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Abstract:  It has been shown that allylic carbocations are formed in preference to tertiary or secondary carbocations 
in the rearrangement of substituted epoxides. However protection of the alkene as a bromo ether allows for the 
desired rearrangement and production of intermediates for the synthesis of the cytotoxic tedanolides. 
© 1999 Elsevier Science Ltd. All rights reserved. 

Several years ago we reported a new method for the enantiospecific synthesis of simple aldol products - 3- 

alkoxy-2-methylalkanals - in high yield. 2,3,4 The key step involved an intramolecular transfer of hydride from the 

methylene group of either an epoxy alcohol (prepared with high enantiospecificity by a Sharpless asymmetric epoxi- 

dation reaction) 5 or its silyl ether 1 which opened the epoxide regiospecifically with inversion of configuration to 

generate the desired 2-methyl-3-silyloxyalkanals 2. We now report herein the examination of this process with 

additional substrates and, in particular, ones with epoxides having both allylic and tertiary (or secondary) centers in 

an approach to portions of the cytotoxic tedanolides. 6 
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For the synthesis of the top half of the tedanolides, e.g., the C ]-C 12 portion 3, we proposed using the sub- 

stituted heptenal 4 as a precursor. We envisioned preparing this piece via a non-aldol aldol process by rearrangement 

of the epoxide 5. This substrate differs from all our previous substrates in that the epoxide is both tertiary and allylic 
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and therefore two relatively stable carbocations are possible. In order to quickly test the reaction we prepared the 

desmethyl analogue 7 from the aldehyde 6 (itself prepared in several steps from 2-benzyloxypropanal). Treatment of 

this epoxide 7 with silyl triflate and base afforded the undesired product, the ketone 8, in excellent yield, thus 

demonstrating that rearrangement via migration of the silyloxymethyl group to the tertiary carbocation 7 is more favor- 

able than the normal internal hydride transfer to the tertiary carbocation as shown in A. 8 Thus the route to com- 

pounds such as 4 was changed to account for the difference in carbocation stabilities, as follows. Cy¢lization of the 
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homoallylic benzyl ether 7 with NBS afforded the bromotetrahydrofuran 9 in 75% yield as a single diastereomer. 9 

Treatment of 9 with silyl triflate gave little or no rearrangement presumably due to the very crowded steric environ- 

ment of the epoxide. However, treatment with a stronger electrophile, e.g., strong protic acid, e.g., TfOH, HBr or 

even TsOH, I0 gave a rapid rearrangement to a mixture of the hydroxyaldehydes 10 and 11 in good yield. 10 The 

ratio of these two products varied somewhat but was usually nearly 1:1 (occasionally favoring the desired product 

11). Conversion of the desired isomer 11 to the substrate for the next rearrangement was straightforward, giving 

12 in 55% yield. The 'protection' of the alkene as a bromo ether is only useful if it can he reversed easily. Thus 

'deprotection' of the bromo ether was effected by treatment of 12 with tert-butyllithium to give the homoallylic 

alcohol 13 in 85% yield. Thus the desired 'non-aldol aldol' process could be made to occur in this system by a 

novel reversible 'protection' of the alkene as a bromo ether. 
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We also examined the possibility of using the undesired rearrangement above, e.g., 7 ~ 8, for the prepare- 

tion of the bottom half of tedanolide. Thus treatment of the allylic epoxide 14 (prepared from 6 by a similar se- 

quence) with methyl Grignard reagent afforded the diol 16 as a single diastereomer, presumably via the intermediacy 

of the aldehyde 15 formed by an analogous allylic rearrangement to that seen above. 11 The structure of the diol 16 

was proven by the 1H NMR coupling constants of the cyclic carbonate 17 prepared as shown. Rearrangements of 

similar systems were also examined. For example, the Z silyl ether 18a gave mostly the ketone 19 via hydride 

Bn 80% [ HO ) OBn Bn 
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migration when treated with various Lewis acids while the E isomer 18b gave mixtures of the ketone 19 and the 
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aldehyde 20. Addition of methyl Gfignard to 20 followed by dcsilylation gave the same diol 16 as above. Addition 

of methyl Grignard to the Z silyl ether 18a gave the tertiary alcohol from addition of methyl anion to the kctoue 19. 
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Finally we have studied a somewhat different route to compounds that might serve as precursors to the bottom 

half of the tedanolides. Asymmetric epoxidation of the selectively protected enedio121 and subsequent elongation 

gave the epoxy enoate 22 which was converted to the acetate 23. On treatment with Lewis acid, this epoxide was 

cleanly rearranged to the aldehyde 24. We are currently investigating the diastereoselectivity of organometallic addi- 

tions to 24 and other preparations of compounds such as 25 and ultimately the full bottom half of the tedanolides 26. 
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Thus we have examined the Lewis acid promoted rearrangements of several allylic epoxides and their 

derivatives as a method for the preparation of compounds that can be used in the synthesis of the tedanolides. 
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