b

3j1/3
− ln S = 0 (1.64)

or

− δ1

j4/3

[
1− δ2

j1/3

(
1− δ3

j

)]
+

δ4

j1/3
− ln S = 0. (1.65)

We estimate the characteristic value of each term of Eq. (1.62) using pa-
rameters appearing in them from ?. For water vapor µ = 18 g/mol and ρl = 1
g/mol3, therefore η = 2.15Å and e2/ηkB =6 ·104K. The εl values depend on
the temperature: εl = 78.8 at T = 298K, εl = 34.6 at T = 481K, εl = 10.1 at
T = 637 K, and εϑ = 1 at any temperature. Thence, 4πB = 0.24 for water
vapor at T = 300K. As a result δ = 44πBe2/9ηj4/3 = 58.7. At the same
temperature σ = 128− 0.19T = 71 dyne/cm and δ4 = 8πσ/3kBT = 6.5. Fur-
thermore, according to the data given in 21 4πP0 = −0.1 V and p = 1.8 Deby
for water molecules and thus k2 = 8.6 · 10−17 CGSE units. The value of η̄ for
a water molecule must be less than 1.3Å, the value suggested in 21 is η̄ = 1Å.
Then δ3 = ±1.3 and δ2 = 1. The sign of δ3 depends on the sign of charge e.
For condensation on positive ions e > 0 and δ3 < 0 while for condensation on
electrons δ3 > 0.

Since the solution of Eq. (1.65) cannot be written in an explicit analytical
form we perform its qualitative analysis. For this purpose we rewrite Eq. (1.65)
as follows

1− δ1

jδ4

[
1− δ2

j1/3

(
1− δ3

j

)]
=

(
j

j∗,cl

)1/3

. (1.66)

We recall that we have denoted solution of Eq. (1.66) by h. At a fixed
temperature j∗,cl depends only on supersaturation (j∗,cl = (δ4/ ln S)3).

The solution of Eq. (1.66) depends essentially on the sign of the heteroge-
neous cluster charge. For ionic clusters δ3 < 0, therefore the left hand side of
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Fig. 1

Dependencies of hi (the dash line), he (the dash-dot line) and j∗ (the solid
line) on ln S at T =const.
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Eq. (1.66) is positive at j ≥ 1. In view of this Eq. (1.66) has a single solution
in this range of j values (the other solutions are physically meaningless). As
S values close to unity j∗,cl → ∞, therefore hi ≈ j∗,cl. As S grows the j∗,cl

value drops (see Fig. 1). The value of hi also drops due to this. The hi(S)
curve intersects the j∗,cl(S) line at j values making the bracketed expression
in Eq. (1.66) vanish.

For the electronic clusters the value of δ3 is positive. This makes the left
hand side of Eq. (1.66) vanish at some j = he

∗ and the he(S) dependence
assumes the form demonstrated in Fig. 1. It is seen that at S < Sc Eq. (1.66)
has two roots. The greater root he

1 ≈ j∗,cl at S values close to unity and
he

1 < hi < j∗,cl. As S rises, he
1 drops while he

2 increases until their values
become equal at point S = Sc. Equation (1.66) has no root at S > Sc.

Since the dependence he(S) of this type is unusual (e.g., compared to those
for hi and h0), we have to specify more precisely the ce

j/ae
j values appearing in

Eqs. (1.55)–(1.56). These values can easily be derived from Eq. (1.66) based
on the analysis performed above, because ce

j/ae
j = ϕe

j exp
(− ln S + δ4j

−1/3
)
.

At S < Sc the result reads

ce
j/ae

j < 1, he
2 > j > he

1,

ce
j/ae

j > 1, he
2 < j < he

1. (1.67)

At S > Sc one has ce
j/ae

j < 1 for any j.
Note that δ2 and δ3 are independent of T , whereas the δ1/δ4 ratio depends

on T only due to the δ(T ) function. As T grows parameters σ and j∗,cl fall
off, whereas the δ1/δ4 ratio grows. For this reason at a fixed S the hi value
drops with increasing T steeper than j∗,cl does (Fig. 2). An increase in T raises
he

2 and reduces he
1. To derive the Sc and he

c dependence on T we should find
the explicit solution of the equation ∂ ln S/∂he = 0. Differentiating Eq. (1.65)
with respect to ln S and equating ∂ ln S/∂he yields

1 =
δ1

δ4hc

(
4− δ2

h1/3
c

)
(1.68)

whence

∂hc

∂T
= hc

∂ ln σ

∂T

(
δ1δ2

3δ4h
4/3
c

− 1
)−1

.

It is well known that ∂ ln σ/∂T < 0. Quantity δ1δ2/3δ4 for water ranges
between 3 and ∞ as T varies from 300K to Tc, where Tc is the temperature
at the critical point. Therefore, at low T values ∂hc/∂T > 0, while at high T

they are negative.
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Fig. 2

Dependencies of hi and j∗,cl on T at ln S = const.
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Note that though the ce
j/ae

j ratio is greater than unity for homogeneous
and ionic clusters at S < 1, this ratio for electronic clusters at S < 1 is below
unity within some region j < he

2.

5.1.3. Equations for supersaturations S, Si and Se

In this paragraph we show that a closed set of equations for supersatura-
tions S, Si and Se can be derived from Eqs. (1.55)–(1.56). We note that the
sums appearing in Eq. (1.56) can be transformed into

N∑

j=q+2

K0+
j Sjβ0

j−1

(
1− f0

j−1

) j−1∏

i=q+1

f0
i =

j̄+1∑

j=q+2

Sq+1

[
S − exp

(
2b

3j1/3

)]
τ−1
j

+
N∑

j=j̄+2

Sq+j−j̄ (1− fj−1)
j−1∏

i=j̄+1

fi/τ̄i, q ≡ max
(
r0, h0

)
.

τ−1
j = K̄0+

j β0
j−1

(
Āq+1/Āj−1

)
exp


2b

3

j−1∑

i=q+1

i−1/3


 ≈ K̄0+

j βq+1,

τ̄j = K̄0+
j β0

j exp


2b

3

j̄∑

i=q+1

i−1/3




≈ K̄0+
j

(
Āj/x1e

)
exp

[
−b

(
j2/3 − j̄2/3 + q2/3

)]
¿ 1. (1.69)

At q > j̄ the first sum in Eq. (1.69) is missing. Since according to estimates
of section ??.?? b0

j ¿ 1 at j > j̄, we may neglect the second sum in Eq. (1.69).
That yields the final expression

N∑

j=q+2

K0+
j Sjβ0

j−1

(
1− f0

j−1

) j−1∏

i=q+1

f0
i

=
j̄+1∑

j=q+2

Sq+1

[
S − exp

(
2b

3j1/3

)]
τ−1
j ≈ 2β0

q+1S
q+2K̄0+

q+2b

9q4/3
. (1.70)

We apply a similar procedure to transform the remaining sums in Eq. (1.62)

N∑

j=rν+2

Kν+
j Sj+1βν

j−1

(
1− fν

j−1

) j−1∏

i=rν+1

fν
i =

j̄+1∑

j=q+2

K̄ν+
j βν

j−1S
q+2

j−1∏

i=q+1

ϕν
i

·
[
1− ϕν

j S−1 exp
(
−bj2/3

)]
= K̄ν+

q+2β
ν
q+1S

q+2ϕν
qϕν

q+1

[
b

9q4/3
− ∂ ln ϕν

j

∂j

]
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≈ 2K̄ν+
q+2β

ν
q+1S

q+2ϕν
qϕν

q+1

b

9q4/3
, ν = i, e. (1.71)

Note that relation

ϕν (qν) = S exp
(
− 2b

3h1/3
ν

)

follows from Eqs. (1.63)–(1.64) at qν = hν .
The set of Eqs. (1.55)–(1.56) together with Eqs. (1.70)–(1.71) reduces to

dS/dτ = −K̄i+
1

y0e

x1e
S(1− Si)− K̄e+

1 Ke+
2 z0e/x1e

K̄e+
2 S + K̄e+

1 z0e/z1e

S(1− Se)(1− S)

−2K̄0+ (q0 + 2) β0 (q0 + 1) Sq0+2b/9q
4/3
0

−2K̄e+ (qe + 2) βe (qe + 1) Sqe+2b/9q4/3
e

−2K̄i+ (qi + 2) βi (qi + 1) Sqi+2b/9q
4/3
i ,

qν = max (rν , hν) , K (j) = Kj , ϕ (j) = ϕj , βν (j) = βν
j ,

dSi/dτ = K̄i+
1 S (1− Si) ,

dSe/dτ =
K̄e+

2 SK̄e+
1 z0e/z1e

K̄e+
2 S + K̄e+

1 z0e/z1e

S (1− Se) . (1.72)

There are two ranges of the terms appearing in Eqs. (1.55)–(1.56) and
containing fe

j where fe
j differs from unity: a) re ≤ j < he

2; b) he
1 < j <

j̄. Since h1 > h2 the terms corresponding to range “b” can be neglected
because β(he

1) ¿ β(he
2). Thus, as a definition of qe presented in Eq. (1.72) it

is reasonable to take qe = max(re, he
2). At S = Sc we have he

1 = he
2 and hence

this definition is self-consistent (this case corresponds to a situation in which
fj is other than unity in the r ≤ j < j̄ range for neutral and ionic clusters).
At S > Sc the ratio cj/aj is greater than unity therefore qe = re.

5.1.4. Fast and slow relaxation of Se and Si

By solving Eq. (1.72) we may determine how supersaturations S, Si and
Se vary with time. Generally, the rate of this evolution depends on the dimen-
sionless rate constants K̄0+

j , K̄i+
j and K̄e+

j and on the dimensionless equilib-
rium concentrations βν

j , ν = 0, i, e. In this paragraph we analyze the possible
regimes of heterogeneous condensation arising at various ratios between these
constants.

A fast change of Si and Se. First we consider the case K̄i+
j ∼ O(1). Then,

dSi/dτ ∼ O(1). To estimate the order of magnitude of dSe/dτ we consider the
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ratio z0e/z1e presented on the right hand side of the equation for Se. According
to Eq. (1.24) this ratio is

z0e/z1e =
[
Ā1 exp (−h1)Ke

1

]−1
.

The subscript of b signifies the dependence of the macroscopic surface
energy on size j for small clusters. It is reasonable to assume that b1 ≈ 0. Using
the expression of Āj given in Eq. (??) and representation Eq. (??) for Ke

j we
can show that z0e/z1e ¿ 1 in view of the inequality

(
6ε0 + ∆Ψe

j

)
/kBT À 1.

Let us also assume that K̄e+
2 S ≤ K̄e+

1 z0e/z1e. Then we find from Eq. (1.72)
that

dSe/dτ ≈ K̄e+
2 S2 (1− Se) .

Since K̄i+
1 and K̄e+

2 are of the same order according to their physical
meaning, one has dSe/dτ ∼ O(1).

Finally, we estimate the right hand side of the equation for S. Quantities
βν

j ¿ 1, ν = 0, i, e, j ≥ 2. This is shown for ν = 0 in section ??.??. For ν = i, e

this can be shown using the relations reported in section 1. Quantity β(q +
1)Sq+1 ¿ 1, q ≡ qν , therefore the first two terms K̄i+

1 (y0e/x1e)S(1− Si) and
K̄e+

1 Ke+
2 (z0e/x1e)

[
K̄e+

2 S + K̄e+
1 (z0e/z1e)

]−1
S(1 − Se)(1 − S) are dominant

in the right hand side of the equation for S if βi
0 and βe

0 are not too small.
Further on two situations are possible.

(a) βe
0 ∼ O(ε) and βi

0 ∼ O(ε). It is easy to see that under the consid-
ered conditions dS/dτ ∼ O(ε), dSi/dτ ∼ O(1) and dSe/dτ ∼ O(1). Thus, Si

and Se are fast variables whereas S is a slow variable. Then we may again
perform an asymptotic integration of Eq. (1.72) (the third stage) and obtain
the quasisteady values of the fast variables. The solution of the truncated
equations for Si and Se is trivial: Si = Se = 1. Hence, the quasisteady
concentrations of free ions and electrons in this case are identical with their
equilibrium values.

The equation for S takes the following form after substituting Si and Se

in it

dS/dτ = − 2K̄0+ (q0 + 2) β0 (q0 + 1) S(q0+2)b/9q
4/3
0

− 2K̄i+ (qi + 2) βi (qi + 1) S(qi+2)ϕi (qi) ϕi (qi + 1) b/9q
4/3
i

− 2K̄e+ (qe + 2) βe (qe + 1) S(qe+2)ϕe (qe) ϕe (qe + 1) b/9q4/3
e ,

qν = max(rν , hν), K(j) = Kj , ϕ(j) = ϕj , βν(j) = βν
j . (1.73)

It is seen that the terms containing Si and Se dropped out from this
equation. By virtue of this the conditions βe

0 ∼ O(ε) and βi
0 ∼ O(ε) seem to
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be excessively rigorous. Indeed, as seen from Eq. (1.73) the condition under
which this regime of the process is realized should be specified by inequality

max
ν

[
K̄ν+ (qν + 2) βν (qν + 1) Sqν+2

] ∼ O(ε).

(b) βe
0 ∼ O(1) and βi

0 ∼ O(1). On the strength of the aforesaid the so-
lution is completely identical with that obtained in the previous subparagraph.

Slow relaxation of Si and Se. The above analysis demonstrates that the
rate of the S variation is low enough dS/dτ ¿ dSe/dτ ∼ dSi/dτ . Is it possible
that under certain conditions all these derivatives are of the same order? A
positive reply would require that the following approximate relation holds

max
ν

[
K̄ν+ (qν + 2) βν (qν + 1) Sqν+2

] ∼ K̄i+
1 ∼ K̄e+

2 ∼ O(1). (1.74)

Since β is small this is possible only when supersaturation S is large. In
such a case Eq. (1.74) does not tolerate further simplifications, therefore to
find S, Se and Si one should solve these equations numerically.

5.2. Heterogeneous condensation in expanding flows

The quasisteady-state method described in chapter ?? was extended in
chapter ?? as applied to spatially nonuniform systems. Let us remind that the
appropriate kinetic equations written in terms of new variables (mass popula-
tions and concentrations) have a structure similar to that reported in chapter
??, and their solutions are obtained in a similar way. It can be easily shown
that the method of section ??.?? is directly applicable to the case of hetero-
geneous condensation. As a result the set of gasdynamic equations governing
an expanding flow without condensation is supplemented only by Eq. (1.72).
Other parameters such as the concentrations of homogeneous and heteroge-
neous clusters and populations of their energetic levels may be restored from
the analytical expressions derived in this section. In what follows we discuss
this problem in more detail.

5.2.1. The method of the reduced description of flows with condensation

In order to understand the qualitative nature of heterogeneous conden-
sation in expanding flows we consider, for instance, a one-dimensional super-
sonic flow along a stream tube. The corresponding equations governing this
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flow with homogeneous condensation were derived in section ??.??. Similar
manipulations yield in our case

(
M2 − 1

) d ln u

dξ
=

d ln F

dξ
− νΩ,

(
M2 − 1

) d ln ρ

dξ
= −M2 d ln F

dξ
+ νΩ,

(
M2 − 1

) d ln P

dξ
=

ρu2

P

[
d ln F

dξ
− νΩ

]
,

(
M2 − 1

) d ln T

dξ
=

u2

σ

d ln F

dξ
+

[
u2

σ

(
1− Lα0

1

σ

)
− Lα0

1

(
M2 − 1

)

σ

]
Ω

u

Kx1e

d ln α0
1

dξ
= −2K̄0+(q0 + 2)β0 (q0 + 1) Sq0+1 b

9q
4/3
0

−2K̄i+(qi + 2)βi (qi + 1) Sqi+1ϕi (qi)ϕi (qi + 1)
b

9q
4/3
i

−2K̄e+(qe + 2)βe (qe + 1) Sqe+1ϕe (qe)ϕe (qe + 1)
b

9q4/3
e

−K̄i+
1 βi

0(1 − Si)− K̄e+
1 Ke+

2 βe
0

K̄e+
2 S + K̄e+

1 (z0e/z1e)
(1− Se)(1− S),

u

Kx1e

d ln αe
0

dξ
=

K̄e+
2 SK̄e+

1 z0e/z1e

K̄e+
2 S + K̄e+

1 z0e/z1e

S
(1− Se)

Se
,

u

Kx1e

d ln αi
0

dξ
= K̄i+

1 S
(1− Si)

Si
, (1.75)

where

qν = max (rν , hν) , K(j) = Kj , ϕ(j) = ϕj , βν(j) = βν
j ,

Ω = d ln α1/dξ, α1 = m0x1eS/ρ, αi
0 = miy0eSi/ρ, αe

0 = mez0eSe/ρ,

ν = 1− Lα1

(
5P

2ρ
+

T

µ1

∂h1,i

∂T

)
, M =

u

a
,

σ = u2

(
ρu2

P
−M2

)−1

=
(

5P

2ρ
+

T

µ1

∂H1,i

∂T

)
,

a2 =
∂P

∂ρ

∣∣∣∣
S,α

=
P

ρ

r∑

i=1

αi
∂hi

∂T
−

[
r∑

i=1

(
αi

∂hi

∂T
−R

αi

µi

)]−1

.

Here ξ is the longitudinal coordinate, F is the area of the stream tube,
ρ, u, P , and h are respectively the density, velocity, pressure, and enthalpy
of the mixture of molecules, ions, electrons and clusters (for simplicity here
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we assume that the translational temperature of all the mixture components
is the same), M is the Mach number, a is the frozen speed of the sound, L is
the specific evaporation heat, µ1 is molecular weight of monomers, α0

1, αi
0 and

αe
0 are the mass fractions of monomers, free ions and electrons in the mixture

and h1,i is the enthalpy of the internal degrees of freedom of monomers.

5.2.2. A qualitative analysis of heterogeneous condensation in flows

A qualitative analysis of Eq. (1.75) enable us to reveal the characteristic
features of the heterogeneous condensation process. To emphasize the differ-
ence of homogeneous condensation and condensation on positive ions from that
on electrons we consider these processes one after another.

a) Homogeneous condensation. Let the parameters in the initial section
of a supersonic flow correspond to an unsaturated vapor (S < 1) and the initial
concentration of ions and electrons be so low that formation of heterogeneous
clusters can be disregarded. Let also the Mach number at the initial section
be not very high. Under these conditions j∗,cl < 0, i.e. c0

j/a0
j > 1 for all j.

Then all f0
j , j = 1, ..., j̄ are equal to unity and dα0

1/dt ≈ 0. Due to this the
mass fraction of the monomers remains constant in the flow until the vapor
parameters attain the saturation point (dew point). At this point on the phase
diagram the adiabatic curve along which we have varied the vapor parameters,
crosses the vapor–liquid coexisting curve and S becomes equal to unity.

At the further vapor expansion S > 1 and j∗,cl > 0. Under these conditions
there exists a region with j > q ≡ max (j∗,cl, r) in which certain f0

j differ
from unity. At S close to unity, j∗,cl → ∞, qν → ∞, and Ω → 0, therefore
α0

1 = const. Hence, P, ρ, u and T adiabatically vary along the stream tube
and S grows until Ω attains a value of the order of d ln F/dξ. From this
instant the latent heat evolved during condensation will appreciably influence
the flow parameters and they will substantially differ from the corresponding
adiabatic values. In reality, the effect of condensation on the behavior of, say,
temperature will be noticeable already at δ values appearing in the relation

δ
d ln F

dξ
=

[
1− Lα0

1

σ
− (

M2 − 1
) Lα0

1

u2

]
Ω (1.76)

are of the order of 0.1 or 0.3.
Two mechanisms of relaxation of the flow parameters from the adiabatic

values to the equilibrium ones are possible.
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1. The effect of the latent heat of condensation on the flow parameters is
such that they deviate from their corresponding adiabatic values.

2. During an adiabatic variation of the flow parameters condition Eq. (1.74)
is attained and all f0

j and α0
i change with an identical rate. As shown

in 4 if we are interested in further looking for the quasisteady solutions
within the time scale of the slow variables variation (in 4 the flow rate Q,
total momentum G and total energy of the system E were selected as the
slow variables), we should solve the equations for these variables similar
to Eq. (1.75) with the only difference that the differential equation for
α0

1 is replaced by the relation S = 1. Thus, upon passing through point
“k”, at which condition Eq. (1.74) is met, the supersaturation changes
within a short period of time τ1 from Sk to unity, i.e. a “condensation
jump” takes place. Point “k” is called the Wilson point in the literature.
Quantity τ1 is the characteristic time of Q, G or E variation.

If we are interested in evolution of all the parameters within the time
scale of the α0

1 variation, upon reaching the Wilson point we have to
solve the whole set of equations Eq. (1.49) for S and f0

j . The values
of Q, G and E remain invariable and equal to their magnitude at the
Wilson point. It is not difficult to find out that this condition leads to
relations T = const, u ≈ const, P ≈ 1/F and ρ ≈ 1/F .

Since as S tends to unity the value of h0 ≈ j∗,cl grows, this solution holds
until h0 again exceeds r0 and α0

1 becomes a slow variable. Note that these
processes are scrutinized in the theory of relaxational oscillations 25.

The above analysis gives rise to a more precise definition of the Wilson
point. In the first case we may use, for instance, Eq. (1.76) as a basic definition
of this point, whereas in the second case the parameters at the Wilson point
are found from Eq. (1.74).

b) Heterogeneous condensation on positive ions. How the presence
of ions or electrons affects the rate of variation of supersaturation and the
position of the Wilson point is one of the most interesting problems. Let all
the conditions formulated in the previous paragraph hold again at the initial
section of the flow, however now the initial concentration of free ions in the
system is high enough that the ionic clusters should be taken into account (here
we do not use the condition that the mixture should be necessary quasineutral
assuming the electron concentration to be negligibly small as compared to the
monomer and ion concentrations). At S < 1 Eq. (1.66) which defines hi has no
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roots, therefore all f i
j , j = 1, ..., j̄ are equal to unity. Then α0

1 is a slow variable
whereas αi

0 (and, hence, Si) is the fast one (the case of fast Si relaxation. The
quasisteady solutions for this case are Si = 1 and αi

0 = const. Owing to this
the mass fraction of monomers in the flow remains constant, whereas the ion
concentration is equilibrium and corresponds to a local temperature of the flow
T and to the initial concentration of the ions ω.

After the dew point is attained (now its position depends on the value of ω,
see section 1) S > 1 and j∗,cl > hi > 0 during further expansion of the vapor.
Since at S values close to unity hi is large and qi = hi, condition Eq. (1.74)
is not met and relaxation of Si is fast. Then at Si = 1, j∗,cl > hi the major
term in the right hand side of Eq. (1.75) for α0

1 is that pertaining to the ionic
clusters (the term containing qi).

A further increase in S reduces h0 and hi, where first h0 > hi and then
h0 < hi (see Fig. 1). Two situations are possible because ri ≤ r0. If at h0 > hi

equality hi = ri is achieved, with further increase in S the rate of the α0
1

relaxation depends predominantly on the term in Eq. (1.75) that contains qi

(now qi = ri). Thus, in this case the rate of the α0
1 relaxation is controlled by

the rate of formation of ionic clusters at all S > 1. If, on the contrary, condition
h0 < hi is achieved earlier than the condition hi = ri, in what follows the rate
of relaxation of α0

1 is determined by the term containing q0 (i.e. by the rate
of homogeneous condensation) while at the beginning it was controlled by the
rate of the ionic clusters formation.

It follows from Eq. (1.74) defining the Wilson point that as qν drops so does
the S value because β (qν) rises steeply. Hence, the maximum supersaturation
at the Wilson point in heterogeneous condensation on ions turns out less than
that in homogeneous condensation under the same conditions, whereas the
condensation rate shows the opposite trend.

c) Heterogeneous condensation on electrons. Now we consider the most
general case. Let all the conditions listed in paragraph “a” hold again at the
initial section of the flow, however now the initial concentration of free electrons
and ions is ample to produce appreciable amounts of ionic and electronic clus-
ters. Situation considered here is unusual because at S < 1 Eq. (1.66) defining
he has positive roots (see Fig. 1). If this root he

2 > re then dα0
1/dt 6= 0. Since

at S < 1 the value of he
2 is low, the rate of formation of electronic clusters may

be quite high under these conditions and the relaxation of Si and Se is fast, i.e.
the quasisteady solutions have the following form: Si = Se = 1. Condensation
on electrons can result in a substantial deviation of the flow parameters from
their adiabatic values and hence, in a total change of the flow pattern.
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If, however, the electron concentration in the flow is low as compared with
that of monomers (ω/n ¿ 1) or he

2 < re then all f i
j , f0

j , fe
j , j = 1, ..., j̄

are equal to unity. In this case α0
1 is a slow variable while αi

0 and αe
0 (and

hence Si and Se) are the fast ones (the case of fast Si and Se relaxation).
The quasisteady solutions are then Si = Se = 1 and α0

1 = const. Owing to
this the mass fraction of the monomer molecules remains constant during the
gas expansion, while the electron and ion concentrations are equal to their
equilibrium values corresponding to the local temperature of the flow T and
the initial ion and electron concentration ω.

As the flowing mixture of vapor, ions and electrons expands further under
condition he

2 < re the mixture parameters attain the values pertaining to the
dew point (now its position also depends on the value of ω, see section 1) and
S exceeds unity. At values of S slightly exceeding unity condition he

2 < re

is met and therefore qe = he
1, h0 ≈ j∗,cl → ∞, h0 > hi > he

1 and quantity
Ω tends to zero. Thus, neither homogeneous nor heterogeneous condensation
takes place within this range of flow parameters.

With a further increase in S the he
2 value grows (see Fig. 1) and at some

value of S it may exceed re. This introduces a term in the right hand side
of Eq. (1.75) for α0

1 which is much higher than the other terms (this is the
term containing qe) because of the condition he

2 ¿ he
1 < hi < h0. Therefore

the rate of variation of the mass fraction of monomer will be determined only
by the value of this term, i.e. by the formation rate of the electronic clusters.
Actually, the condensation experiences a “jump” at point he

2 ≈ re and this
point can be identified with the Wilson point.

If, however, because of the very small ω/n ratio the rate of heterogeneous
condensation is too low to produce a jump in the flow parameters and provide
their fast relaxation to the equilibrium values, quantity S keeps growing as the
flow expands further. The growth of S leads to an increase in he

2 and, hence,
to a decrease in dα0

1/dt. As follows from Eq. (1.68) because of the temperature
drop due to adiabatic expansion the value of hc grows at high temperatures
and drops at low temperatures. Since at high temperatures the value of δ4 in
Eq. (1.68) is low, the rate of the hc growth is small. For this reason at S > Sc

the he
2 value becomes greater than hc and qe = re. The second “condensation

jump” occurs at this point.
It can be inferred from the aforesaid that in heterogeneous condensation of

water vapor on electrons the Wilson point is attained earlier than in condensa-
tion on ions or in homogeneous condensation. Thus, the maximum supersatu-
ration at the Wilson point in heterogeneous condensation on electrons is lower
than that in condensation on ions or in homogeneous condensation under the
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same conditions, whereas the ratio of the condensation rates is reverse. This
fact was discovered by Wilson for the first time in experiments performed in a
chamber that bears his name 26.

In conclusion we should underline the following. Heterogeneous condensa-
tion of water vapor on negative particles is carried out with high rates and is
specified by low values of supersaturation in the Wilson point. This preference
of water vapor with respect to negative particles is determined by the sign of
spontaneous polarization of water molecules. For substances with a positive
spontaneous polarization this is not the case because they condense more effi-
ciently on positively charged particles. However, all the above analysis is still
valid if we substitute ionic clusters instead of electronic ones and vice versa.
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