Lab 3: Implementation of a General Register





Introduction


	In this lab, we designed, implemented, and demonstrated the actions of a 4-bit register.  The register is controlled by three mode bits as summarized in the lab description.  Our design includes the use of one four input decoder (chip 74154), one full adder (7483), one shift register (74194), one multiplexer (74157), and a series of gates to accomplish our combinatorial logic.  The overall design of the register is attached to this documentation.  In addition, we also included a printout of the simulation.





Design Process and Concepts


	We started out designing our circuit by first identifying the necessary modules to use.  We decided that a decoder, shift register, multiplexer, and a full adder would accomplish the task most efficiently.  We realized that the shift register would do the bulk of the work, so our focus was on providing the correct inputs to the shift register.


	We searched the high level specifications of the shift register and found required inputs into the register.  This is summarized in the chart below.  M[2,1,0] are the three mode bits, while Q[A,B,C,D] are the required outputs.  A, B, C, D is the shift register's load inputs and SLSI and SRSI inputs allow us to control the type of shift performed.
























































	To accomplish mode M = 0, we simply load L[3,2,1,0] by passing into the shift register a signal to load (S1 = 1, S0 = 1).  To accomplish mode 1 (increment), we sent a signal to the multiplexer telling it to load into the shift register the results from the full adder.  We hard wired the full adder to add one to the current state.  Because the full adder is only used in this mode, the multiplexer does not load the full adder's output in any other mode.  Mode 2 was accomplished by passing the register a control signal rotate right (S1 = 0, S0 = 1).  In addition, we had to pass into the SRSI input of the register the current state of QD.


	To achieve the correct outputs corresponding to mode 3, we sent a signal to the shift register to perform a right shift (S1 = 0, S0 = 1).  We also passed into the SRSI argument of the register a value of 0 since the logical shift right operation requires an insert of a 0 on the least significant bit.  Logical shift left was accomplished in much of the same way as the logical shift right.  This time, instead of passing the shift register a control signal to shift right, we passed it a control signal to shift left (S1 = 1, S0 = 0).  To be certain that the least significant bit of the output was a 0, we passed into the SLSI argument a 0.


	The rotate left  (mode 5), we passed in a signal telling the shift register to shift left and insert the least significant bit of the current state into the most significant bit of the next state.  This was done by sending a control signal (S1 = 1, S0 = 0) and giving the SLSI argument the the value of QA from the current state.  The arithmetic shift right operation (mode 6) is achieved by telling the shift register to shift right and keep the least significant bit (S1 = 0, S0 = 1, SRSI = QA).  The final mode, a simple hold of the current state can be achieved by sending a control signal (S1 = 0, S0 = 0) to the shift register to hold the current state.  Since the shift register already has such a functionality, we just utilized it.


	To control what went into the shift register, we used a decoder which decoded the mode and then a series of combination logic to control the selection process of the multiplexer and to control the control inputs of the shift register.  The main purpose of the full adder was to implement the increment mode without using too much combinational logic.  Also, it minimized the complexity of the network. The outputs of the shift register were the resulting outputs of our states.  In addition, the shift register was used to store all the state information.





Barriers


	There were no significant problems in the design of the 4-bit register.  Many problems were quickly resolved by rechecking logic and analyzing timing diagrams.


The lab went fairly smoothly and the functionalities performed all the necessary operations.  The demonstration of the design worked on the first attempt.  To reiterate, the lab was a success.





Conclusion


	In this lab, we gained experience implementing a four bit register using existing modules.  We also gained knowledge of how each module functioned and worked, including a high level understanding of the module itself.  We also developed a more practical way of debugging circuits using the required software.  In developing the four bit register, we also kept in mind the necessity for reuse and efficiency.  We considered many other designs, but we felt that the submitted accomplished both efficiency in speed and a cheap implementation.  Overall, the lab was educational and a success.


