Efficient Synthesis of 2',3'-Dideoxynucleosides and 2',3'-Dideoxy C-Nucleosides from D-Glucosamine

Michael E. Jung* and Ivan D. Trifunovich

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024

Summary: D-Glucosamine 1 can be easily converted into 2,5-anhydro-6-O-benzoyl-3,4-dideoxygluconic acid 6 which can be taken on to both 2',3'-dideoxynucleosides such as dideoxyuridine (ddU) 4 and 2',3'-dideoxy C-nucleosides such as dideoxyformycin B 5 and dideoxyshowdomycin 20.

Recently we reported the very efficient conversion of the inexpensive starting material D-glucosamine 1 into 2'-deoxy C-nucleosides such as 2'-deoxyshowdomycin 3a and 2'-deoxytiazofurin 3b. A key intermediate in this reaction sequence was 2,5-anhydro-3-deoxy-4,6-di-O-benzoyl-2,3-didehydroglucononitrile 2, which was prepared in four steps and 71% overall yield from D-glucosamine 1 (via diazotization rearrangement, aldoxime formation, perbenzoylation-nitrile formation, and β-elimination of benzoic acid). We now report the conversion of this readily available intermediate 2 into dideoxynucleosides and deoxy C-nucleosides, such as 2',3'-dideoxyuridine (ddU) 4 and 2',3'-dideoxyformycin B 5, respectively, via the anhydrodideoxygluconic acid 6 as a key intermediate.

2',3'-Dideoxynucleosides have shown very strong antiviral activity and several compounds, e.g., dideoxycytidine (ddC) and dideoxyinosine (ddI), are under investigation as potential therapeutic agents in the treatment of HIV infections (AIDS). We decided to develop a new route to medicinally quite useful compounds of this sort based on the use of the very inexpensive D-glucosamine 1 as the starting material. In addition, we decided to extend our synthetic scheme to prepare 2',3'-dideoxy C-nucleosides as well.

The key step in our approach involves the deoxygenation of the allylic benzoate 2. This was accomplished in 80% yield by treatment of 2 with tetrakis(triphenylphosphine)palladium followed by addition of sodium borohydride (use of sodium cyanoborohydride was nearly equally effective) to give in good yield the 2,5-anhydro-6-O-benzoyl-2,3-didehydro-3,4-dideoxyglucononitrile 7. A small amount of an anomeric mixture of the 1-cyano-2-alkenes is also
produced. Catalytic hydrogenation of the total mixture over palladium on carbon gave an 92% yield of a 1:7 mixture of the undesired α and the desired β anomers of the dideoxyanhydroglucosonitrile, 8 and 9, respectively. The stereochemistry of these compounds could not be determined by simple examination of their 1H NMR spectra which are similar and quite complex. The structural assignment was based on spectral data of further derivatives and on the ultimate conversion of 9 into 2',3'-dideoxyuridine 4. Acidic hydrolysis of the nitrile of 9 by the conditions of Bobek and Farkas gave the key acid 6 in 83% yield. Conversion of this acid functionality into a uracil group would complete the synthesis of ddU 4 while its conversion to a pyrazolopyrimidine would afford dideoxyformycin B 5. These were accomplished as follows.

Treatment of 6 in dichloromethane with ethyl chloroformate and triethylamine, followed by addition of tetra-n-butyrammonium azide, isolation of the crude acyl azide, addition of THF, and heating gave the isocyanate.

Treatment of a solution of 10 in toluene with the lithium salt of (E)-3-ethoxyacrylamide 11 in THF at -78 °C with warming to 0 °C produced only the desired β-acyl urea 12 in 43% overall yield from 6. Formation of the final bond was effected by reaction of 12 with mercuric acetate in refluxing acetonitrile which gave the 5-(acetoxymercurio)uridine 13a; reduction with borohydride produced dideoxyuridine benzoate 13b in 84% yield. Removal of the benzoate (methanolic ammonia) gave a quantitative yield of only the desired β-anomer, namely dideoxyuridine (ddU) 4. Thus this novel dideoxynucleoside is available in only 10 steps and fair overall yield (13.4%) from D-glucosamine 1.

Conversion of 6 to 2',3'-dideoxyformycin B 5 followed the chemistry of Kalvoda. Formation of the acid chloride, condensation with HCN and Wittig reaction of the resulting acyl nitrile produced the cyano ester 14 as a 1.7:1 mixture of (E) and (Z) stereoisomers in 55-60% yield. Addition of ethyl diazoacetate to either isomer of 14 followed
by heating with triethylamine in toluene (to eliminate HCN) afforded the pyrazole diester 15 in good yield (67% from the E-isomer, 60% from the Z-isomer). Removal of the t-butyl group and heating the acid with diphenylphosphoryl azide, 2,2,2-trichloroethanol and base furnished the carbamate 16 in 78% yield. Reductive removal of the protecting group and condensation with formamidine and acetic acid produced the desired 5-O-benzoyl-2',3'-dideoxyformycin B 17 in 56% yield. Final hydrolysis of the benzoate afforded 2',3'-dideoxyformycin B 5 in 95% yield. To show the generality of this method, we have also converted 6 into 2',3'-dideoxyshowdomycin 20 by an extension of the method used for the parent C-nucleoside. Hydrolysis of the benzoate of 6 and reacylation with acetic anhydride furnished the acetate 18, which was converted via the acyl nitrile to a 1.5:1 mixture of (E)- and (Z)-isomers of the cyano ester 19 in 58% yield. Cyclization of 19E with sulfuric acid and acetic anhydride in acetic acid at 100°C followed by treatment with methanolic HCl gave the desired dideoxyshowdomycin 20 in 50% yield as a 3:1 mixture of β- and α-anomers.

We are presently having 5 and 20 tested for antiviral and antitumor activity and will report those results in due course.

In summary, dideoxynucleosides and dideoxy C-nucleosides can be prepared from D-glucosamine by a direct route that may be applicable to other substituted derivatives.

Acknowledgement: We thank the National Institutes of Health (AI26692 and GM47228) for financial support.

References and Notes
1) This work was presented in part at the 8th ICOS meeting, Helsinki, Finland, July 1990, abstract 1.123.
2) BASF Graduate Fellow, UCLA, 1988.


6) Preparation of the bis-Mosher's esters of the corresponding diols allowed us to tell the cis-isomer (C, ) from the trans-isomer (C, ) easily by 13C NMR. Jung, M. E.; Trifunovich, I. D. manuscript in preparation.


8) The isocyanate 10 could be isolated as a solution in toluene and was shown by 1H NMR to be only the desired β-anomer (i.e., no racemization had occurred in the Curtius process). Treatment of 10 with ammonia produced the corresponding urea in 60% overall yield from 6.


10) This benzoate 13b can be prepared from 6 by a much shorter route by a Hunsdiecker-type oxidation (Pb(OAc)4, PHH, Δ, 3h) to give in 68% yield the anomic acetate as a mixture of α- and β-anomers. Vorbrüggen coupling of this mixture with bis(TMS)uracil gives the benzoate 13b along with an equal amount of the undesired α-anomer.


13) Studies are underway to see if other nucleophiles, e.g., azide, fluoride, thiophenyl, etc., could be substituted for hydride in the conversion of 2 into 4. If successful, 3α-substituted derivatives, e.g., AZT, FdT, d4T, could be made from D-glucosamine as well. For a different approach to the synthesis of antiviral modified nucleosides such as AZT, ddC and d4T from non-carbohydrate precursors, see: a) Jung, M. E.; Gardiner, J. M. J. Org. Chem. 1991, 56, 2614. b) Jung, M. E.; Castro, C.; Gardiner, J. M. Tetrahedron Lett. 1991, 32, 5717. c) Jung, M. E.; Gardiner, J. M. Tetrahedron Lett. submitted for publication.

(Received in USA 8 January 1992)