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Kinetic Model of Effect of a Carrier Gas on Nucleation
in a Diffusion Chamber

Andrey L. Itkin
Institute of High-Performance Computing and Databases, St. Petersburg, Russia

For the � rst time a model of nucleation when a transport of
condensing molecules to the cluster surface is determined by their
diffusion through a carrier gas is proposed. The approach in use
is strongly based on the microscopic theory of nucleation put for-
ward by the author and allows an analytical representation of the
cluster’s concentrationsthroughsupersaturation,gas temperature,
and carrier gas pressure, which is quite new. It is shown that usual
conditions of experiments in diffusion cloud chambers meet the re-
quirements of the model validity that means this model can be used
to explain a mechanism of the carriergas pressure in� uence on the
nucleation kinetics observed in experiments.

INTRODUCTION
In the existing theories of homogeneous nucleation it is ac-

customed to consider that a concentration of a noncondensible
(carrier) gas does not affect the rate of nucleation. For instance,
classical nucleation theory (CNT) originally treats the nucle-
ation process as an isothermal one. So from the point of view
of this theory, high concentration of the carrier gas just pro-
vides such isothermal conditions while at low concentrations
one should probably take care about taking into account non-
isothermal effects. That is why when in Chukanov and Kuligin
(1987); Heist et al. (1994) and some other works it had been
discovered that critical supersaturationof the condensiblevapor
linearly increases with the increase of the carrier gas pressure, it
stimulateda new and signi� cant interest to this problem. A num-
ber of investigators have attempted to model these experimental
results that have been published representing the effect of the
background gas on nucleation with little or no success. Mean-
while, some new effects have been revealed on the basis of the
experimental data on homogeneouscondensationof H2O; D2O,
and some alcohols in an inert gaseous atmosphere, in particular
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that a slope of isotherms Scr(P0) becomes more abrupt with the
temperature decrease while this effect has not been detected for
methanol. Moreover, a direct comparison of the experimentally
measured and predicted by CNT rates of nucleation has shown
a difference of about 8–24 orders of magnitude. The attempt of
the authors (Chukanov and Kuligin 1987) to make a correction
of the theoretical data was without success.

Furthermore, it is known from the experiment and has not
been explained in the framework of CNT yet that there is a
difference in the behavior of the maximum supercooling 1T
of water vapor and the moist air when varying the initial rel-
ative humidity Á. Experiments were made in the Laval nozzle
(Gorbunov et al. 1984; Binnie and Woods 1938). In accordance
with the results of these papers, supercooling of the moist air
decreases monotonically as Á increases while for pure water
vapor the opposite situation is observed. In addition, Gorbunov
et al. (1984) have noticed a great discrepancy of the absolute
1T values for water vapor (1T1 D 50 ¡ 60K ) and water vapor
in the air where 1T2 D 70 ¡ 90K . At such 1T2, the size of
the critical nucleus determined by the classical theory turns out
to be less than the water molecule itself that demonstrates an
internal inconsistency of the theory. Also note a surprising dis-
agreement between CNT and the data of nucleationexperiments
in the region near the critical point (Binder and Stauffer 1976;
Itkin et al. 1984), where the critical nuclei are much larger and
the concepts of CNT might be expected to work well. However,
the observed supercooling by about a factor of two exceeds that
predicted by CNT and even more that predicted by the Lothe
and Pound theory (Binder and Stauffer 1976; Gorbunov et al.
1984).

These results drew special attention to investigation of a car-
rier gas in� uence on the condensation kinetics and a lot of ex-
perimental work has been done. We’ll mention only recent ex-
periments in high-pressure cloud chambers (Heist et al. 1994,
1995;Bertelsmannet al. 1996), diffusioncloudchambers (DCC)
(Kane and El-Shall 1996; Wright et al. 1993, 1990), expansion
chambers (Viisanen and Strey 1994; Strey et al. 1994; Viisanen
et al. 1993; Van Remoortere et al. 1996) and nozzles (Wyslouzil
et al. 1994) (see also numerous references in these papers) per-
formed in order to reveal the main features of this effect. As a
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result a number of the experimental data for various substances
is now available. Meanwhile, modest progress was achieved in
the theory. In particular, within the framework of our micro-
scopic nucleation theory (MNT) the effect of the background
gas is explained by its in� uence on the rate of relaxation of
the intracluster vibrations on the nucleation kinetics (Itkin and
Kolesnichenko 1997; Itkin et al. 1991). As shown in Itkin and
Kolesnichenko (1997) MNT succeeds in reproducing the differ-
ence in the nucleation rate for pure water vapor and moist air in
the above mentioned experiments (Gorbunov et al. 1984;Binnie
and Woods 1938). Other authors try to associate the discussed
phenomenon with nonisothermal effects (Ford 1992), the in� u-
ence of the background gas on the capture of vapor molecule
by a drop (Novikov et al. 1997), and some others. A group of
researchers associate the in� uence of the carrier gas with the
transport processes in DCC. Apparently, the simplest and most
plausibleexplanationwas proposed in (Vitovecet al. 1989;Kane
et al. 1997), where the effect of the background gas is treated as
the in� uence of the latter on the further growth of a previously
formed critical nucleus. Thus the idea of that work is that at
higher carrier gas pressures the growth of droplets is retarded
and particlesmay not grow large enough to be detectedby visual
methods. In other words, this effect is assumed to be not kinetic,
but its treatment is only some misunderstandingof the technique
of experiments.

Some criticism should be made with respect to all mentioned
approaches, namely, the following.

² When treating the effects inside high-pressure and dif-
fusion cloud chambers within the framework of the
original version of MNT in our previous works we did
not take into account the in� uence of the carrier gas
on the further growth of particles but only on the nu-
cleation kinetics. Moreover, a recent detailed study of
the available experimental results revealed that under
speci� c conditions of these experiments, MNT fails to
predict the carrier gas in� uence in high-pressure and
diffusion cloud chambers in contrast to experiments in
nozzles and jets. This problem is discussed below in
more detail, however, under the conditionsof these de-
vices MNT in its original version fails to predict the
observed results.

² On the contrary, models which account only for the
cluster growth do not take into account the direct in� u-
ence of the background gas on the rate of nucleation. It
can be shown (see discussion at the end of this paper)
that such a model predicts the in� uence of the carrier
gas pressure on the critical supersaturation in DCC, but
the form of this dependence is far from the linear one
observed in experiments.

² Anotherproblem is concernedwith thework ofNovikov
et al. (1997). The authorsof this paper take into account
details of interaction between a droplet and a vapor
molecule that results, in particular, in the disturbance
of the Maxwell distribution of molecules over the ve-

locity in the vicinity of the drop. However, the steady
state rate of nucleation which is used to estimate the
effect of this interactionon the nucleationrate could be
derived from the respective kinetic equation only un-
der the assumption made that the distribution of both
clusters and monomers is Maxwellian. Otherwise, it is
also possible to present the steady nucleationrate in the
usual form, as in Novikovet al. (1997), but the rate con-
stants now depend on the concentrations of monomers
in a rather complex and, more importantly, implicit
way. For instance, one can introduce a small correction
to the Maxwell distribution, as is usually done when
describing the Knudsen layer, and further try to solve
analyticallythe correspondingkineticequationin order
to reveal an explicit form of the quasisteady equations
for concentrations and the steady state rate of nucle-
ation.

On the basis of this brief consideration the aim of this work
is to consider in more detail the kinetic processes in DCC and
HPCC using some ideas speci� c for the kinetics of chemical
reactions (Fuchs 1995; Frank-Kamenetskii 1947). We also use
the MNT approach because this way allows one to get an ex-
plicit representation for concentrationsof clusters of an arbitrary
size through supersaturation, the gas temperature, and the car-
rier gas pressure, which is quite new. In particular, for the � rst
time a model of the nucleationprocesses under conditionswhen
a transport of condensing molecules to a cluster’s surface is de-
termined by their diffusion through a carrier gas is proposed. It
is shown that the usual conditions of experiments in diffusion
cloud chambers meet the requirements of the model validity,
which means this model can be adopted to explain a mechanism
of the carrier gas pressure in� uence on the nucleation kinetics
observed in the experiments. In the second part of this work the
results obtained are used to explain the available experimental
data in HPCC and DCC. We also discuss what the carrier gas
really does in� uence, the nucleation kinetics or the transport
processes in DCC, and why this effect differs for nozzles and
jets on the one hand and for DCC and HPCC on the other hand.

DIFFUSION-LIMITED REGIME OF NUCLEATION
As pointed out in Frank-Kamenetskii (1947), when a certain

chemical reaction realizes in nature its observed rate is deter-
mined on the one hand by a real chemical kinetics on the surface
of the interacting particles, and on the other hand by the rate of
transport of the reactingmedium to this surface due to the molec-
ular or convective (in particular, turbulent) diffusion. As shown
below, the second way becomes extremely important when the
concentrationof the reacting component is small as compared to
the concentration of the carrier gas and simultaneously the rate
of the chemical reaction is much more than the rate of diffusion.
In what follows, we intend to show that the typical conditions
in DCC just meet these requirements and hence this is the case
when nucleation kinetics in DCC is a diffusion-limited one.
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We start from a usual expression of the nucleation theory for
the � ux I j in a space of the available cluster’s sizes

I j D K C
j n j¡1n1 ¡ K ¡

j n j : [1]

Here K C
j is the rate constant of the formation of j cluster,

which consists of j molecules, from the j ¡ 1 one by attaching
a monomer, K ¡

j is the dissociation rate constant of j cluster, and
n j is the concentration of j clusters. For the rate of growth of j
clusters K C

j the following expression is commonly used:

K C
j D °c K j2=3; [2]

where K D K1(3m1=4¼½l )2=3, K1 D (kBT=2¼m1)1=2 is a free
molecular � ux per surface of a unit sphere, m1 is the vapor
molecular mass, ½l is the liquid density, kB is the Boltzmann
constant, and °c is the condensation coef� cient characterizing
the ratio of the number of molecules sticking to the cluster (the
number of the “ef� cient” collisions) and the total number of
monomers’ collisionswith the cluster. The rate of the unimolec-
ular decay K ¡

j is usually determined from the principle of the
microscopic reversibility for the reaction Ä j¡1 C Ä1 $ Ä j that
yields K ¡

j D K C
j n j¡1;en1e=n je with n je being the equilibrium

concentration of j clusters.
Thus if a certain cluster transits to another sort by attaching a

monomer, the rate of this process in the usual nucleation theory
is proportional to the free-molecular � ux of monomers on the
surface of this cluster, and this � ux is determined by the volume
concentration of monomers.

Under the conditions of DCC this assumption stops being
valid because the real concentration of monomers at the ex-
ternal boundary of the Knudsen layer over the cluster surface
differs from the concentration n1 determined far from the clus-
ter because of the presence of a carrier gas. It is caused by the
existence of a concentration jump in the vicinity of the cluster
surface, and the value of this jump becomes considerable when
the mean free path of the condensing molecules in the carrier
gas is of order of the cluster radius. We study this problem in
more detail.

Let us consider an isolated cluster surrounded by a mixture of
the condensible vapor and background gas. In accordance with
the design of DCC, the number density of the background gas
n0 is a few orders more than the number density of the vapor
n1. Therefore the mean free path of the vapor molecule in the
vapor ¸v is about two orders more in length than the mean free
path of this molecule in the carrier gas ¸vg . Hence the structure
of the Knudsen layer around the droplet can be presented as
shown in Figure 1. We assume that two vapor molecules collide
when the distance between their centers is 2l , with l being the
effective radius of the molecule. However, it is more convenient
to consider the molecule � ying at the cluster being pointwise
and if so the collision occurs when this molecule reaches the
surface of the absorbing sphere of the radius R C l , R is the
cluster radius. In Figure 1, Tk and nk are the temperature and

Figure 1. Areas around a cluster, R is the radius of the cluster,
l is the radius of the condensing molecule, ¸v and ¸vg are mean
free paths of vapor molecules in the vapor and in the carrier
gas, T ; Td ; Tk and n1; n 0

1; nk are temperatures and numerical
densities of the vapor in the respective areas, F is an area of
a free-molecular � ow, D is an area of diffusion of the vapor
through the carrier gas, and V is a � uid dynamic area.

concentration of the incident molecules at the surface of the
droplet, Td and n 0

1 are the correspondingparameters at the inter-
nal interface, which is located approximately at the distance ¸vg

from the surface of the absorbing sphere, and T and n1 are the
corresponding parameters at the external interface, which is lo-
cated approximatelyat the distance of ¸v from the surface of the
sphere.

In area V a behavior of both the vapor and the carrier gas
is described by usual � uid dynamic models. In area D vapor
molecules collide only with the carrier gas, while in area F
vapor molecules move as in vacuums without collisions with
the velocity u 0. Therefore the actual � ux of the vapor molecules
per unit time on j cluster in the simplest approximation could
be written in the form

K j D 4¼°c(R C l)2(u 0n 0
1 ¡ 9o); [3]

where 9o is the � ux of outcoming molecules (evaporating and
re� ecting from the cluster surface), and n0

1 should be found
from the solution of the Knudsen layer problem with bound-
ary conditions established at the external interface and at the
surface of the absorbing sphere. However, it is an extremely
labor-consuming task to � nd an exact solution to such a prob-
lem which is not solved yet, therefore we further use some more
rough estimations.
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Let us � nd the concentration of vapor molecules in zone D
by solving a corresponding one-dimensional steady equation of
diffusion. At given concentrations at the external and internal
interfaces it yields

nv(z) D
n1 ¡ n 0

1

¸v ¡ ¸vg
(R C l C ¸vg ) 1 ¡

R C l C ¸v

z
C n1; [4]

where z is a radial coordinate measured from the center of the
absorbingsphere. From the outside throughthe internal interface
the following number of molecules diffuse per unit time:

9 D 4¼ (R C l C ¸vg )2 D1
dnv

dz zDRClC¸vg

D 4¼ D1
(R C l C ¸vg)2

¸v ¡ ¸vg

R C l C ¸v

R C l C ¸vg
(n1 ¡ n 0

1): [5]

Here D1 is a coef� cient of binary diffusion of vapor through
the carrier gas. Just the same number of molecules at a steady
regime of diffusion penetrates to the absorbing sphere and the
numberof these moleculesper unit time K C

j is givenby Equation
(3).

In what follows, let us assume that °c ¼ 1. We discuss this
assumption later.

What is u 0? In view of the essential difference between the
molecular mass of the carrier gas and vapor molecules, the mo-
mentum and energy of the vapor molecule change slightly after
the collision with the gas molecule. For instance, the velocity
of the vapor molecule in one collision is altered proportionally
to m0=m1 ¿ 1, where m0 is the molecular mass of the carrier
gas. On the other hand, under diffusion through zone D with al-
lowance for the velocitypersistence, the vapormolecule collides
about ¸v=¸vg À 1 times. Numerical estimations show that un-
der typicalconditionsof experimentsin DCC (Bertelsmannet al.
1996) the product m1¸vg=m0¸v is of order of unity that means
the vapor molecule attains the mean velocity of the carrier gas.
Thus we assume that u 0 is equal to the free-stream velocity of
the carrier gas at the internal interface, i.e.,

u 0 D 8kBTd

¼m0

1=2

: [6]

Another remark shouldbe made regarding the totalnumberof
the vapor molecules colliding with the cluster. As follows from
Figure 1, only a certain fraction of the vapor molecules having
diffused to point “a” from the external interface can collide with
the cluster, namely, those that have the direction of the velocity
within theangleµ . On theotherhand, inpoint“a” all directionsof
the velocityare equiprobableand henceas follows from Figure 1
the fraction of the collided molecules is 1 j D arcsin[(R C
l )=(R C l C ¸vg)]=¼ . Strictly speaking, to estimate this fraction
more precisely one has to consider a multidimensionaldiffusion
equation, but for a qualitative estimation our consideration is
suf� cient. This problem has been explored in more detail in
Sampson and Springer (1969).

In order to determine the � ux 9o, note that the number
of molecules evaporating from the cluster surface is propor-
tional to the activation energy, i.e., in a crude approximation
nk / exp(¡L=kB Tk ) 1 n1e(Tk ), where L is the latent heat of
condensation. Thus it is possible to assume nk D n1e(Tk ). As
far as the velocity of outcoming molecules is concerned it has
to be found by solving the full Knudsen layer problem while
it is rather dif� cult to introduce a certain reasonable assump-
tion on its value. Therefore we use the simplest approximation
and based on the physical considerationnote that in equilibrium
u 0n0

1 D 9o. At T D Td this yields uk ¼ u 0.
Further substituting Equation (6) in Equation (3), assuming

Tk ¼ Td ¼ T and equating K j and 1 j 9, we obtain

n0
1 D

n1 C n1ea j

1 C a j
; a j D

u 0(R C l)2¸v

D1(R C l C ¸vg )(R C l C ¸v)1 j
;

R D R( j ); [7]

and hence

K C
j D 4¼ (R C l )2u 0n1

S C a j

S(1 C a j )
; [8]

where S D n1=n1e is supersaturation. If a j ¿ 1, i.e., if the diffu-
sion rate is much more as compared with the rate of the chemical
reaction, this formula gives a commonly used expression of the
rate constantof the cluster formation.On the contrary, if a j À 1,
the rate of the cluster formation is determined by the transfer of
the reacting molecules to the surface of the cluster.

Below we intend to show that under conditions of DCC, a j

is of order of unity for monomers and increases as j increases.
This gives rise to a new expression of the rate constant of the
cluster formation, which has never been utilized in the theory
of nucleation. We start from a general expression of the coef� -
cient of binary diffusion of monoatomic gases given by kinetic
theory (Ferziger and Kaper 1972; Bretsznajder 1966) based on
the following assumptions made: i) molecules interact like hard
spheres with the Maxwellian distribution of velocities, ii) the
concentration of the carrier gas is much more than the concen-
tration of the vapor, iii) the attractive part of the potential de-
scribing the interaction between vapor molecules is taken into
account by introducing the Sutherland correction. It yields

D1 D 3
2n0¾ 2

vg

kB T

¼mr

1=2 1
1 C C=T

; [9]

where n0 is the number density of the carrier gas, mr ¼ 2m0

is the reduced mass of components, and ¼¾ 2
vg=4 is a collision

cross section of the vapor and gas molecules. Under conditions
of DCC, ¾vg is approximately a sum of effective diameters of
the vapor and gas molecules and C is the Sutherland constant.
For ¸vg we use the following expression (Shilling 1972):

¸vg D 4 ¼n0¾ 2
vg 1 C

m1

m0
1 C

C

T

¡1

; [10]
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whence

D1 D 3¼

32
u0¸vg 1 C

m1

m0
:

Combining all of the above expressions we � nd

a j D
(R C l )2

(R C l C ¸vg )(R C l C ¸v)
32¸v

3¸vg

£ 1 C
m1

m0
arcsin

R C l

R C l C ¸vg

¡1

: [11]

In particular, at R < ¸v, with allowance for the fact that 1 j ¼
(R C l)=¼ (R C l C ¸vg ) at R < ¸vg, it yields

a j ¼
32(R C l )

3¸vg 1 C m1
m0

; [12]

while at R > ¸v , one has

a j ¼ 32¸v

3¸vg 1 C m1
m0

: [13]

Let us consider a typical experiment on nucleation of
n-butanol in hydrogen (Bertelsmann et al. 1996). Numerical cal-
culations show that at T D 362 K, P0 D 10 bar, l D 2:26 A, and
C D 60 K (Reid et al. 1977), one has ¸vg D 15 A while even for
monomers we obtain R C l D 4:5 A and a1 ¼ 0:63. Thus even
for collisions of monomers the rate of diffusion determines to a
considerable degree the resulting rate of this chemical reaction.
For collisions of dimers and monomers when estimating ¾vg ,
one has to take into account i) a probable linear structure of the
dimer and ii) the lengthof the hydrogen bond that yields a2 » 1.
As R further increases, a j also increases and inequality a j > 1
reinforces. That is why we introduce here the main assumption
of our theory that a j > 1 for all j ¸ 1. Actually, we should
choose the certain number j1 and put a j > 1 at j ¸ j1 > 1,
but as shown later the assumption made that j1 D 1 does not
practically in� uence the � nal results. Thus we � nally obtain

K C
j D KC

j

S2 j C 1
S(1 C 2 j )

¼ KC
j

S2 j C 1
S

; 2 j ¿ 1;

2 j D
(R C l C ¸vg )(R C l C ¸v)

(R C l)2
3¸vg

32¸v

1 C
m1

m0
arcsin

£
R C l

R C l C ¸vg
D 3

2¼ 2(1 C C=T )
kBT

(R C l)P0¾ 2
vg

[14]

´ 2
1

( j 1=3 C 1)
¼ 2j¡1=3 at R · ¸v

2 D 3
2¼ 2(1 C C=T )

kBT

P0¾ 2
vg

4¼½l

3m1

1=3

;

where we introduced the notation KC
j for the traditional (ki-

netic) rate constant1 and 2 j is our correction for the case of the

1It is proportionalto R2 while K C
j in Equation (3) is proportionalto (R Cl )2,

but here we neglect this correction.

diffusion-limited kinetics. As follows from the previous analy-
sis, 2 j < 1 and is inversely proportional to P0—the pressure of
the carrier gas. For the sake of convenience, in what follows we
will use the old notation K C

j for the traditional rate constant but
instead in our equations the product K C

j (S2 j C 1)=S appears.
As far as for the rate constant of the inverse process K ¡

j is
concerned it does not depend on the external environment of
the cluster and is determined only by intracluster processes. A
convenient approximation of K ¡

j derived using the approach of
the RRKM theory has been obtained in Itkin (1995) and Itkin
and Kolesnichenko (1997).

Transport Processes in DCC Under Nucleation
Diffusion cloud chambershave frequentlybeenutilizedwhen

investigating homogeneous nucleation. This section aims to re-
formulate theoretical representations of MNT for DCC. Prelim-
inary results of this research have been published in part in Itkin
et al. (1991) and Itkin and Kolesnichenko (1997).

The typical scheme of an experiment on studying nucleation
in DCC is as follows (Heist et al. 1994). DCC consists of two
horizontal plates—top cold and bottom hot. Over the bottom
plate there is a liquid and the vapor condensation is a subject of
the research. The space between plates is usually � lled in with
a background gas. By virtue of the existing distribution of tem-
perature and pressure, the vapor evaporating from the bottom
surface diffuses through the chamber that results in its cooling
and then condensing. As a result of these processes, a certain
steady-state distribution of supersaturation S over the height of
the chamber » (usually reckoned from the bottom plate) is es-
tablished.An occurrence of drops of the condensingvapor is de-
tectedby some kind of laser on the basis of light-scattering.With
the help of such a system it is possible to determinea steady-state
nucleation rate (i.e., a quantity of drops of the detectable size
formed in unit of volume in time unit). Other characteristics—
temperature, pressure, supersaturation—are usually found solv-
ing appropriateequationsof diffusionand heat conductionunder
boundary conditions given on the walls of the chamber. The de-
scribed scheme was repeatedly applied to study homogeneous
nucleation of various substances. The experimental conditions
are usually so chosen such that outside of a narrow zone where
S reaches its maximum value (zone N ), the latter is practically
equal to unity and condensation does not occur there at all.

Since the vapor concentration in the chamber is low as com-
pared to the concentration of the background gas, the processes
of condensation do not practically in� uence the distribution of
the temperature and pressure over the height of the chamber that
are determined only by the boundary conditionsat the walls and
by the concentrationn0. Moreover, it is possible to show that the
temperature and the density gradients in the chamber (a typical
value is d lnT=d» ¼ 0:1 cm¡1) are small as compared to gradi-
ents of the cluster’s concentrationsand in the � rst approximation
may be neglected.

What we need is to study the processes occurring inside zone
N . According to our general theory, we treat the studying mix-
ture of gases and clusters as a mixture of ideal gases each of
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which is characterized by the size of the identical clusters com-
posing it. Usually MNT operates with a system of equations
describing evolution of mass fraction of clusters which con-
tain j molecules and have an average internal vibrational en-
ergy corresponding to a quantum state k (so, actually, ® j (k)
is a population of this state). We assume that the cluster mass
fraction changes due to processes of diffusion, condensation,
and relaxation of vibrational intracluster states. However, under
conditions of DCC when n0 À n1, relaxation of intracluster
vibrations is fast as compared with the rate of nucleation limited
by diffusion of the condensing molecules to each other. Thus in
this case vibrational levelsof clusters are in equilibrium.In other
words, the main parameter of MNT, r , is equal to unity (Itkin
and Kolesnichenko 1997). That is why from the very beginning
we may simplify the original system of equations given in Itkin
et al. (1991) and Itkin and Kolesnichenko (1997) expressing
equilibrium populations ® j (k) through mass fractions ® j ac-
cording to the Boltzmann equilibriumdistribution. If so, the fol-
lowing continuity and diffusion equations for the mixture com-
ponents obtained in the Navier–Stokes approximation may be
considered

@(½®i )=@t C r(½v® j ) D ½ U i ¡ r(½®i Vi );

r X i D
N

j

X i X j

Di j
(V j ¡ Vi ) C (®i ¡ X i )

r p

p
C

½®i

p

£ fi ¡
N

jD0

® j f j C
rT

T

N

jD0

X i X j

½ Di j

DT; j

® j
¡

DT;i

®i

i D 0; : : : ; N ; ®i D ni im1=½: [15]

Here ½; P; T are the mass density, pressure, and temperature of
the mixture, t is time, v is the mass-average velocity vector, ®i

and Vi are the mass fraction and diffusion velocity vector of i
clusters, X i is their mole fraction, fi is the mass force acting on
these clusters, Di j is the coef� cient of binary diffusion of the gas
composed of i clusters through the gas composed of j clusters,
DT;i is the thermal diffusion coef� cient, ni are the correspond-
ing numerical densities (concentrations), index i D 1; : : : ; N
represents the cluster gases, and i D 0—the neutral gas, U i —is
the kinetic source term associated with condensation. In accor-
dance with Itkin and Kolesnichenko (1990), Itkin et al. (1991),
and Itkin and Kolesnichenko (1997) at r D 1; U i can be written
as follows:

U j D I j ¡
j

j C 1
I jC1(1 ¡ ± j N ); j > 1;

U 1 D ¡
N

jD2

1
j

I j (1 C ± j2); U 0 D 0; [16]

I j D K C
j µ j¡1® j¡1®1

½ j

m1( j ¡ 1)
¡ K ¡

j ® j ; µ j ´
S2 j C 1

S(1 C 2 j )
;

however, here in contrast to usual kineticequationsof nucleation
a new term µ j is presented in the de� nitionof the � ux I j because

as described above under our conditions the nucleation kinetics
is diffusion limited. In Equation (16) ±i j is Kronecker’s simbol.

When derivingEquation (16) the processes of formation (dis-
sociation) of the cluster by attaching (detaching) dimer, trimer,
etc. as well as triple collisions were neglected. But the law of
conservation of the total number of molecules in the system has
already been taken into account, because Equation (16) holds
the relationship j ® j D 1.

For further progress, a few assumptionsshouldbe made (Itkin
et al. 1991; Bogdanov et al. 1991; and Itkin and Kolesnichenko
1997).

1. Usually, at DCC conditions, only steady processes with
@®i=@t D 0 and jvj ¿ jVij are important.

2. Only the distribution of concentrationsof various clusters
over » is of practical interest. In these circumstances it is
perfectly permissible to use a one-dimensional approxi-
mation, havingchosen as the axis » a perpendiculardrawn
from the bottom plate to the top one (two-dimensional ef-
fects are discussed in Bertelsmann and Heist (1996).

3. By virtue of reasons mentioned at the beginning of this
paragraph, we neglect the terms containing rP D 0 and
rT as well as mass forces and thermal diffusion.

4. Usually, because of the design features of DCC, ®0 À
®i ; i D 1; : : : ; N , and ¹0 ¿ ¹i (He or H2 are usually
used as the carrier gas). We need this assumption to be
valid at least in zone N .

As shown in Itkin et al. (1991), Bogdanov et al. (1991),
and Itkin and Kolesnichenko (1997) under these assumptions,
Equation (15) can be reduced to the following:

d

d»
½Di0

d

d»

®i

®0
D ¡½ U i : [17]

As ®0 ¼ 1 while d®0=d» and d ln ½=d» are quantities of the
same order as d ln T=d» by which we neglect according to the
assumption made, we � nally obtain

d

d»
Di0

d®i

d»
D ¡ U i ; i D 1; : : : ; N : [18]

The boundaryconditionsfor Equation (18) can be formulated
if one takes into account that at the top and bottom plates the
vapor is in equilibrium, i.e., S D 1. It yields

®i j»Dh D im1n ie=½j»Dh;
[19]

®i j»D0 D im1n ie=½j»D0:

Thus we have managed to split the system of Equations (15),
(16) into the independent equations describing diffusion of i
clusters through the carrier gas with allowance for simultane-
ously occuring nucleation. Equation (18) obeys the additional
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conditions

N

jD1

D j0
d® j

d»
D const,

[20]
N

jD0

® j D 1;

which express the conservation of the total mass of the gas
mixture.

QUASISTEADY-STATE METHOD
A special method based on the ideas of MNT as applied to

Equation (18) has been proposed in Itkin et al. (1991). Below
we shortly formulate its main features. First of all, we transform
Equation (18) to the form

d® j=d» D ¡´ j=D j0;
[21]

d´ j=d» D 8 j ; j D 1; : : : ; N ;

introducingnew variables´ j . Further, instead of variables ´ j we
substitute � rst new variables g j D ´ j=® j and then variables G j

in accordance with the relations

G0 D
g1

D10
;

G j D
(g jC1 ¡ g j )

(®1e D j0)
;

where ® je is the equilibrium mass fraction of j clusters
(Bogdanov et al. 1992; Itkin and Kolesnichenko 1997). Finally,
the fourth and major step is that we take advantage of the MNT
idea (Itkin and Kolesnichenko 1990) of a nonlinear substitution
of variables ® j ; j D 1;¢¢¢ ; N ! f1;¢¢¢; fN¡1, where

f j D
n̄ jC1

µ j Sn̄ j
; j D 1; : : : ; N ¡ 1;

[22]
n̄ j D

n j

n je
; S D

n1

n1e
; n j D

® j ½

jm1
:

The variables f j have a lot of advantages over the initial
variables ® j . For instance, they are dimensionless and turn to
unity at the equilibrium. However, their main advantage is that
it is possible to split them into two groups—the slow and fast
ones (see Itkin and Kolesnichenko (1997) and Itkin (1998)) that
can never be done for concentrations. It is caused by the cir-
cumstance that in Equation (16) 8 j is de� ned as the difference
between two � uxes (for instance, I j ¡ I jC1) that can be small
at the equilibrium and large far from it. Therefore it is hard to
estimate the order of the magnitude of 8 j if they are written
through variables ® j .

Let us formulate brie� y the essence of our method.

1. We show that with new variables the initial system of the
couplednonlinearequations for the cluster concentrations

(or mass fractions) could be decomposed in such a way
that each equation of this new system could be solved
independently from each other (factorization). Three im-
portant assumptions are made to do that.

(a) For the large clusters the following relationship is
valid K C

j ; K ¡
j / j k ; k · 1.

(b) The equilibrium concentrations follow the relation-
ship n je=n1e ¿ 1.

(c) Variables f j smoothly depend upon j so that

1 ¡
f j

f j¡1
’ " ¿ 1:

In Itkin and Kolesnichenko (1993), Itkin (1995), and
Itkin and Kolesnichenko (1997), the model expres-
sions of the cluster formation and decay rate constant
were obtained with the help of the statistical theory
of chemical reactions. As shown in these works, for
such constants there is a reliable evidence of these
assumptions.

2. It turns out that among all new variables only ®1 and
f j ; j > (2=3")3; " ¿ 1 are the slow ones in contrast
to the other fast f j . It can be shown that the slow f j make
a weak contribution to the variation of ®1 as against the
fast f j . It enables the equation for ®1 to be independent
of the others and one can solve it separately. The other ® j

could be found by means of the analytical expressions de-
rived by us in Itkin et al. (1991) with ®1 and T determined
before.

In particular, in Itkin and Kolesnichenko (1997, 1990) the
following expressions for the equilibrium concentrations of the
cluster have been obtained: n je D A(T ) exp(¡bj 2=3); b D
(4¼¾=kBT )(3m1=4¼½l )2=3, where ¾ is the surface tension, A
is a certain coef� cient given in Itkin and Kolesnichenko
(1997).

As applied to the case of diffusion-limited kinetics this
method is described in more detail in Itkin et al. (1991). Based
on that consideration we arrive at the following � nal solutions

G j D 0; f j D 1; j · y;
[23]

G j D 0; f j D C j=A j ; j > y;

where y is the root of the equation Cy=Ay D 1 and A j and C j

are determined in Itkin et al. (1991) as

A j D [K C
jC1(1¡± j N)¡K C

j ]S; C j D [K ¡
jC1¡ K ¡

j (1¡± j1)]=n1e:

Note that the solutions obtained for f j coincide with that ob-
tained in Itkin and Kolesnichenko (1990) for spatially uniform
systems. Therefore, taking argumentation of that paper into ac-
count one further gets the following equations for the slow vari-
ables ®1; G0; f j ; G j ; j D j̄ C 1; : : : ; N ¡ 1 (see the de� nition
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of j̄ in Itkin et al. (1991):

d ln ®1

d»
D ¡G0®1e;

dG0

d»
D G2

0®1e ¡ nyC1;eS y K ¡
yC2

2b

9y7=3®1®1e D1

y

iD1

µi ;

d f j

d»
D f j (G0 ¡ G j )®1e;

[24]
dG j

d»
D ¡

Á j

f j
R̄( f j ) C G j ®1e

£ G j C 2G0
D1

D j
C 2

j¡1

iD1

G i
Di

D j
(1 ¡ ± j; j̄C1) ;

j D j̄ C 1; : : : ; N ¡ 1:

From the � rst two equations of (24) a closed equation for ®1

follows:

d

d»
D1

d®1

d»
D nyC1;eS yC1K ¡

yC2
2b

9y7=3

y

iD1

µi : [25]

Solving this equation one can get ®1. The boundary condi-
tions for Equation (25) are quite natural because at the top and
bottom of the chamber S ¼ 1, hence ®1 D ®1e(T ).

Parameter y and Quasisteady Concentrations
As mentioned y is the root of the equation Cy=A y D 1.

To express C j and A j in an explicit form we need to know
quasisteadyconcentrationsof the clusters. In turn, for j ¸ 2 they
could be found using the de� nition of f j given in Equation (22).
Inverting the dependence of f j on n j and S we � nd

n̄ j D S j
j¡1

iD1

fi µi : [26]

As shown in Itkin et al. (1991) at j < y the quasisteady
solution in f variables is f j D 1, hence

n j D n je S j
j¡1

iD1

µi ; j · y: [27]

At j > y one has f j D C j=A j . According to the de� nition
of C j and A j given in Itkin et al. (1991),

C j

A j
D

K C
jC1

n je n1e

n jC1;e
¡ K C

j
n j¡1;en1e

n je

[K C
jC2µ jC1(1 ¡ ± j;N¡1) ¡ K C

jC1µ j ]n1

¼ 1
S

@ K C
jC1

n je

n jC1;e

@ j

@ K C
jC1µ j

@ j

¡1

[28]
D 1

Sµ j

n je

n jC1;e

1 C ± j

1 C ± j (3 j 1=3=2b)
;

± j D
@ lnn je=n jC1;e

@ j

@lnK C
jC1

@ j

¡1

:

As shown in Itkin and Kolesnichenko (1997) for the rate
constants obtained in Itkin and Kolesnichenko (1993) and Itkin
(1995) ± j ¿ 1 if S exceeds 2–3 as it usually does in zone N in
experiments in DCC. At 1 < S < 2 we need to take the value
of ± j into account, but actually this correction is small enough.
Therefore from Equation (28) we � nd approximately

C j

A j
D 1

Sµ j

n je

n jC1;e
: [29]

Thus with allowance of the expression of n je given above, y
is a root of the equation

2b

3y1=3
¡ lnSµy D 0; [30]

where µ j is determined in the previous sections. Generally, this
equation has to be solved numerically. In addition, from
Equations (26) and (28) we obtain

n j D n ye Sy
y¡1

iD1

µi

j¡1

kDy

@lnK C
jC1

@ j C @ lnn je=n jC1;e

@ j

@lnK C
jC1

@ j C @ lnµ j

@ j

; j > y: [31]

These formulae can beused for any arbitrary relation between
the rates of diffusion and chemical reactions because the term µ j

yields S2 j C 1 at small 2 j ¿ 1 (diffusion-limited nucleation),
while at high 2 j (usual nucleation) it yields 1. It is interesting
that at high 2 j and intermediate S Equation (30) yields y ¼
j¤;cl , where j¤;cl is the critical size—a parameter inherent to all
nucleation theories. From the physics standpoint it is easy to see
that an individual droplet with size y is in equilibrium with the
surrounding vapor at the diffusion-limited kinetics and, hence,
y is an analog of j¤;cl in this case. But at arbitrary S and µ j the
value of y differs from j¤;cl .

ANALYSIS OF THE MODEL ASSUMPTIONS
The main conclusion that can be made based on the above

results is that at certain values of the temperature and, more im-
portant, pressure of the carrier gas a special regime of nucleation
is established where the rate of the cluster formation is deter-
mined mainly by the rate of diffusion of the vapor molecules
to the surface of the cluster. This situation occurs if the rate of
a chemical reaction itself—a capture of the monomer attaching
the cluster—is much more than the rate of diffusion. As fol-
lows from Equation (14) this case is realized at high pressures
of the carrier gas, a large effective diameter (or cross section)
of the condensing molecules, comparatively low temperatures.
We call this regime “diffusion-limitednucleation,”but such pro-
cesses are well known and even rather widely occur in chemical
kinetics (Frank-Kamenetskii 1947; Fuchs 1955). However, for
nucleation this effect here is considered for the � rst time.

When developinga theory of the diffusion-limitednucleation
on the basis of our microscopic nucleation theory we made few
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assumptions which have a clear physical sense. The only point
that should be discussed is the value of the condensation coef-
� cient °c. In the above we considered the case °c D 1, while
strictly speaking there is no reliable data on the condensation
coef� cient in the literature. Various authors based on the macro-
scopic experiments estimate this value to range from 1 and to
0.001 (Mason 1971; Andreev et al. 1972), while the theoretical
prediction made in our work (Itkin and Kolesnichenko 1993,
1997) on the base of the RRKM theory gives the values of °c of
order of 10¡2 ¡ 10¡4. It is clear that accounting for °c modi� es,
for instance, Equation (12) as follows

a j ¼ 32°c(R C l ) 3¸vg 1 C
m1

m0

¡1

: [32]

Thus at small °c the value of a j is small for small clusters and
hence for them the usual kinetics of nucleation takes place. As
the size of the cluster increases, a j also increases and beginning
from the certain number j1 the value of a j will be more than
unity. However, at small °c the number j1 could be large enough
and such clusters slightly contribute to the observable rate of
nucleation. Thus for small °c it is reasonable to expect that the
carrier gas does not considerably affect nucleation.On the other
hand, an existenceof the effect of the carrier gas on the observed
nucleation rate permits one to expect that this is just the case
when °c is of order of unity.

Another point which has to be made is that when deriving
Equation (30) we assume S to be not very close to unity. In doing
so we based on the typical experimental conditions in DCC but,
in a general case, one may consider arbitrary supersaturations.
Indeed, a general expression of MNT for the unimolecular dis-
sociation rate constant of the j cluster is as follows (Itkin 1995;
Itkin and Kolesnichenko 1993, 1997):

K ¡
j ¼ Wd (T ) j2=3 exp(¡Ea=kB T );

Wd (T ) D 8hºl

kBT
ZC

1;2;r

´

d1

2

ºt (1 C 1=¯t ); [33]

Ea D Eb ȳ j ; ¯i D exp
hºi

kB T
¡ 1; i D t; l :

Here h is the Planck constant, ºl and ºt are the mean geomet-
ric frequencies of the translational and librational intracluster
vibrations, d1 is an effective diameter of the monomer in the
cluster (at j D 1 one has d1 D ¾1); ´ D (3m1=4¼½l )1=3; ZC

1;2;r is
the partition function of free rotations of the activated complex
(the cluster with the dissociatingmolecule) around the axes per-
pendicular to the reaction coordinate (in Itkin (1995) and Itkin
and Kolesnichenko (1993, 1997) the following representation is
obtained Z C

1;2;r D 2¹ j (r C)2kB T ¼=h2, where ¹ j is the reduced
mass of fragments (¹ j ¼ m1); rC is about twice the bond length
between the dissociating monomer and the cluster consisting of
the other j ¡1 molecules), and Eb is the average dissociationen-
ergy per one chemical bond, ȳ j is the average number of bonds
of the molecule which could be capable of leaving the cluster,

with the other molecules in the cluster. For instance, it is known
(Kistenmacher et al. 1974) that the small water clusters can ex-
ist in two different con� gurations: 1) a circular one in which
each molecule is bonded with its neighborsby two hydrogenous
bonds (the most energetically pro� table con� guration for the
clusters with j > 2); 2) a linear structure in which the neighbor-
ing molecules are connected by the only bond. In contrast to that
for the large clusters containing over 100 molecules a molecule
located at the cluster surface (the most probable to dissociate)
has up to the maximum number of bonds. For the water clusters,
this maximum number is equal to 4 (Daee et al. 1972).

Unfortunately, at present there is no available experimen-
tal and especially theoretical data on the ȳ j variation under j
growth. Therefore in Itkin (1995) and Itkin and Kolesnichenko
(1993, 1997), the simplest approximation was used.2

ȳ j D l1 ¡
l2m

( j C m ¡ 2)
; [34]

where l1; l2, and m for each substance are constants. We choose
l1; l2, and m in an indirect way, namely, we used MNT when cal-
culating the condensation process in nozzles, jets, aerodynamic
tubes, thermal diffusion chambers, etc. and compared the results
of our prediction with the experimental data further � tting the
above parameters. It turns out that, for instance, for water vapor
one manages to reach the best agreement at l1 D 3:5; l2 D 1:5.
The half-integer values of l1 and l2 are taken because the water
dimer can exist in two con� gurations which correspond to the
circular and linear structure of the dimer and we take the av-
erage value of l1 and l2 for these two structures. The variation
of m weakly in� uences the � nal results on the condensation ki-
netics, however, this parameter allows one to change the rate of
the ȳ j variation. In our calculations we assume that the clus-
ter containing more than 150–200 molecules is a macrocluster
so the difference between ȳ1 and ȳ100 should not exceed 5%.
Hence, m ¼ 16–20. In the limiting cases j D 2 and j ! 1
approximation Equation (34) gives correct values of ȳ j . Note
that for the water molecule Eb is of order of 5 – 6 kcal/mol so
that Eb=kBT ¼ 2500=T ¼ 8 at T D 300K . Therefore K ¡

j con-
siderably decreases under j growth. That is why for the large
clusters the rate of relaxation at high levels is much greater than
the rate of dissociation at these levels in contrast to the small
clusters for which the opposite relationship takes place.

The rate of the cluster formation K C
j could be expressed

through the rate of the cluster unimolecular decay K ¡
j using the

relationship of the detailed balancing

K C
j D K ¡

j n jC1;e=n jen1e: [35]

Using the above expressions it is easy to show that at low S
the root of the equation Cy=Ay D 1 has to be found by equating

2Generally speaking, the energy of the hydrogenous bond per molecule
increases with j growth (Kistenmacher et al. 1974).
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the right-hand side of the de� nition of C j=A j in Equation (28)
to unity. Thus y exists for any S but it has another form at low S.

At intermediate S and low j » m we consider the relationship

± j D
@ ln n jC1;e

n je

@ j

@ lnK̄ C
j

@ j

¡1

D ¡
b

3 j 1=3
1 ¡ 3

2

Ê bml2 j
( j C m)2

H ( jk ¡ j )
¡1

;

where H ( jk ¡ j ) is the Heaviside step function and put jk ¼
5m. At intermediate S and low j » m the value of the square
bracket is rather large, therefore ± j is small enoughand hence we
obtain the relationshipwhich has beenused abovewhen deriving
Equation (30), namely, @ lnK C

jC1=@ j À @ ln(n je=n jC1;e )=@ j »
@ ln2 j=@ j D ¡1=3 j .

From the results obtained it follows that at the diffusion-
limited nucleation the quasisteady concentrations of clusters as
well as the rate of the evolution of ®1 or S are no longer a
function of two parameters, T and S, but three because now in
addition they depend on the carrier gas pressure as well as on
the nature of both the carrier gas and the condensingvapor. This
dependence appears through the values of the collision cross
section and the mean free path of the vapor molecules through
the carrier gas and it must be taken into account when treating
the experimental results and comparing them with the others and
with a theoretical prediction.

In conclusionnote that the proposed theory allows one to de-
velop a special investigation of the nucleation kinetics in DCC
and even quantitatively compare this prediction with the avail-
ableexperimentaldata.This analysisis presented in Itkin (2000).
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