Water
The solvent of life
• Why is water essential for life?

• How does water influence life (at the molecular level)?
Which environment is best suited to the development of life?

- Too unstable
- Too limited
- Just right!
Liquid water is essential for life because it provides stability and richness

Stability of temperature

Stability of state (liquid)

Richness of dissolved cpds and chemistry

Why?

- High heat capacity
- Large heat of fusion
- Large heat of vaporization

H-bonding!

- Large liquid range
- Floating ice insulates water below; large bodies stay liquid

How?

- Good solvent
- Protic, amphoteric
Many of water’s unique properties are due to the extent of its hydrogen bonding

Water contains only H-bonding groups
 Compare with methanol, ethanol

Water has 2 H-bond donors and 2 acceptors
 Compare with ammonia
• Why is water essential for life?

• How does water influence life (at the molecular level)?
Water interacts with biomolecules, influencing their chemistry

Water dissolves polar and ionic compounds

Adds richness, hinders access

Water forms electrostatic or H-bonding interactions with polar & ionic groups

May stabilize structure, link interactors

Water pushes nonpolar compounds together

Creates ‘order’
The hydrophobic effect is driven by changes in entropy

<table>
<thead>
<tr>
<th>Process</th>
<th>(\Delta H) (kJ \cdot mol^{-1})</th>
<th>(-T\Delta S) (kJ \cdot mol^{-1})</th>
<th>(\Delta G) (kJ \cdot mol^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_4) in (\text{H}_2\text{O}) (\rightleftharpoons) (\text{CH}_4) in (\text{C}_6\text{H}_6)</td>
<td>11.7</td>
<td>-22.6</td>
<td>-10.9</td>
</tr>
<tr>
<td>(\text{CH}_4) in (\text{H}_2\text{O}) (\rightleftharpoons) (\text{CH}_4) in (\text{CCl}_4)</td>
<td>10.5</td>
<td>-22.6</td>
<td>-12.1</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_6) in (\text{H}_2\text{O}) (\rightleftharpoons) (\text{C}_2\text{H}_6) in benzene</td>
<td>9.2</td>
<td>-25.1</td>
<td>-15.9</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_4) in (\text{H}_2\text{O}) (\rightleftharpoons) (\text{C}_2\text{H}_4) in benzene</td>
<td>6.7</td>
<td>-18.8</td>
<td>-12.1</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_2) in (\text{H}_2\text{O}) (\rightleftharpoons) (\text{C}_2\text{H}_2) in benzene</td>
<td>0.8</td>
<td>-8.8</td>
<td>-8.0</td>
</tr>
<tr>
<td>Benzene in (\text{H}_2\text{O}) (\rightleftharpoons) liquid benzene(^a)</td>
<td>0.0</td>
<td>-17.2</td>
<td>-17.2</td>
</tr>
<tr>
<td>Toluene in (\text{H}_2\text{O}) (\rightleftharpoons) liquid toluene(^a)</td>
<td>0.0</td>
<td>-20.0</td>
<td>-20.0</td>
</tr>
</tbody>
</table>

\(^a\)Data measured at 18°C.

Water entropy is the major contributor to the hydrophobic effect

Reduction in nonpolar surface area = reduction in ordered water
Water also participates in biochemical reactions

- ATP hydrolysis drives muscle contraction
 - \[\text{ATP} + \text{H}_2\text{O} \rightarrow \text{ADP} + \text{HPO}_4^{2-} \]

- Proteins and polysaccharides are hydrolyzed into component amino acids or sugars

- Water adds to alkenes to form alcohols
 - Ex: fumarase reaction of citric acid cycle
 \[\text{-OOC-CH=CH-COO}^- + \text{H}_2\text{O} \rightarrow \text{-OOC-CHOH-CH}_2\text{-COO}^- \]