CHEMISTRY XL-14A

MOLECULAR SHAPE AND STRUCTURE

July 23, 2011

Robert lafe

- Lewis Theory
 - Connectivity, electron tracking
- □ VSEPR Theory
 - 3-D Structure around an atom
- Valence Bond Theory
- Molecular Orbital Theory

Valence-Shell Electron-Pair Repulsion (VSEPR)

- Accounts for 3D shapes of molecules
- Based on electron-electron repulsion
- \Box Determine bond angles \rightarrow shape

Rules are based on experimental observation:

- 1. Areas of electron concentration (bonds and lone pairs) around the central atom repel each other.
- 2. Bonds and lone pairs stay as far away from each other as possible (without changing distance)

Valence-Shell Electron-Pair Repulsion (VSEPR) – Accounts for 3D shapes of molecules in terms of electron-electron repulsion

Rules are based on experimental observation:

- 1. Regions of high electron concentration around the central atom (bonds and lone pairs) repel each other.
- 2. Single and Multiple bonds treated the same

Coordination Number

CN = # of atoms bonded

Ethanol

Н Н Н-С-С-Ö-Н Н Н

AXE Model

- \square A = Central Atom
- □ X = Atomic Substituents
- \Box E = Lone Pairs (If none, not shown)

□ Linear: AX₂ − (2 e⁻ groups)

12

□ Trigonal Bipyramidal: AX₅

Octahedral – cis/trans

cis- : same side **trans-** : opposite side (across)

Bond Angles

16

Bond angle is based on the number of electron groups.

AX₅ Derivatives

AX5

Benzene – C_6H_6

Cyclohexane – C_6H_{12}

24

A polar covalent bond has a non-zero dipole moment

Polar molecules — molecules with non-zero dipole moment: m ≠ 0 D

Examples: HCI HF HBr

A non-polar molecule has no dipole moment: m = 0 D

Examples: $O_2 \quad CH_4 \quad SF_6$

25

Polar bonds, Non-polar molecule?

If the dipole moments cancel out (Vector sum = 0):

Each C-O bond is polar

Two equally polar bonds, with opposing dipole moments

Valence Bond (VB) Theory

□ Lewis Theory Connectivity, electron tracking □ VSEPR Theory 3-D Structure around an atom □ Valence Bond Theory Extended 3-D Structure Information Delocalization in Molecules Illustrates Multiple Bonding Prediction of Reactivity

Molecular Orbital Theory

Answers to $H\Psi = E\Psi$

Answers to $H\Psi = E\Psi$

Bonding With Orbitals

Bonding with Orbitals

Valence-Bond Theory

34

So far, we've been thinking of molecules using Lewis' Theory:

Bonding electrons are located in between bonded atoms – electrons are localized

But....

We learned in Ch. 1 that we learned to think of electrons as wavefunctions, which are described by atomic orbitals

Valence Bond Theory – quantum mechanical view of bonding

'Types' of Bonds – σ bond

Lets start with H₂, the simplest molecule:

Ground state H has one 1s electron

When the 2 H atoms bond, the atomic orbitals merge, forming a σ -bond

<u>**\sigma-bond**</u> (sigma bond) – along bond axis.

We say the atomic orbitals overlap

More overlap = Stronger bond

All single covalent bonds are $\sigma\text{-bonds}$

'Types' of Bonds – σ bond

н

— F

σ-bond

 $2p_z$

Ζ

All single covalent bonds are s-bonds Can have s-bonds between any types **1***s* of orbitals: Two s orbitals Two p orbitals An s and a p orbital Etc.... Example: s-bond between 1s orbital of H and 2p_z orbital of F H1s F2p

'Types' of Bonds – Multiple bonds

What happens in N₂?

37

Remember the bond in N_2 is a triple bond...

Each N atom has 3 unpaired 2p electrons

Lets look at the atomic orbitals of N:

 $N2p \qquad \qquad N2p \qquad N2p \\ N2s \qquad N2s \qquad N2s \\ N2$

N — N

'Types' of Bonds – Multiple bonds

How do the atomic orbitals bond?

N - N

Between the $2p_z$ and $2p_z$ orbitals, we have bonding on the bond axis

This is a s-bond!

'Types' of Bonds – Multiple bonds

What happens in N₂?

Remember the bond in N_2 is a triple bond...

Each N atom has 3 unpaired 2p electrons

How do the atomic orbitals bond?

Between $2p_x$ and $2p_x$ orbitals, the bonding is not on the bond axis

A different type of bond!

<u>p-bond</u> –nodal plane along bond axis

Bonding occurs above and below the bond axis

Bonding of N₂

Bonding of N₂

41

π(**2***p_{x'}* **2***p_x*) $\pi(2p_{y'}, 2p_{y})$ π -bonds σ-bond σ(**2***p*_z, **2***p*_z) (b) (a)

Hybridization of Orbitals

What about methane (CH₄)?

According to Valence Bond Theory:

C should only make 2 bonds!

But we know that C can make 4 bonds Carbon, [He] $2s^22p_x^12p_y^1$ And CH₄ has a tetrahedral shape according to VSEPR: How do get a tetrahedral shape from the 2s and 2p orbitals?

Experiments

Hybridization of Orbitals

44

We solve the 4 bond problem by promoting an electron:

It takes energy to promote an electron to a higher E orbital

But, overall the energy is lower if C can make 4 bonds instead of 2.

Ok, what about the geometry problem?

Hybridization of Orbitals

45

By promoting an electron, we can now make 4 bonds

But the geometry of the ${\rm p_{x'}}$ ${\rm p_{y'}}$ and ${\rm p_{z}}$ orbitals don't match the tetrahedral shape of ${\rm CH_4}$

s and p orbitals are described by a wave-like model of the e

If we think of the orbitals as interfering with each other, we can define new hybrid orbitals:

sp³ Hybridization

C in CH₄ uses 4 hybrid orbitals:

We took 1 s orbital and 3 p orbitals to make 4 sp³ orbitals.

The sum of the atomic orbitals = the sum of the hybrid orbitals

The 4 sp³ orbitals point in the 4 directions of the tetrahedral bonds

sp³ Hybridization

48

Whenever an atom has a tetrahedral structure, we say it is sp³ hybridized

This includes molecules with multiple central atoms: σ**(Csp³,H1s)**、 σ(**Csp³,Csp³**)

Atomic Orbitals → Hybrid Atomic Orbitals

sp³ bonding works for tetrahedrally shaped molecules

What about the other VSEPR shapes?

Linear bonding can be described by sp hybridization:

$$h_1 = s + p$$
$$h_2 = s - p$$

2 of the p orbitals remain as they were

Unused p orbitals are available

for p bonding

etion:

Other Types of Hybridization

50

sp³ bonding works for tetrahedrally shaped molecules

What about the other VSEPR shapes?

Trigonal planar can be described by $\underline{sp^2}$ hybridization: $h_1 = s + \sqrt{2} p_{\rm v}$

$$h_2 = s + \sqrt{\frac{3}{2}} p_x - \sqrt{\frac{1}{2}} p_y$$

$$h_3 = s - \sqrt{\frac{3}{2}p_x} - \sqrt{\frac{1}{2}p_y}$$

The $\mathbf{p}_{\mathbf{z}}$ orbital is not used and remains as it was

sp²

Hybrid Orbitals

Hybrid Orbital Shapes

Look Familiar?

Other Types of Hybridization

55

N atomic orbitals always produce N hybrid orbitals

TABLE 3.2 Hybridization and Molecular Shape*

Electron arrangement	Number of atomic orbitals	Hybridization of the central atom	Number of hybrid orbitals
linear	2	sp	2
trigonal planar	3	sp^2	3
tetrahedral	4	sp^3	4
trigonal bipyramidal	5	$sp^{3}d$	5
octahedral	6	sp^3d^2	6

Spectroscopic data suggests terminal atoms use hybrid orbitals as well

A terminal Cl uses sp³ hybridization in the arrangement of its lone pairs?

Examples

π Bond

Ethylene

Ethylene

Characteristics of Multiple Bonds

double bond = 1 σ -bond + 1 π -bond

triple bond = 1 σ -bond + 2 π -bonds

 σ -bonds result from head-on overlap of orbitals

 π -bonds results from side-by-side overlap

Atoms in a single bond can rotate freely, whereas atoms in a double bond are much less likely to:

Characteristics of Multiple Bonds

The shape of ethylene (C_2H_4)

Experimental evidence:

All six atoms lie in the same plane with 120° bond angles

Suggests trigonal planar structure \rightarrow sp² hybridization

Each C: $sp^2 + p$

s-bonds with the sp² orbitals

с—с 4с—н

p-bond with the leftover p orbital

C - C

Characteristics of Multiple Bonds

Hybridization and Benzene

Molecular Orbital Theory

Lewis Theory

Connectivity, electron tracking

VSEPR Theory

3-D Structure around an atom

Valence Bond Theory

- Extended 3-D Structure Information
- Delocalization in Molecules (LIMITED)
- Illustrates Multiple Bonding
- Prediction of Reactivity
- Molecular Orbital Theory
 - Orbitals as a function of the whole molecule
 - Delocalization much more thorough
 - Anti-bonding and Non-bonding electrons
 - Behavior in a magnetic field
 - Spectral Data

Why MO Theory?

O₂ Bond Dissociation Energy = 498 kJ/mol
O₂⁺ Bond Dissociation Energy = 623 kJ/mol

Paramagnetic / Diamagnetic

Constructive and Destructive Interference

Molecular Orbitals

68

MO Theory – electrons occupy <u>molecular orbitals</u> spread over *entire* molecule

- All valence electrons are delocalized
- Molecular orbitals are built by adding together atomic orbitals
- Linear combination of atomic orbitals (LCAO)

H - H bond in H_2 with two 1s electrons:

 $y = y_{A1s} + y_{B1s}$

- $E_{LCAO-MO} < E_{AO}$
- LCAO-MO are bigger than AO

Molecular Orbitals

"Conservation of orbitals"

H₂ bonds with two 1s orbitals – it must have 2 LCAO-MOs

2nd LCAO-MO - destructive interference, <u>higher PE</u> than atomic orbitals

Nodal plane! – much less e- density "internuclearly"

This is an **antibonding orbital**

1st LCAO-MO is <u>lower in energy</u> than Atomic orbitals

This is called a **bonding orbital**

Sigma Bonds

Molecular Orbital Energy Diagram

Electron Configurations of Diatomic Molecules

72

Shows ALL valence electrons using the Building-Up Principle:

Electron configuration of $H_2 \rightarrow s_{1s}^2$ Based on MO theory – a single electron can hold a bond together
Bond Order

Valence Bond Theory:

Bond order was # bonding pairs

MO Theory, bond order is:

□
$$b = \frac{1}{2} (N - N^*)$$

N = # e⁻s in bonding orbitals

 N* = # e⁻s in antibonding orbitals

$$\Box H_2 \rightarrow b = 1$$

$$\Box He_2 \rightarrow b = 0$$

2nd row Diatomic Molecules

74

Must include both 2s and 2p orbitals in making our MOs
Only orbitals that are close in energy will form MOs
We have 2 (2s) orbitals and 6 (2p) orbitals → 8 atomic orbitals
2s orbitals overlap in the same way as the 1s orbitals of H₂
2p orbitals overlap in same orientations as in Valence bond theory:

2nd row Diatomic Molecules

We have 2 (2s) orbitals and 6 (2p) orbitals → 8 atomic orbitals 2s orbitals overlap in the same way as the 1s orbitals of H₂ 2p orbitals overlap in same orientations as in Valence bond theory:

Pi Bonds

2nd row Homonuclear Diatomic Molecules

2nd row Homonuclear Diatomic Molecules

Homonuclear Diatomic
 MO Energy diagram
 for all elements right of
 (and including) oxygen

$$O_2 F_2 'Ne_2'$$

And their combinations

2nd row Homonuclear Diatomic Molecules

79

Homonuclear Diatomic
 MO Energy diagram
 for all elements left of
 oxygen

$$Li_2 Be_2 B_2 C_2 N_2$$

Relative MO Energy Levels

MO Diagram for Li₂

MO Diagram for Be₂

MO Diagram for N_2

MO Diagram for O_2

2p_x 4 2p. -2pz 🕂 2py 🕂 2px Energy σ_{2s}* 2s – 2s σ_{2s} σ_{1s} **4** 1s 1s – σ_{1s} Ο 0=0 0 Atom Molecular Atom Configuration Configuration Configuration Bond Order = 2

MO Diagram for F₂

 σ_{2p} 2px -2p₂ <mark>-||</mark>-2py 1 2px π_x Energy σ2s^{*} 2s – -2s σ_{1s}* **1** 1s 1s 🕂 σ_{1s} F-F F F Molecular Atom Atom Configuration Configuration Configuration Bond Order = 1

Relative AO Energy Levels

87

Heteronuclear Diatomic Molecules

88

Account for ΔEN between AO's

More electronegative atoms will have lower energy atomic orbitals

Contributions are dependent on energy level

MO diagram for HF

Orbitals in Polyatomic Molecules

90

An electron pair in a bonding orbital helps to bind together the whole molecule – can become very complex

Occasionally some MOs are neither bonding nor antibonding –these are called nonbonding orbitals

MO Diagram for Carbon Monoxide

Organic Molecules

92

Chemists commonly mix VB and MO theories when discussing organic molecules: VB theory is good for talking about σ bonds MO theory is better for considering π bonds

Consider Benzene (C₆H₆):

VB perspective – each C is sp² hybridized

 σ framework is overlap of sp² orbitals

MO perspective – conjugation of π bonds extremely important

 π MOs account for delocalization of electrons

π Orbitals of Benzene

HOMO←→LUMO Transitions

