Research Focus


The major focus of our laboratory is to understand the role of compartmentation of enzymes and metabolites in biological regulation. The organellar localization of metabolic pathways requires considerable expenditure of metabolic energy for protein targeting, organelle assembly, and movement of substrates and products across intracellular membranes. Such expenditures must result in biological efficiencies commensurate with the investment of biological resources. However, it is not always clear what advantages are conferred by such compartmentation.

We have focused our attention on arginine metabolism in Neurospora crassa because it encompasses many of the compartmental features characteristic of eukaryotic cells. Biosynthesis of arginine originates in the mitochondria but culminates in the cytosol. Intermediates and arginine cross both mitochondrial membranes. More than 95% of the intramycelial pool of arginine is sequestered in the vacuoles. Our hypothesis is that these compartmentation features play a significant role in the biology of the organism.

We are investigating the metabolic consequences of relocating the arginine biosynthetic enzymes from the mitochondrial matrix to the cytosol. In addition, we are examining how variations in cytosolic arginine concentrations are communicated across the mitochondrial membranes to coordinately inhibit two enzymes of arginine biosynthesis. Molecular techniques are being used to construct mutants defective in the movement of metabolites across intracellular membranes. Control of arginine degradation is being examined by characterizing the expression, structure and properties of arginase, the initial catabolic enzyme. The results of these experiments will provide insight into the function of enzyme and amino acid compartmentation in eukaryotic cells.

(To find out more about each person's individual project, go to the Current Lab Members page)

Some References

Marathe S., Y. G. Yu, G. E. Turner, C. Palmier, R. L. Weiss  (1998)  Multiple Forms of Arginase Are Differentially Expressed from a Single Locus in Neurospora crassaJournal of Biological Chemistry.  273:  29776-29785.

Parra-Gessert L, Koo K, Fajardo J, Weiss RL  (1998)  Processing and function of a polyprotein precursor of two mitochondrial proteins in Neurospora crassa. Journal of Biological Chemistry273(14):7972-80

Keenan KA, Weiss RL  (1997)  Characterization of vacuolar arginine uptake and amino acid efflux in Neurospora crassa using cupric ion to permeabilize the plasma membrane. Fungal Genet Biol. 22(3):177-90

Yu YG, Turner GE, Weiss RL  (1996)  Acetylglutamate synthase from Neurospora crassa: structure and regulation of expression. Molecular Microbiology22(3):545-54.

Gessert, S. F., Kim, J. H., Nargang, F. E., Weiss, R. L.  (1994)  A Polyprotein Precursor of Two Mitochondrial Enzymes in Neurospora crassaThe Journal of Biological Chemistry269:  8189-8203.

Yu YG, Weiss RL  (1992)  Arginine transport in mitochondria of Neurospora crassa.  Journal of Biological Chemistry.  267(22):15491-5

Paek YL, Weiss RL  (1989)  Identification of an arginine carrier in the vacuolar membrane of
Neurospora crassa. Journal of Biological Chemistry.  264(13):7285-90.

Davis, R. H., Weiss, R. L.  (1988)  Novel Mechanisms Controlling Arginine Metabolism in Neurospora.  Trends in Biochemical Sciences13:  101-104.

Wandinger-Ness, A. U., Weiss, R. W.  (1987)  A Single Precursor Protein for Two Separable Mitochondrial Enzymes in Neurospora crassa.  The Journal of Biological Chemistry262:  5823-5830.

Borkovich KA, Weiss RL  (1987)  Relationship between two major immunoreactive forms of arginase in Neurospora crassa. Journal of Bacteriology.  169(12):5510-7

Ness SA, Weiss RL  (1987)  Carboxyl-terminal sequences influence the import of mitochondrial
protein precursors in vivo. Proc Natl Acad Sci U S A84(19):6692-6

Borkovich KA, Weiss RL  (1987)  Purification and characterization of arginase from Neurospora crassa. J Biol Chem.  262(15):7081-6

Goodman I, Weiss RL  (1986)  Control of arginine metabolism in Neurospora crassa. Role of feedback inhibition. J Biol Chem261(22):10264-70

Zerez CR, Weiss RL, Franklin C, Bowman BJ  (1986)  The properties of arginine transport in vacuolar membrane vesicles of Neurospora crassa. J Biol Chem.  261(19):8877-82

Zerez CR, Weiss RL  (1986)  Effect of chloramphenicol and ethidium bromide on the level of ornithine carbamoyltransferase in Neurospora crassa. J Bacteriol166(2):679-82.

Hinde, R. W., Jacobson, J. A., Weiss, R. L., Davis, R. H. (1986)  N-acetyl-L-Glutamate Synthase of Neurospora crassa.  The Journal of Biological Chemistry261:  5848-5852.

Wandinger-Ness, A. U., Ness, S. A., Weiss, R. W.  (1986)  Simultaneous Purification of Three Mitochondrial Enzymes.  The Journal of Biological Chemistry261:  4820-4827.

Wandinger-Ness, A. U., Wolf, E. C., Weiss, R. W., Davis, R. H.  (1985)  Acetylglutamate Kinase-Acetylglutamyl-Phosphate Reductase Complex on Neurospora crassa.  The Journal of Biological Chemistry260:  5974-5978.

Ness SA, Weiss RL  (1985)  Carbamoyl-phosphate synthetases from Neurospora crassa. Immunological relatedness of the enzymes from Neurospora, bacteria, yeast, and mammals. J Biol Chem260(26):14355-62

Bates M, Weiss RL, Clarke S.  (1985)  Ornithine transcarbamylase from Neurospora crassa: purification and properties. Arch Biochem Biophys  239(1):172-83

Legerton TL, Weiss RL  (1984)  Mobilization of vacuolar arginine in Neurospora crassa. Mechanism and role of glutamine. J Biol Chem259(14):8875-9.

Davis, R. H., Weiss, R. L.  (1983)  Identification of Nonsense Mutations in Neurospora:  Application to the complex arg-6 Locus.  Molecular and General Genetics192:  46-50.

Wolf, E. C., Weiss, R. L.  (1980)  Acetylglutamate Kinase.  The Journal of Biological Chemistry255:  9189-9195.

Weiss, R. L., Davis, R. H.  (1977)  Control of Arginine Utilization in Neurospora.  Journal of Bacteriology129:  866-873.

Weiss, R. L. (1976)  Compartmentation and Control of Arginine Metabolism in Neurospora.  Journal of Bacteriology126:  1173-1179.

RLW Home