NOVEL OXIDATIVE REARRANGEMENT OF β,γ-UNSATURATED KETONE HYDRAZONES ON IODINATION IN BASE

Michael E. Jung and Gregory L. Hatfield

Department of Chemistry, University of California, Los Angeles, California 90024

Abstract: Iodination of the bicyclic enone hydrazone in excess triethylamine gave, in addition to the expected vinyl iodide, the rearranged aromatic product.

A general method for the preparation of vinyl iodides from ketones involves the treatment of the hydrazone of the ketone with 2 equivalents of iodine in diethyl ether in the presence of excess triethylamine. In addition to the vinyl iodide, one often also obtains varying amounts of the geminal diiodide which can frequently be converted into the desired vinyl iodide upon treatment with strong base. We now wish to report a novel rearrangement of the hydrazone of a bicyclic enone which produces an aromatic product.

For a planned synthesis of optically active steroids via an anionic oxy-Cope rearrangement sequence, we required an optically active nucleophilic AB-ring synthon and chose to investigate the specific indenyl iodide. The ketone necessary for the hydrazone to vinyl iodide transformation was then the enone. This optically active enone was prepared in 7 steps from optically active Wieland-Miescher ketone. The hydrazone was prepared by treatment of racemic 2 with hydrazine hydrochloride in ethanol in 98% yield. When the hydrazone was treated in diethyl ether with two equivalents of iodine and 12 equivalents of triethylamine at 25°C, a mixture of the desired vinyl iodide and a new nonpolar compound were obtained in 35% yield in addition to starting material and the azine. The new compound could be separated from the iodide by silica gel chromatography followed by distillation. Its structure was determined to be 4,7-dimethylindane by
examination of the spectral data shown in Table 1. The infrared spectrum matches that reported for 5 in literature.

Table 1. Spectral Data for 5

<table>
<thead>
<tr>
<th></th>
<th>1H NMR:</th>
<th>13C NMR</th>
<th>IR:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.85, 1H, s</td>
<td>142.6(d)</td>
<td>3015(w)</td>
</tr>
<tr>
<td></td>
<td>2.82, 2H, t, J=7Hz</td>
<td>130.9(s)</td>
<td>2900(s)</td>
</tr>
<tr>
<td></td>
<td>2.21, 3H, s</td>
<td>127.0(s)</td>
<td>2830(w)</td>
</tr>
<tr>
<td></td>
<td>2.18, 1H, quintet, J=7Hz</td>
<td>31.7(t)</td>
<td>1495(m)</td>
</tr>
<tr>
<td></td>
<td>24.2(t)</td>
<td>1440(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.9(q)</td>
<td>805(m) cm⁻¹</td>
<td></td>
</tr>
</tbody>
</table>

The mechanism proposed for the formation of vinyl iodides and geminal disiodides³ from hydrazones, which involves the formation of an intermediate iododiazonium salt, could be modified to account for the formation of 4 and 5 (Scheme). Thus, treatment of 3 with iodine and triethylamine should produce as an intermediate the N-iodohydrazone 7 which would give the aliphatic diazo compound 8. Iodination of 8 on carbon produces the iododiazonium salt 9, which loses nitrogen to give the iodocarbonium ion 10. Proton removal from 10 by triethylamine would then produce the vinyl iodide 4. However, Wagner-Meerwein type rearrangement of 10 can also occur to give the tertiary carbonium ion 12 either directly (path b) or with double bond participation via the cyclopropylcarbonylvinyl cation 11 (path a). Removal of a proton from 12 with triethylamine would afford the
Scheme
cyclohexadienyl iodide 13, which would be expected to undergo base-catalyzed elimination of HI to
give the observed product 5. The production of the rearranged product is further evidence for the
intermediacy of the iodoscarbonium ion 12 in the mechanism of iodination of hydrazones in base. 3

The rearrangement of halocarbonium ions such as 10 to indanes is a general process. Thus, when
the enone 2 is treated with triphenylphosphine in carbon tetrachloride 6 one obtains, in addition to
the expected vinyl chloride 14 (42%), a 21% yield of 4,7-dimethylindane 5. Presumably, an inter-
mediate such as 15a or 15b is formed which can lose triphenylphosphine and either chloride ion or
trichloromethyl anion to generate the chlorocarbonium ion 16. This can then lose a proton to give

\[15a \quad X = \text{Cl} \]
\[15b \quad X = \text{CCl}_3 \]
or undergo the rearrangement described above to give $\mathbf{1}$. Wagner-Meerwein rearrangements of chloro- and bromocarbonium ions such as $\mathbf{16}$ have been described in other systems. 9

Acknowledgement. We thank the Air Force Office of Scientific Research (Grant 81-0185) and the National Institutes of Health for partial support of this research.

References and Notes

2. Fellow of the Chevron Oil Co., Inc., at UCLA.

6. The conversion of $\mathbf{1}$ into $\mathbf{2}$ in 7 steps and 14% overall yield will be described in detail elsewhere.

(Received in USA 21 June 1982)