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Since their first use in 1929furans have been employed often  Scheme 1
as dienes in DielsAlder reactiong. Many groupg® have studied 0
the intramolecular DietsAlder reactions of furans (IMDAF) with
various dienophiles since these reactions can generate in a single
step with high stereoselectivity oxatricyclic rings, which are useful
intermediates for organic synthesiBor example, in the synthesis
of the AB ring in arisugacin A, a potent inhibitor of acetylcho- 1aR = CO,Bn 6% 2aR = CO,Bn 3aR =CO,Bn
linesterasé,we examined the use of the IMDAF reaction to build 1bR=CN 11% 2b R=CN 3bR=CN
the trans octalone systeBwith the two key AB ring stereocenters,
namely the angular methyl and hydroxyl groups (Schenfe 1).

Scheme 2

On the basis of previous work, in which we reported that IMDAF cox  Zmettyiuran COMe  _Me 1) LiAH,
reactions of furan dienes withemdimethyl groups on the ester /E Tos,:,’ N\ ! %
tether provide oxatricyclic compoun@sye initially attempted an Me”™ "Me 66% M "'Me 4; D?BAL’
IMDAF reaction of the furyl substituted ester and nitrila and 4a X =0H 1) (cOClI), 84% 5 66%
1b. Although the IMDAF reactions of these substrates provided —4b X =CN-—I2) CUCN 59%
the desired DielsAlder adduct®a and2b as single diastereomers, CHO 1) 1-bromo
the yields were low, owing to a facile retro Diel#&lder reaction o__Me -28-233'“9
to reform the starting materiatsa and 1b. We argued that this A | st_z-
was presumably due to the severe steric hindrance of the newly ¥ ’:Me Martin
formed stereocenters in the products because less substitutegI 72%
systems have been reported to give high yields of similar products.

Consequently, we thought that using allenes in this Didlisler Scheme 3

process would result in greatly reduced steric hindrance of the 0 . CH,
cycloadducts. Also, since allenes can be made in enantiopure form, Me Me

we further hypothesized that the absolute stereochemistry of the 1) HN=NH

2) L-Selectride
68%

derived cycloadducts could therefore be controlled. In this contribu- >,
tion, we report the IMDAF reactions of allenic ketones for the yd e
stereoselective synthesis of oxatricyclic ring systems, e.g., oxa- 8
bridged octalones.

Although allenes are much more reactive than alkenes as Scheme 4
dienophile? their utilization as dienophiles in IMDAF reactions  HO_ _me 1) MsCI

is relatively rare despite their exceptional reactiityloreover, BN, Moo G
chirality transfer from optically active allenes to obtain optically 2) LDA \f
pure adducts has not yet been examined. The furyl allenic ketone BusSnH SnBug
7 was synthesized in nine steps from the atid(Scheme 2). The :"19 C“Bg:\f,ZZS

esters, prepared by the procedure of Kéaya the FriedetCrafts Me

reaction of the acyl nitriletb with 2-methylfuran, was converted o C

in four steps to the aldehyd& Addition of the organostannane
derived from 1-bromo-2-butyne to the aldehygfeand oxidation
of the resulting mixture afforded the desired allenic ketahe
Heating the allenic ketongin benzene or toluene for many hours

gave no cycloadduct. Microwave heating7ih toluene at 160C 14

produced the desired oxatricyclic compoud@s a single diaste-

reomer in 72% yield. Various Lewis acid-promoted reactléo$ (Scheme 3). The alcoh8lwas also prepared by an intramolecular
7 were studied, with dimethylaluminum chloride being the best, Sy2'-type reaction of the known compoud@,>13which was used
giving exclusively the exo cycloadduBtin 91% yield. Thus, the in the total synthesis of arisugacin A by Hsung.

allene dienophile greatly facilitates the desired cycloaddition with  Having successfully used an allene dienophile to effect the
no starting material being recovered. To prove its structure, we IMDAF, we next examined (Scheme 4) the cycloadditions of other
converted8 into the corresponding alcoh@ by regioselective precursors containing a terminal alkyl-substituted allene. Following
diimide reduction of the endocyclic alkefEfollowed by stereo- the method of Marshalt: we prepared the allenyl-stannah2 by
selective reduction using L-Selectrideo give thea-alcohol 9 the stannylcupratex®' displacement of the propargylic mesylate,
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Scheme 5 allene dienophiles. In all cases, these IMDAF reactions produced

the exo Diels-Alder adducts exclusively. When the allene has a
terminal alkyl substituent, the DietAlder adduct with theE
configuration at the exocyclic alkene is formed as the only
diastereomer due to the strong steric interaction between the methyl
group on the furan and the alkyl group on the allene. Furthermore,
we have successfully obtained an optically active oxatricyclic
compound from a chiral propargylic alcohol using this protocol.

Scheme 6 Further studies on the synthesis of arisugacin A using the resulting
HO., C;Hy5 1) TBSCI, HO,, _C;H;5 1) MsCl oxatricyclic intermediate are in progress and will be reported in
EtyZn ImH EtsN due course.
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