CHEMISTRY XL-14A

NATURE OF LIGHT AND THE ATOM

Office Hours

\square Sunday, July 10. 11:00a-1:00p. Room MS-B 3234. July 11 -July 22

- Monday: 2:00pm in Room MS-B 3114
- Tuesday-Thursday: 3:00pm in Room MS-B 3114

"Carmageddon 2011 "

405 will be closed Friday night

\square "Stay the heck out of here," said L.A. County
Supervisor Zev Yaroslavsky
\square Yes, we will have class!
\square Beware the impending doom of crazed drivers
\square Please drive safely
\square Please leave (a lot) earlier than planned
\square If you live nearby, I would suggest carpool, taking a bike, or walk

Chemistry in the News

\square Dinosaur Thermometry

- Cur rent Debate; were dinosaurs cold-blooded?
- Chemists used isotope techniques to determine the amount of $1^{3} \mathrm{C}^{-18} \mathrm{O}$ in the dinosaur teeth ${ }_{3}^{3} \mathrm{C}$ preferentially binds with ${ }^{18} \mathrm{O}$ The precise amount of ${ }^{13} \mathrm{C}-{ }^{-18} \mathrm{O}$-rich carbonate in a Whooth mineral is r lated to the temperature at which the tooth formed Animals with high body temperatures incorpgrate (ess $)^{3} C^{18} 0$-rth carbonate in thein ename:
\square Results: dinosaûrs had the same body
 temperature as large mammals

Unit Overview

Investigating Atoms

Quantum Theory
The Hydrogen Atom
Many-Electron Atoms
5. Periodicity of Atomic Properties

Investigating Atoms

The Nuclear Atom

Electromagnetic Radiation
Atomic Spectra

History of the Atom

Ancient Greece: 2 competing theories
\square Democritus

- Matter is not continuous
- indivisible particles called atoms ("uncuttable")
\square Plato and Aristotle
- Matter is continuously and infinitely divisible

Plato and Aristotle "won"
At least until the $19^{\text {th }}$ century...

Dalton's Hypothesis

Around 1800: John Dalton reintroduced the concept of the "atom"

1. All matter is made up of indivisible atoms
2. An element is made up of identical atoms
3. Different elements have atoms with different masses
4. Chemical compounds are made of atoms in specific integer ratios
5. Atoms are neither created nor destroyed in chemical reactions

At the end of the $19^{\text {th }}$ Century a series of experiments began to support this theory

Discovery of the Electron

1897:
JJ Thomson discovers the electron while studying "cathode rays"

Cathode Rays consist of negatively charged particles \rightarrow electrons
Result: ratio of charge/mass of electron e / m_{e}

Cathode Ray Tube Movie

Cathode Ray Tube

Millikan's Oil Droplet Experiment

Sprayed tiny charged droplets of oil sprayed between charged plates

Electrostatic Attraction balanced with gravitational pull Result: Charge of 1 electron $\rightarrow e=1.602 \times 10^{-19} \mathrm{C}$

Rutherford's Foil Experiment

Rutherford's Students actually did the work: Positively charged a particle:

1/20,000 deflected by foil
Atoms have small center of mass surrounded by empty space

Structure of the Atom So Far...

To summarize:
\square An atom is mostly empty space
\square Most of the mass of an atom located in a small, positively charged nucleus.
\square Nucleus is made up of protons (+) and neutrons (0)
\square Nucleus is surrounded by electrons (-) with mass m_{e} and charge \boldsymbol{e}

What we don't know
\square Behavior of electrons in the atom

Electromagnetic Radiation

Oscillating electric and magnetic fields which travel with time

Electric and magnetic field are perpendicular to each other

Speed of radiation in a vacuum is known as "speed of light"

$$
c=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Characteristics of EM Radiation

Wavelength (λ) - peak-to-peak distance Units of Length (m)

Frequency (v) - \# of cycles per sec
Units of $1 / \mathrm{s}=\mathrm{Hz}$

$$
\begin{gathered}
\mathrm{c}=\lambda V \\
\mathrm{c}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Amplitude (A) - Height of peak from center line

Intensity - Brightness of radiation; proportional to A^{2}

Wavelength vs. Frequency

Wavelength (λ) - peak-to-peak distance

Frequency (v) - \# of cycles per sec

Wavelength and Frequency are inversely proportional

High Frequencies have short
Wavelengths and vice versa

Electromagnetic Radiation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Wavelength (nm)

EM Calculations Practice

What is the frequency of light with a wavelength of 250 nm ?

What is the wavelength of light with a frequency of $3.1 \times 10^{15} \mathrm{~Hz}$?

Atomic Spectra

\square When white light is passed through a prism, the light is dispersed in a continuous spectrum

Atomic Spectrum of Hydrogen

\square Light emitted from excited H_{2} gas produces a Line Spectrum

Atomic Absorption Spectra

\square White light passed through an elemental gas will produce an absorption spectrum

Appears as dark lines on a continuous spectrum

Absorption lines and emission lines fall at same frequencies
\square These spectral lines arise from a transition between energies
\square Conclusion \rightarrow Electrons in H atom have specific energies

Emission vs. Absorption Spectra

Emission Spectrum

Absorption Spectrum

Atomic Spectra

Lines are not random - there is a pattern
Joseph Balmer \rightarrow Balmer series

$$
n=3,4, \ldots
$$

$$
v \propto \frac{1}{2^{2}}-\frac{1}{\mathrm{n}^{2}}
$$

More advanced techniques revealed more lines in the H_{2} spectrum Johann Rydberg found the overall pattern

$$
\mathbf{R}=\text { Rydberg constant }=3.29 \times 10^{15} \mathrm{~Hz}
$$

$$
v=\mathfrak{R}\left\{\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right\}
$$

$$
\begin{aligned}
& n_{1}=1,2, \ldots \\
& n_{2}=n_{1}+1, n_{1}+2, \ldots
\end{aligned}
$$

Atomic Spectrum - Hg, He, H_{2}

Atomic Spectrum

Balmer Series

Calculate the wavelength of light associated with a Balmer transition starting from $\mathrm{n}=3$.

Quantum Theory

Photons and Quanta

2. Wave-Particle Duality of Matter
3. Uncertainty Principle

Wavefunctions

Blackbody Radiation

As objects are heated to high temperatures, they begin to glow:

As $T \uparrow$, both the intensity and color of the emitted light changes

Emitted light from "hot objects" is blackbody radiation

Blackbody Radiation

Experimental Data showed that:

Intensity $\propto \mathrm{T}^{4}$

$$
\lambda_{\max } \propto \frac{1}{\mathrm{~T}}
$$

Classical physics: UV Catastrophe!
Objects at RT will emit dangerous radiation

Gamma Rays, X-Rays, etc...
How can it be explained?

Planck's Quanta

\square Until this point, everyone thought energy was continuous...
\square In 1900, Max Planck proposed a new idea

- Matter exchanges energy with surroundings in specific amounts of energy
\square Quanta - discrete amount of energy

$$
\begin{gathered}
\mathrm{E}=\mathrm{h} v \\
\mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} / \mathrm{s}
\end{gathered}
$$

\square Planck's concept completely disregarded classical physics
\square At this point, no evidence supported this idea

The Photoelectric Effect

- Photoelectric Effect Experiments provides the evidence!
\square Basic Idea: Electrons are ejected from a metal when UV light is shone at the surface

Observations:

1. Minimum frequency required to eject electrons
2. Electrons ejected at any intensity of incident light
3. KE of electrons varies linearly with frequency of incident light

Einstein's Proposal

EM radiation is made up of particles (photons)

Each photon is a "packet of energy;"

$$
\mathrm{E}=\mathrm{h} \nu
$$

The intensity of light is the \# of photons And...

Energy of incoming photon

$$
\mathrm{h} v=\Phi+\frac{1}{2} \mathrm{~m}_{\mathrm{e}} \mathrm{v}^{2}
$$

The Photoelectric Effect Explained

Observations:
Min frequency to eject electrons
Incident light will eject e^{-}when $\mathrm{h} \boldsymbol{v} \geq \boldsymbol{\phi}$

Electrons ejected at any light intensity Increasing intensity \rightarrow increased \# of e^{-} ejected, only if $h \boldsymbol{v} \geq \boldsymbol{\phi}$

KE of electrons varies linearly with frequency of incident light

As higher energy photons strike the surface, excess E goes to KE of e^{-}

Practice

Power 106 FM, where hip hop lives, is a radio station in Los Angeles that broadcasts at a frequency of 105.9 MHz . Calculate the wavelength and energy of the radio waves.

Practice

The speed of an electron emitted from the surface of a sample of potassium by a photon is $668 \mathrm{~km} / \mathrm{s}$.
(a) What is the kinetic energy of the ejected electron?
(b) What is the wavelengh of the radiation that caused the photoejection of the electron?
(c) What is the longest wavelength of electromagnetic radiation that could eject electrons from potassium? The work function of potassium is 2.29 eV .

$$
\left(1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\right)
$$

Diffraction of Light

From the Photo-Electric Effect, photons of light behave like particles Classical Physics: Evidence shows the light behaves like waves

Wave-Particle Duality of Light

According to the Photo-Electric Effect According to the 2-Slit Experiment:
light behaves like particles light behaves like waves

Modern concept of light:
Light has both wave-like and particle-like behavior

Wave-Particle Duality of Matter

Classical Physics:
Electrons have mass, ergo electrons are matter

Modern Physics:
Electrons can be diffracted - they can behave like light!

Louis de Broglie: all matter has wavelike properties
de Broglie wavelength:

$$
\lambda_{d b}=\frac{\mathrm{h}}{\mathrm{mv}}
$$

The Uncertainty of Electrons

Wave-Particle Duality changes the way we think about electrons

Classical physics: matter has a definite location and momentum

But waves are not localized at a specific point
We cannot specify the path of an electron!
Heisenberg Uncertainty Principle - we cannot simultaneously know both the position and momentum of an electron
$(m \Delta v)(\Delta x) \geq 1 / 2 \hbar$
$\hbar=h / 2 \pi$

The Wavefunction

Electrons don't behave as point objects orbiting the nucleus
Erwin Schrödinger: introduced idea of a wavefunction
Wavefunction $\psi(\mathbf{x}):$ math function which varies with position
Physical interpretation?
Born interpretation: $\psi^{\mathbf{2}}$ is the probability density
$\psi^{2} \sim$ probability of finding the particle in a given Volume.
Wherever $\psi=0 \rightarrow \psi^{2}=0$, there is zero probability density
A location with zero probability density is called a node

The Wavefunction

Schrödinger's Equation

To calculate the wavefunction and energy of a particle, we use the Schrödinger Equation:

$$
H \psi=E \psi
$$

H is an operator called the Hamiltonian
E is the energy of the particle with ψ

$$
\mathrm{H}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}}+\mathrm{V}(\mathrm{x}) \quad-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2} \Psi}{\mathrm{dx}^{2}}+\mathrm{V}(\mathrm{x}) \Psi=\mathrm{E} \Psi
$$

Particle in a Box

A particle with zero PE in a 1D box
Box has length L
Particle has a mass of m
The particle acts as a standing wave; its shape is limited by L

$$
\begin{gathered}
\Psi_{\mathrm{n}}(\mathrm{x})=\left(\frac{2}{\mathrm{~L}}\right)^{1 / 2} \sin \left(\frac{\mathrm{n} \pi x}{\mathrm{~L}}\right) \\
-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2} \Psi}{\mathrm{dx}^{2}}=\mathrm{E} \Psi
\end{gathered}
$$

Particle in a Box

Particle Energy Levels

2 conditions:
1: $\frac{d^{2} \Psi}{d x^{2}}=C \Psi$
sin or cos

2: $Y=0$ at $x=0, L$
$\square \sin (0)=0$ whereas $\cos (0)=1$
$\square \sin (L)=0$ and $\sin (n \pi)=0, n=1,2,3$
$\square \mathrm{kL}=\mathrm{n} \pi$

$$
\begin{gathered}
\Psi_{\mathrm{n}}(\mathrm{x})=\left(\frac{2}{\mathrm{~L}}\right)^{1 / 2} \sin \left(\frac{\mathrm{n} \pi x}{\mathrm{~L}}\right) \quad E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}} \\
\mathrm{n}=1,2,3, \ldots
\end{gathered}
$$

Particle Energy Levels

$$
\Psi_{\mathrm{n}}(\mathrm{x})=\left(\frac{2}{\mathrm{~L}}\right)^{1 / 2} \sin \left(\frac{\mathrm{n} \pi x}{\mathrm{~L}}\right) \quad E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

$\square \mathrm{n}$ can only be an integer
\square Energy is restricted to specific values
\square Energy levels are"quantized"
\square As L and/or m increases, energy levels fall and are closer together
\square A particle cannot have zero energy
\square Zero-point energy $=\mathrm{E}_{1}$

The Hydrogen Atom

Quantum Numbers

Atomic Orbitals
Electron Spin

Quantum Model of H

\square An electron in a H atom is like a particle in a 3D box
\square Have to include Coulomb PE in the Hamiltonian

$$
\begin{aligned}
V(r) & =\frac{(-e)(+e)}{4 \pi \varepsilon_{0} r}=-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \\
E_{n} & =-\frac{h \Re}{n^{2}} \quad n=1,2, \ldots
\end{aligned}
$$

Triumph! Schrödinger's R fits the experimental Rydberg constant!

Practice

\square An electron in a hydrogen atom is initially at $1.5 \AA$ from the proton, and then it moves to a distance of $0.5 \AA$ from the proton. Calculate the change in potential energy between the proton and electron.
(hint: $1 \AA=10^{-10} \mathrm{~m}$)

Schrödinger's Triumph!

Schrödinger's work can be applied to other 1 -electron atoms: He^{+}, etc...

$$
E_{n}=-\frac{Z h \mathfrak{\Re}}{n^{2}} \quad n=1,2, \ldots
$$

All the energies are negative - an electron in an atom has lower energy than an isolated electron

As Z increases, the electron is more tightly bound to the nucleus
As n increases, Energy becomes less negative

Principal Quantum Number

Energy levels calculated with Schrödinger's equation

Each level labeled with a value of n
Principal quantum \# (n): energy levels of electrons in the atom
$\mathrm{n}=1$ "ground state"
As $n \uparrow$, Energy of electron \uparrow
When $\mathrm{n} \rightarrow$ infinity, $\mathrm{E}=0$: electron is free of the atom

Ionization: removal of electron from an atom

Atomic Orbitals

We know the energies for the H atom. What about the wavefunctions?
Where do electrons exist in the atom?

\square Atomic Orbitals - wavefunctions of electrons in atoms

- Equations are more complicated than Particle in a Box
- Remember: ψ is the wavefunction and $\psi^{2} \sim$ probability density
\square Use spherical polar coordinates
$r=$ distance from center of atom
$\theta=$ "latitude"
$\Phi=$ "longitude"

Radial vs Angular Wavefunction

\square Particle in a 1D box $\rightarrow \psi(x) ; \quad 3 D$ box $\rightarrow \psi(x, y, z)$
$\square \mathrm{H}$ atom $\rightarrow \psi(\mathrm{r}, \theta, \Phi)$
\square Can isolate r from θ and $\Phi \quad \rightarrow \quad \psi(r, \theta, \Phi)=R(r) \psi(\theta, \Phi)$
\square Radial wavefunction $R(r)$

- Change in the wavefunction as you move away from the nucleus
\square Angular wavefunction $\psi(\theta, \Phi)$
- Describes the shape and orientation of the wavefunction
\square Ground state of Hydrogen has 1 wavefunction:
\square Higher energy levels have more than 1

Quantum Numbers

Principal Quantum Number (n)

- Size of an orbital
- Has values $n=1,2,3 \ldots$

Orbital Angular Momentum Quantum Number (ℓ)

- Shape of an orbital
- Has values $\ell=0,1,2, \ldots, n-1$

Magnetic Quantum Number (m_{ℓ})
\square Orientation of the orbital in space

- Has values $m_{\ell}=-\ell,-\ell+1, \ldots, 0, \ldots, \ell-1, \ell$

Spin Magnetic Quantum Number $\left(m_{s}\right)$

- Spin state of the electron
\square Spin state is either up (\uparrow) or down $(\downarrow):+1 / 2$ and $-1 / 2$

Angular Momentum and \&

With known n, must specify ℓ and m_{ℓ} to identify an orbital
$\square \mathrm{n}$ values of ℓ for a given energy level
\square Possible values: $\ell=0,1,2, \ldots, n-\ell$
$\square \underline{\text { Subshells, } \ell \text {, have different Radial functions }}$

n	l	$R_{n l}(r)$
1	0	$2\left(\frac{Z}{a_{0}}\right)^{3 / 2} \mathrm{e}^{-Z r / a_{0}}$
2	0	$\frac{1}{2 \sqrt{2}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(2-\frac{Z r}{a_{0}}\right) \mathrm{e}^{-Z r / 2 a_{0}}$
	1	$\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(\frac{Z r}{a_{0}}\right) \mathrm{e}^{-Z r / 2 a_{0}}$
3	0	$\frac{1}{9 \sqrt{3}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(3-\frac{2 Z r}{a_{0}}+\frac{2 Z^{2} r^{2}}{9 a_{0}^{2}}\right) \mathrm{e}^{-Z r / 3 a_{0}}$
	1	$\frac{2}{27 \sqrt{6}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(2-\frac{Z r}{3 a_{0}}\right) \mathrm{e}^{-Z r / 3 a_{0}}$
	2	$\left.\frac{Z}{a_{0}}\right)^{3 / 2}\left(\frac{Z r}{a_{0}}\right)^{2} \mathrm{e}^{-Z r / 3 a_{0}}$

ℓ	Type
0	s
1	p
2	d
3	f

Visual Depictions of ℓ

ℓ	Type
0	s
1	p
2	d
3	f

Angular Momentum and m_{ℓ}

Magnetic quantum \#, m_{ℓ}, distinguishes orbitals in a subshell
$\square 2 \ell+1$ values of m_{ℓ} in a subshell, ℓ
\square Possible values $m_{1}=-\ell,-\ell+1, \ldots, 0, \ldots, \ell-1, \ell$
$\square \mathrm{m}_{\ell}$ identifies the angular wavefunction $\psi(\theta, \Phi)$ of the orbital

ℓ	Type	m_{ℓ}
0	s	0
1	p	$-1,0,1$
2	d	$-2,-1,0,1,2$
3	f	$-3,-2,-1,0,1,2,3$

Angular Momentum and m_{l}

EXAMPLE: For $n=3$, ℓ can equal 0,1 , or 2 (can be a s, p, or d shaped orbital). The different 3d orbitals can have m_{ℓ} values of $-2-1,0,1,2$ that look like this....

Quantum Number Overview

Electron spin and m_{s}

Particles with 1 unpaired electron passed through a magnet split into two narrow bands

Electrons have spin, in only 2 possible directions

Collection plate

Quantum Numbers and Atomic Orbitals

\square For an energy level n, there are n^{2} orbitals

$$
\begin{array}{llll}
\mathrm{n}=1 & \mathrm{n}^{2}=1 & \ell=0 & \mathrm{~m}_{\ell}=0 \\
\mathrm{n}=2 & \mathrm{n}^{2}=4 & \ell=0 & \mathrm{~m}_{\ell}=0 \\
& & \ell=1 & \mathrm{~m}_{\ell}=-1,0,1 \\
\mathrm{n}=3 & \mathrm{n}^{2}=9 & \ell=0 & \mathrm{~m}_{\ell}=0 \\
& & \ell=1 & \mathrm{~m}_{\ell}=-1,0,1 \\
& & \ell=2 & \mathrm{~m}_{\ell}=-2,-1,0,1,2
\end{array}
$$

\square Orbital in energy level n :

$$
n-1 \text { nodes }
$$

(node is a region of zero probability density)
\square \& nodes in the angular wavefunction $\psi(\theta, \Phi)$
$\square(n-1)-\ell$ nodes in the radial wavefunction $R(r)$

Shapes of Atomic Orbitals

For an orbital in energy level n, there are $\mathrm{n}-1$ nodes
\square An orbital has ℓ nodes in the angular wavefunction $\psi(\theta, \Phi)$

Shapes of Atomic Orbitals

For an orbital in energy level n, there are $n-1$ nodes
\square An orbital has ℓ nodes in the angular wavefunction $\psi(\theta, \Phi)$

Shapes of Atomic Orbitals

For an orbital in energy level n, there are $n-1$ nodes
\square An orbital has ℓ nodes in the angular wavefunction $\psi(\theta, \Phi)$

ℓ	Type	Nodal Planes
0	s	0
1	p	1
2	d	2
3	f	3

Radial Functions of Orbitals

\square For an orbital in energy level n, there are $n-1$ nodes
\square An orbital has ($\mathrm{n}-1$) - ℓ nodes in the radial wavefunction $R(r)$

Radial Wavefunctions of s Orbitals

Wavefunctions of s Orbitals

Pauli Exclusion Principle

No two electrons in an atom can have the same four quantum numbers

No more than two electrons may occupy a given orbital. If there are two electrons in an orbital, their spins must be opposite signs

Other Visualization Methods

See: Orbitron - Gallery of Atomic Orbitals http://winter.group.shef.ac.uk/orbitron/

Many-Electron Atoms

Orbital Energies

Building-Up Principle
Electronic Structure

Potential Energy

$$
\mathrm{H}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}}+\mathrm{V}(\mathrm{x})
$$

How does the presence of other electrons affect things?

- In 1 e - atoms, simply the attraction of 1 e - to nucleus with charge Z
- Now must take into account repulsion between electrons
- In the Helium atom, the nucleus has a charge of +2 , and there are 2 electrons, e_{1} and e_{2} :

$$
\mathbf{V}=-\frac{2 e^{2}}{4 \pi \varepsilon_{0} r_{1}}-\frac{2 e^{2}}{4 \pi \varepsilon_{0} r_{2}}+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}
$$

Attraction of e_{1} to nucleus

Repulsion between e_{1} and e_{2}

No more Degeneracy

In the Hydrogen atom, all orbitals within an energy level (n) are degenerate; they have the same energy

Electron-electron repulsion removes this degeneracy

Electron-electron repulsion: electrons less tightly bound to the nucleus

Inner electrons shield outer electrons from the nucleus.

Shielded electrons do not "feel" Z, they feel $\underline{Z}_{\text {eff }}<\mathbf{Z}$

Electron Configurations

Electronic structure of an atom determines its chemical properties
Electron configuration - list of the electrons are in each orbital
Pauli Exclusion Principle:

- No more than 2 electrons in any orbital.
- When 2 electrons do occupy one orbital, their spins are paired

- 1 is spin up and 1 is spin down.
- No 2 electrons in an atom can have the same set of 4 quantum numbers

$2 \mathrm{He} 1 \mathrm{~s}^{2}$

Valence electrons - electrons in the outermost energy level (n)
Ground state - the lowest energy electron configuration for an atom

Building Up Principle

Add Z electrons, one after the other, to the orbitals in order of increasing energy. Do not add more than 2 electrons in any orbital

If more than one orbital is available in a subshell (p, d, f), add electrons with parallel spins to different orbitals in the subshell before pairing electrons

Building Up Principle

Add Z electrons, one after the other, to the orbitals in order of increasing energy. Do not add more than 2 electrons in any orbital
Add electrons with parallel spins to different orbitals in the subshell before pairing electrons

Building Up Principle

Add Z electrons, one after the other, to the orbitals in order of increasing energy. Do not add more than 2 electrons in any orbital Add electrons with parallel spins to different orbitals in the subshell before pairing electrons

$7 \mathrm{~N} 1 s^{2} 2 s^{2} 2 p^{3}$, [He] $2 s^{2} 2 p^{3}$

9 F $1 s^{2} 2 s^{2} 2 p^{5},[\mathrm{He}] 2 s^{2} 2 p^{5}$

$801 s^{2} 2 s^{2} 2 p^{4},[H e] 2 s^{2} 2 p^{4}$

$10 \mathrm{Ne} 1 s^{2} 2 s^{2} 2 p^{6},[\mathrm{He}] 2 s^{2} 2 p^{6}$

Building Up Principle

Add Z electrons, one after the other, to the orbitals in order of increasing energy. Do not add more than 2 electrons in any orbital.

Add electrons with parallel spins to different orbitals in the subshell before pairing electrons.

These Principles are known as the Aufbau Principle, Hund's Rule, and Pauli Exclusion Principle

Trickiness in Electron configurations...

When unoccupied, 4s orbital is slightly lower in energy than 3d orbitals

Once the 3d orbitals start to get filled, they become lower in energy than the 4 s orbital.
$K \quad Z=19 \quad[A r] 4 s^{1}$
$\mathrm{CaZ}=20 \quad[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
Sc $Z=21 \quad[A r] 3 d^{1} 4 s^{2}$

Trickiness in Electron configurations...

Exceptions to the Building-Up Principle
\square Filled subshells are the most energetically favorable
$\square \quad 1 / 2$ filled subshells are good too! Ex. p^{3} or d^{5}

$$
\begin{array}{ll}
\mathrm{Cr} & {[\mathrm{Ar}] 3 d^{5} 4 s^{1}} \\
\mathrm{Cu} & {[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 s^{1}}
\end{array}
$$

Excited state electron configurations:
If the electron configuration does not follow the building-up principle, the electron is in an excited state

Cations and Anions

\square Cations: remove electron from highest valence
$\square \mathrm{Be}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$
$\square \mathrm{Be}^{2+}: 1 \mathrm{~s}^{2}$

- Ti : [Ar]4s ${ }^{2} 3 d^{2}$
$\square \mathrm{Ti}^{2+}:[\mathrm{Ar}] 3 \mathrm{~d}^{2}$
\square Anions: follow Building-Up Property
$\square N: 1 s^{2} 2 s^{2} 2 p^{3}$
$\square N^{3-}: 1 s^{2} 2 s^{2} 2 p^{6}$

Isoelectronic

Atoms that have the same electron configuration
$\square C^{4-}$
$\square \mathrm{N}^{3-}$
$\square \mathrm{O}^{2-}$
$\square \mathrm{F}^{1-}$
$\square \mathrm{Ne}$
$\square \mathrm{Na}^{1+}$

- Mg^{2+}
- Al^{3+}

Organization of the Periodic Table

Periodicity of Atomic Properties

Atomic Radius
Ionic Radius
Ionization Energy
Electron Affinity

Effective Nuclear Charge

Electrons outside
have no effect on effective nuclear charge for electron of interest.

Positively charged nucleus.

Shielded electrons do not "feel" Z, they feel $\underline{Z}_{\text {eff }}<\mathbf{Z}$

Effective Nuclear Charge - $Z_{\text {eff }}$

Atomic Radius

Atomic Radius - half the distance between the centers of neighboring atoms of an element

\square Metals - half the nearest neighbor distance in a solid sample

- Non-metals: Covalent radius - half the distance between nuclei of atoms joined by chemical bond
- Noble Gas - van der Waals radius - half the distance between centers of neighboring atoms in a sample of solidified gas

Atomic Radius

Group

As n increases, outermost electrons farther from nucleus

Within a period, $Z_{\text {eff }}$ increases from left to right, nucleus pulls electrons closer

In General:
Increases as you move down the table

Decreases as you move left to right

Atomic number \longrightarrow

Ionic Radius

Ionic Radius - an ions share of the distance between neighboring ions in an ionic solid

- Values of all ions in reference to that of the oxide ion, $\mathrm{r}=140 \mathrm{pm}$

Cations $(+)$ are always smaller than the neutral atom
Anions (-) are always larger than the neutral atom

Group

Ionic Radius

Cations (+): always smaller than neutral atom

- As electrons are removed, core of atom is exposed
\square Pull of nucleus is greater on remaining electrons
Anion (-): always larger than neutral atom
- Increased \# electrons leads to greater electron-electron repulsion

Atoms and ions with same \# electrons are called isoelectronic

- Ex. $\mathrm{Na}^{+}, \mathrm{F}^{-}$and Mg^{2+} are isoelectronic
- Radii decrease with increasing nuclear charge

Ionization Energy

lonization Energy (I) - energy needed to remove an electron from an atom in gas phase:

$$
\mathrm{X}_{(\mathrm{g})} \rightarrow \mathrm{XX}_{(\mathrm{g})}+\mathrm{e}^{-}{ }_{(\mathrm{g})} \quad \mathrm{I}=\mathrm{E}\left(\mathrm{X}^{+}\right)-\mathrm{E}(\mathrm{X})
$$

$\mathbf{1 s t}^{\text {st }}$ Ionization Energy ($\left(I_{1}\right)$

$$
\mathrm{Cu}_{(\mathrm{g})} \rightarrow \mathrm{Cu}^{+}{ }_{(\mathrm{g})}+\mathrm{e}_{(\mathrm{g})}^{-} \mathrm{I}_{1}=7.73 \mathrm{eV}
$$

$2^{\text {nd }}$ Ionization Energy $\left(\mathrm{I}_{2}\right)$

$$
\mathrm{Cu}^{+}{ }_{(\mathrm{g})} \rightarrow \mathrm{Cu}^{2+}{ }_{(\mathrm{g})}+\mathrm{e}_{(\mathrm{g})}^{-} \quad \mathrm{I}_{2}=20.29 \mathrm{eV}
$$

Elements with low ionization energies form cations easily, conduct electricity in solid form; i.e. metals

Elements with high ionization energies are unlikely to form cations and unlikely to conduct electricity

Ionization Energy

$1^{\text {st }}$ IE generally decrease down a group
Outermost electron is further (less tightly bound) from nucleus
$1^{\text {st }}$ IE generally increases from left to right across a period $Z_{\text {eff }}$ increases, gripping electrons more tightly

Ionization Energy

Electron Affinity

Electron Affinity ($\mathrm{E}_{\underline{\text { ea }}}$) - energy released when an electron is added to a gas-phase atom

$$
\begin{gathered}
\mathrm{X}_{(\mathrm{g})}+\mathrm{e}_{(\mathrm{g})}^{-} \rightarrow \mathrm{X}_{(\mathrm{g})}^{-} \\
\mathrm{E}_{\mathrm{ea}}(\mathrm{X})=\mathrm{E}(\mathrm{X})-\mathrm{E}_{\left(\mathrm{X}^{-}\right)} \\
\mathrm{Cl}_{(\mathrm{g})}+\mathrm{e}_{(\mathrm{g})}^{-} \rightarrow \mathrm{Cl}_{(\mathrm{g})}^{-} \\
\mathrm{E}_{\mathrm{ea}}=3.62 \mathrm{eV}
\end{gathered}
$$

Much less periodic than the other trends
Highest towards right side of the periodic table, and most prominently towards the upper right
p orbital close to the nucleus with a high effective charge

Summary of Periodic Trends

For Next Week

$\square \quad$ Do the assigned questions for the Ch. 2
\square Read chapter 2
\square Prepare for quiz on Ch. 1
\square Beware "Carmageddon 2011"

