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INTRAMOLECULAR DJELS-ALDER CYCLOADDITIONS OF SUF3STITUTED FTJRFURYL 

E-2-(PHENYLSULFONYL)ACRYLATES 
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at: Several substituted furfuryl E-2-(phenylsulfonyl)acrylates have been prepared by direct routes and cyclized in 

good yield under very mild conditions to give highly oxidized systems of potential use in natural products synthesis. 

Recently there has been great interest in synthetic approaches to the avermectins and milbemycins2 due to the 

complexity of their structures and their potent biological activity, e.g., the derivative ivermectin 1 is a commercial 

anthelmintic agent with high potential for agriculture3 and use in human ophthalmic medicine.4 Numerous groups have 

published work aimed at the total’synthesis of these molecules and their substructures, the bicyclic acetal “top” portion 

and the hexahydro benzofuran “bottom” segment.5 We have been interested in a route to a highly functionalized 

synthon for the bottom half of these molecules based on an intramolecular Diels-Alder cycloaddition of an N-furfuryl 

acrylamide followed by a subsequent ring opening via reductive elimination.6 Due to difficulties associated with 

hydrolysis of tri- and tetracyclic lactams in this series, we decided to investigate an analogous route utilizing furfury 

acrylates since the resulting lactones would be much more easily hydrolyzed. We report herein the successful 

preparation and cyclization of several substituted furfuryl acrylates and their further chemistry. 

Sugars0 
Me 

OH 

1 R=H,Me 

This synthetic approach to the bottom half synthon 2 (Scheme 1) involved as the two key steps: 1) the 

intramolecular Diels-Alder reaction of the furfuryl acrylate C, prepared from the furfuryl alcohol A and the activated 

acryloyl chloride B, to give the tricyclic lactone D; and 2) the reductive elimination of the epoxy ester E (or some 

derivative) to give the homoallylic alcohol F. It was our plan to cyclize F (by removal of the R protecting group) and 

correct the C5 stereochemistry by an oxidation-reduction scheme to finally produce 2. In order to assess the feasibility 
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of this approach, we had to develop a good route to A and a procedure for the successful cyclization of C to give D. 

This was done as shown in Scheme 2. 

$:,~;;<~+I$ KY& Mm@ 

Me 
Me 

A C II E 

reductive 
elimination 

Scheme 1 
_ 

Treatment of 2-methylfuran 3a with butyllitbium in THP followed by trapping with the a-silyloxy aldehyde 

47~8 afforded the furfury alcohol Sa in 93% yield. Reaction of this alcohol (and its benzyloxy analogue) with E-2- 

chloro- and E-2-(carbomethoxy)acryloyl chloride produced the corresponding acrylates, but we were unable to effect 

intramolecular cyclization of these compounds under normal conditions .9 However, acylation of the anion of 5a with 
the more highly activated E-2-@henylsulfonyl)acryloyl chloride 6lo at 25°C for 36h produced in 62% yield, presumably 

via the acrylate 7a, the desired cycloadducts 8a and 9a as a 23 mixture of stereoisomers at the silyloxymethyl group. 

Thus the strong electron-withdrawing ability of the phenylsulfonyl group lowers the high activation energy for 

cyclization of normal furfury acrylates so that cyclization can occur, even at room temperature. Generally simple 

furfuryl acrylates give no intramolecular Diels-Alder cycloadducts ,tla although those substituted with a carboxy group 

in the R-position can be cyclized.llh However firrfuryl acrylates substituted at the 5-position with a methyl1 lb or an 

acetoxymethyl groupllc do not undergo intramolecular cyclization even with Z-2-(carboxy)acrylates. Thus the facile 

cyclization of 7a, even though the fury1 ring has a 5-methyl substituent, indicates that the E-2-(phenylsulfonyl) acrylate 

system is a much more powerful dienophilic system and should fimd use in other cycloadditions. 

The two isomers Sa and 9a were easily separated by crystallization and their structures assigned by virtue of an 

x-ray crystallographic study of the major isomer 9a. 12 We proceeded on with the major isomer 9a, subjecting it to 

epoxidation to give the corresponding exo epoxide 1Oa in 97% yield. Unfortunately direct reductive elimination of 10a 
by the standard method (methanolic sodium amalgam)13 failed to produce the desired olefm 11 giving instead the 

product of simple reductive desulfonation 12a in good yield. Presumably protonation of the anion formed on reduction 

of the sulfone by the methanol solvent is faster than B-elimination to give the very strained tram-fused lactone lla.14 
This failure to open the bridged ring system by reductive cleavage of the strained C-G bond caused us to 

investigate two other routes to compounds similar to 2. In the fust we planned to prepare the corresponding cyclic 

acetal lob and convert it to either the enol ether llb or the derived ketone, and thence into the required methyl- 

substituted olefin. The second alternative was to open the lactone ring and protect the various functional groups prior to 

either reductive elimination or simple base-catalyzed elimination. The first of these alternatives was easily tested. 

Alkylation of the anion of 2-methoxyfuran 3b with the aldehyde 4 gave in 57% yield the alcohol 5b. This was 

transformed into a 2:3 mixture of 8b and 9b in 78% yield by reaction with 6 in the presence of NaH at 25°C for only 

2h. In this case the high dienophilicity of the R-phenylsulfonyl acrylatc combined with the increased reactivity of the 

methoxy-substituted furan allows the reaction to be quite fast at room temperature15 The major isomer 9b, obtained by 

simple chromatography, was epoxidized to give the desired acetal lob in 72% yield. However, again attempts at 

reductive elimination produced only the simple desulfonated product 12b rather than the desired enol ether llb. Also 
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simple acidic (1N HCl) hydrolysis of lob did not afford the corresponding 4_hydroxycyclohexanone, nor did treatment 

with TMSL16 Also treatment of both 9b and I2b under similar conditions (1N HCI or TMSI) did not produce the 
expected hydroxy ketones. We have no good rationalization for the failure of these cyclic lcetals to open in acid. 

The second alternative required opening of the &tone and protection of the resultant functionality. Reduction of 
1Oa with DIBAL afforded the corresponding diol in 84% yield which was converted to the hydroxy acetonide 13 in 
quantitative yield. The primary alcohol of 13 was then benzylated (55% yield) to give the required substrate 14 for the 
base-catalyzed elimination to give 15. However treatment of 14 with potassium hexamethyldisilazide in THF at -78T 

for 15 min. did not produce the expected R-elimination product 15 but rather a quantitative yield of the very strained 

cyclopropane 16a, the structure of which was assigned by virtue of its NMR spectra, including a 2D COSY, and that of 
the corresponding acetate 16b. In particular the chemical shifts of Ha and Hb in 16a (acetone-&: S Ha 3.94, Hb 2.33) 

and 16b (acetone-& 6 Ha 5.00, Hh 2.37) were conclusive in assigning the structures since in 15 one would expect 

them to appear at much different positions and neither to shift dramatically on acetylation. It is quite surprising that no 
R-elimination is seen in this reaction since analogous base treatment of a simpler oxanorbomane epoxide with an ester in 
place of the sulfone was reported to give 50% of the R-elimination product (y&epoxy-a,&enoate) along with 50% of 

the cyclopropyl system.17 We have no rationalization for this difference in behavior. 
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Finally several other 5substituted furfuryl alcohols 17a-d were prepared by analogous routes using 4 to trap 

the 2-lithiofurans. However, all attempts at acylation-cyclization of 17 to give the cycloadducts analogous to 8 and 9 

were unsuccessful due in great part to the instability of the starting alcohols 17 and their acylated derivatives. 

TBSO 

$ OH 17a R=CH2 Cl 
17b CH 2 OTHP 
17c CH2 OBn 
17d CH2 OTBS 
178 OTBS m n 

The failure of these compounds (e.g. 10,12,14) to produce the desired hydroxy cyclohexene systems (e.g., 

11 or 15) has caused us to seek alternative routes to the ivermectin bottom half synthon 2. However, we have 

discovered that the high dienophilicity of E-Z(phenylsulfony1) acrylate permits intramolecular cycloadditions of furfuryl 

systems under very mild conditions. 
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