

Midterm Results

Histogram of Midterm \#1

Midterm 1

1. How many seconds are in 65 years?
a) $3.3 \times 10^{7} \mathrm{sec}$
b) $3.4 \times 10^{7} \mathrm{sec}$
c) $2.0 \times 10^{9} \mathrm{sec}$
d) $2.1 \times 10^{9} \mathrm{sec}$
2. The molecular formula of hydroquinone is $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$. What is the empirical formula of hydroquinone?
a) $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}$
b) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$
c) $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$
d) CHO

Midterm 1

3. For the following set of four quantum numbers ($n, I, m_{1,} m_{s}$) identify the set that is not valid:
a) $\{9,5,-3,1 / 2\}$
b) $\{3,3,3,1 / 2\}$
c) $\{2,0,0,1 / 2\}$
d) $\{4,2,-2,1 / 2\}$
4. How many electrons are in principle quantum number $n=3$?
a) 3
b) 6
c) 9
d) 18

Midterm 1

5. How many radial nodes are in a 3d orbital?
a) 0
b) 1
c) 2
d) 3
6. Which of the following is isoelectronic with N^{3-}
a) F
b) Cl^{-1}
c) Mg^{2+}
d) Ar

Midterm 1

7. Which of the compounds below has bonds with more covalent character?
a) CaO
b) $\mathrm{Li}_{2} \mathrm{O}$
c) MgO
d) MgS
8. Which of the following is the most electronegative?
a) B
b) $\quad \mathrm{ln}$
c) Te
d) O

Midterm 1

9. Which of the following has the largest atomic radius?
a) Be
b) S
c) Te
d) Sr

Midterm 1

10. 1,3-Benzodioxol-5-ol, otherwise known as sesamol, is a natural organic compound found in sesame seed oil. The combustion analysis of a 100 mg sample of 1,3-benzodioxol-5-ol shows its composition is: 60.87% C, $4.38 \% \mathrm{H}$, and 34.75% O.
a) What is the empirical formula of 1,3-benzodioxol-5-ol?
b) If the molecular weight of 1,3-benzodioxol-5-ol is $138.12 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula?

Midterm 1

11. Sodium metal reacts readily with water to produce hydrogen gas and sodium hydroxide in solution.
a) Write a balanced reaction.
b) If 3.00×10^{-1} grams of sodium react with 0.500 L of water (density $=1 \mathrm{~g} / \mathrm{mL}$), what is the theoretical yield of hydrogen gas?
c) If exactly 1.20×10^{-2} grams of hydrogen gas is collected, what is the percent yield?
d) Knowing the percent yield of the reaction, what is the predicted concentration of NaOH in the solution assuming the volume of water does not change?

Midterm 1

12. Write the noble gas electron configuration for the following atoms/ ions. How many unpaired electrons does each have?
a) P
b) Ag^{+1}
13. Identify the M^{3+} ion for each ground state electron configuration
a) $[\mathrm{Ar}] 3 d^{7}$
b) $\quad[\mathrm{Ar}] 3 \mathrm{~d}^{10}$
14. Briefly explain why oxygen has a lower first ionization energy than nitrogen.

Midterm 1

15. Calculate the wavelength of the radiation emitted by a hydrogen atom (one electron atom) when an electron makes a transition from $n=5$ to $n=2$.
16. The work function for chromium metal is 4.37 eV or $7.00 \times 10^{-19} \mathrm{~J}$. Light with a wavelength of 11.0 nm is shined on the metal. What is the velocity of the ejected electron?

Midterm 1

17. Draw the boundary surface for the three $3 p$ orbitals, making sure to name and label each axis correctly. How many radial nodes does a 3 p orbital have?

Midterm 1

\square Provide the Lewis dot structure for the following compounds. Make sure every electron is drawn. Indicate atoms with formal charge. If resonance structures can be drawn, draw all valid structures. Make sure to indicate formal charge when necessary.
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
b) CN^{-}
c) HNO_{3}
d) POCl_{3}

Valence shell electron pair repulsion theory (VSEPR)

\square Lewis Theory

- Connectivity, electron tracking
\square VSEPR Theory
- 3-D Structure around an atom
\square Valence Bond Theory
\square Molecular Orbital Theory

Review - VSEPR Theory

Valence-Shell Electron-Pair Repulsion (VSEPR)

\square Accounts for 3D shapes of molecules
\square Based on electron-electron repulsion
\square Determine bond angles \rightarrow shape
Rules are based on experimental observation:

1. Areas of electron concentration (bonds and lone pairs) around the central atom repel each other.
2. Bonds and lone pairs stay as far away from each other as possible (without changing distance)

Review - Polar Molecules

A polar covalent bond has a non-zero dipole moment

Polar molecules - molecules with non-zero dipole moment: $\mathrm{m} \neq 0 \mathrm{D}$

Examples:
HCl HF HBr
A non-polar molecule has no dipole moment: $m=0 D$
Examples: $\quad \begin{array}{llll} & \mathrm{O}_{2} & \mathrm{CH}_{4} & \mathrm{SF}_{6}\end{array}$

Polar Molecules

Polar bonds, Non-polar molecule?

CO_{2}

If the dipole moments cancel out (Vector sum = 0):
Each C-O bond is polar
Two equally polar bonds, with opposing dipole moments

Polar Molecules

$\mathrm{H}_{2} \mathrm{O}$

Each O-H bond is polar
Overall molecule is ??????

Polar Molecules

Polar Molecules

non-polar
CHCl_{3}

polar

Valence Bond (VB) Theory

\square Lewis Theory

- Connectivity, electron tracking
\square VSEPR Theory
- 3-D Structure around an atom
\square Valence Bond Theory
- Extended 3-D Structure Information
- Delocalization in Molecules
- Illustrates Multiple Bonding
- Prediction of Reactivity
\square Molecular Orbital Theory

Answers to $\mathrm{H} \Psi=\mathrm{E} \Psi$

Answers to $\mathrm{H} \Psi=\mathrm{E} \Psi$

Bonding With Orbitals

1s $1 s$

$1 s$
H

Bonding with Orbitals

Valence-Bond Theory

So far, we've been thinking of molecules using Lewis' Theory:
Bonding electrons are located in between bonded atoms - electrons are localized

But....
We learned in Ch. 1 that we learned to think of electrons as wavefunctions, which are described by atomic orbitals

Valence Bond Theory - quantum mechanical view of bonding

‘Types’ of Bonds $-\sigma$ bond

Lets start with H_{2}, the simplest molecule:

Ground state H has one 1 s electron
When the 2 H atoms bond, the atomic orbitals merge, forming a σ-bond
o-bond (sigma bond) - along bond axis.

We say the atomic orbitals overlap
More overlap $=$ Stronger bond
All single covalent bonds are σ-bonds

Atomic orbitals

σ-bond

‘Types’ of Bonds $-\sigma$ bond

All single covalent bonds are s-bonds

Can have σ-bonds between any types of orbitals:

Two s orbitals
Two p orbitals
An s and a p orbital
Etc....
Example: s-bond between 1s orbital of H and $2 p_{z}$ orbital of F

‘Types’ of Bonds - Multiple bonds

What happens in N_{2} ?
Remember the bond in N_{2} is a triple bond...

Each N atom has 3 unpaired 2 p electrons
Lets look at the atomic orbitals of N :

\mathbf{P}_{x}

P_{y}

$\mathbf{P}_{\mathbf{z}}$

‘Types’ of Bonds - Multiple bonds

What happens in N_{2} ?
Remember the bond in N_{2} is a triple bond...

triple bond.
Each N atom has 3 unpaired 2 p electrons
How do the atomic orbitals bond?

Between the $2 p_{z}$ and $2 p_{z}$ orbitals, we have bonding on the bond axis

This is a σ-bond!

$$
\begin{array}{ll}
\mathbf{p}_{z} & \mathbf{p}_{z}
\end{array}
$$

'Types' of Bonds - Multiple bonds

What happens in N_{2} ?
Remember the bond in N_{2} is a triple bond...

Each N atom has 3 unpaired 2p electrons

How do the atomic orbitals bond?

$p_{x} \quad p_{x}$

Between $2 p_{x}$ and $2 p_{x}$ orbitals, the bonding is not on the bond axis

A different type of bond!
t-bond -nodal plane along bond axis
Bonding occurs above and below the bond axis

Bonding of N_{2}

Bonding of N_{2}

Hybridization of Orbitals

What about methane $\left(\mathrm{CH}_{4}\right)$?
According to Valence Bond Theory:
C should only make 2 bonds!
But we know that C can make 4 bonds

Carbon, [He] $2 s^{2} 2 p_{x}{ }^{1} 2 p_{y}{ }^{1}$

And CH_{4} has a tetrahedral shape according to VSEPR:
How do get a tetrahedral shape from the 2 s and 2 p orbitals?

Hybridization of Orbitals

We solve the 4 bond problem by promoting an electron:

Carbon, [He] $2 s^{1} 2 p_{x}{ }^{1} 2 p_{y}{ }^{1} 2 p_{z}{ }^{1}$
It takes energy to promote an electron to a higher E orbital
But, overall the energy is lower if C can make 4 bonds instead of 2.
Ok, what about the geometry problem?

Hybridization of Orbitals

By promoting an electron, we can now make 4 bonds
But the geometry of the $p_{x}, p_{y^{\prime}}$ and p_{z} orbitals don't match the tetrahedral shape of CH_{4}
s and p orbitals are described by a wave-like model of the e
If we think of the orbitals as interfering with each other, we can define new hybrid orbitals:

$$
\begin{aligned}
& h_{1}=s+p_{x}+p_{y}+p_{z} \\
& h_{2}=s-p_{x}-p_{y}+p_{z} \\
& h_{3}=s-p_{x}+p_{y}-p_{z} \\
& h_{4}=s+p_{x}-p_{y}-p_{z}
\end{aligned}
$$

sp ${ }^{3}$ Hybridization

C in CH_{4} uses 4 hybrid orbitals:

$s p^{3}$ hybridized carbon

We took 1 s orbital and 3 p orbitals to make $4 \mathrm{sp}^{3}$ orbitals.
The sum of the atomic orbitals $=$ the sum of the hybrid orbitals
The $4 \mathrm{sp}^{3}$ orbitals point in the 4 directions of the tetrahedral bonds

$s p^{3}$ Hybridization

Back to CH_{4} :
The $42 \mathrm{sp}^{3}$ hybrid orbitals on carbon make s-bonds with the 1 s orbitals of the 4 H atoms
NH_{3} also uses sp^{3} hybrid orbitals:

Ammonia, NH_{3}
Whenever an atom has a tetrahedral structure, it is sp^{3} hybridized

$s p^{3}$ Hybridization

Whenever an atom has a tetrahedral structure, we say it is $s p^{3}$ hybridized

This includes molecules with multiple central atoms:

Atomic Orbitals \rightarrow Hybrid Atomic Orbitals

sp^{3} bonding works for tetrahedral-shaped molecules
What about the other VSEPR shapes?

Linear bonding can be described by sp hybridization:

$$
\begin{aligned}
& \mathrm{h}_{1}=\mathrm{s}+\mathrm{p} \\
& \mathrm{~h}_{2}=\mathrm{s}-\mathrm{p}
\end{aligned}
$$

2 of the p orbitals remain as they were
Unused p orbitals are available for p bonding

Other Types of Hybridization

sp^{3} bonding works for tetrahedrally shaped molecules
What about the other VSEPR shapes?
Trigonal planar can be described by $\boldsymbol{s p}^{2}$ hybridization:

$$
\begin{gathered}
\mathrm{h}_{1}=\mathrm{s}+\sqrt{2} \mathrm{p}_{\mathrm{y}} \\
\mathrm{~h}_{2}=\mathrm{s}+\sqrt{\frac{3}{2}} \mathrm{p}_{\mathrm{x}}-\sqrt{\frac{1}{2}} \mathrm{p}_{\mathrm{y}} \\
\mathrm{~h}_{3}=\mathrm{s}-\sqrt{\frac{3}{2}} \mathrm{p}_{\mathrm{x}}-\sqrt{\frac{1}{2}} \mathrm{p}_{\mathrm{y}}
\end{gathered}
$$

The p_{z} orbital is not used and remains as it was
$s p^{2}$

Hybrid Orbitals

Overlapping sp hybrid orbitals

Simplified view of hybrid orbitals

Hybrid Orbital Shapes

Look Familiar?

$\rightarrow+\infty$

Other Types of Hybridization

N atomic orbitals always produce N hybrid orbitals
TABLE 3.2 Hybridization and Molecular Shape*

Electron arrangement	Number of atomic orbitals	Hybridization of the central atom	Number of hybrid orbitals
linear	2	$s p$	2
trigonal planar	3	$s p^{2}$	3
tetrahedral	4	$s p^{3}$	4
trigonal bipyramidal	5	$s p^{3} d$	5
octahedral	6	$s p^{3} d^{2}$	6

Spectroscopic data suggests terminal atoms use hybrid orbitals as well
A terminal Cl uses $s p^{3}$ hybridization in the arrangement of its lone pairs?

Examples

\square

$1 s \downarrow^{1 s}$ H_{2}

m Bond

Ethylene

Ethylene

Characteristics of Multiple Bonds

double bond $=1 \sigma$-bond $+1 \pi$-bond
triple bond $=1 \sigma$-bond $+2 \pi$-bonds
σ-bonds result from head-on overlap of orbitals π-bonds results from side-by-side overlap

Atoms in a single bond can rotate freely, whereas atoms in a double bond are much less likely to:

Characteristics of Multiple Bonds

The shape of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$
Experimental evidence:
All six atoms lie in the same plane with 120° bond angles
Suggests trigonal planar structure $\rightarrow \mathrm{sp}^{2}$ hybridization

$$
\text { Each C: } s p^{2}+p
$$

s-bonds with the sp ${ }^{2}$ orbitals

$$
\begin{gathered}
\mathrm{C}-\mathrm{C} \\
4 \mathrm{C}-\mathrm{H}
\end{gathered}
$$

p-bond with the leftover p orbital

$$
\mathrm{C}-\mathrm{C}
$$

Characteristics of Multiple Bonds

The shape of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ is linear \rightarrow sp hybridization

Hybridization and Benzene

Molecular Orbital Theory

- Lewis Theory
- Connectivity, electron tracking
\square VSEPR Theory
- 3-D Structure around an atom
\square Valence Bond Theory
- Extended 3-D Structure Information
- Delocalization in Molecules (LIMITED)
- Illustrates Multiple Bonding
- Prediction of Reactivity
- Molecular Orbital Theory
- Orbitals as a function of the whole molecule
- Delocalization much more thorough
- Anti-bonding and Non-bonding electrons
- Behavior in a magnetic field
- Spectral Data

Paramagnetic / Diamagnetic

Constructive and Destructive Interference

Molecular Orbitals

MO Theory - electrons occupy molecular orbitals spread over entire molecule

- All valence electrons are delocalized
- Molecular orbitals are built by adding together atomic orbitals
- Linear combination of atomic orbitals (LCAO)
$\mathrm{H}-\mathrm{H}$ bond in H_{2} with two 1s electrons:

$$
y=y_{A 1 s}+y_{B 1 s}
$$

- LCAO-MO shows constructive interference
- $\mathrm{E}_{\text {LCAO-mo }}<\mathrm{E}_{\mathrm{Ao}}$
- LCAO-MO are bigger than AO

Molecular Orbitals

"Conservation of orbitals"
H_{2} bonds with two 1s orbitals - it must have 2 LCAO-MOs
$2^{\text {nd }}$ LCAO-MO - destructive interference, higher PE than atomic orbitals

Nodal plane! - much less e-density
"internuclearly"
This is an antibonding orbital

$1^{\text {st }}$ LCAO-MO is lower in energy than Atomic orbitals

This is called a bonding orbital

$$
y=y_{A 1 s}+y_{B 1 s}
$$

Sigma Bonds

Molecular Orbital Energy Diagram

Electron Configurations of Diatomic Molecules

Shows ALL valence electrons using the Building-Up Principle:

Electron configuration of $\mathrm{H}_{2} \rightarrow \mathrm{~s}_{1 \mathrm{~s}}{ }^{2}$
Based on MO theory - a single electron can hold a bond together

Bond Order

$2^{\text {nd }}$ row Diatomic Molecules

Must include both $2 s$ and $2 p$ orbitals in making our MOs
Only orbitals that are close in energy will form MOs
We have $2(2 s)$ orbitals and $6(2 p)$ orbitals $\rightarrow 8$ atomic orbitals
2 s orbitals overlap in the same way as the 1 s orbitals of H_{2}
$2 p$ orbitals overlap in same orientations as in Valence bond theory:

$\pi_{2 p}{ }^{*}$

$\pi_{2 p}$
$\sigma_{2 p}$

$2^{\text {nd }}$ row Diatomic Molecules

We have $2(2 s)$ orbitals and $6(2 p)$ orbitals $\rightarrow 8$ atomic orbitals
$2 s$ orbitals overlap in the same way as the 1 s orbitals of H_{2}
$2 p$ orbitals overlap in same orientations as in Valence bond theory:

Pi Bonds

$2^{\text {nd }}$ row Homonuclear Diatomic Molecules

$2^{\text {nd }}$ row Homonuclear Diatomic Molecules

\square Homonuclear Diatomic MO Energy diagram for all elements right of (and including) oxygen
O_{2}
F_{2}
' $\mathrm{Ne}_{2}{ }^{\prime}$

And their combinations

$2^{\text {nd }}$ row Homonuclear Diatomic Molecules

\square Homonuclear Diatomic MO Energy diagram for all elements left of oxygen
$\begin{array}{llllll}\mathrm{Li}_{2} & \mathrm{Be}_{2} & \mathrm{~B}_{2} & \mathrm{C}_{2} & \mathrm{~N}_{2}\end{array}$

Relative MO Energy Levels

MO Diagram for Li_{2}

MO Diagram for Be_{2}

Be
Be_{2}
Be

$$
\begin{aligned}
& \text { 1s 倝 }
\end{aligned}
$$

MO Diagram for N_{2}

MO Diagram for O_{2}

MO Diagram for F_{2}

Relative AO Energy Levels

$$
\begin{aligned}
& \underset{-2 s_{---} 2 p}{\text { H }} \text { Li } \quad \text { Be } \quad \text { B } \quad \text { C } \quad \text { N } \quad \text { O } \quad \text { F } \\
& -1 s-_{-}^{2} s_{---2 p}^{2 p}
\end{aligned}
$$

$$
\begin{aligned}
& -2 s \\
& -1 s \quad \quad-2 s \\
& \text { _ } 2 s \\
& \text { _ } 1 s \\
& \text { _ } 1 s \\
& \text { _ } 1 s
\end{aligned}
$$

Heteronuclear Diatomic Molecules

Account for $\triangle \mathrm{EN}$ between AO's

More electronegative atoms will have lower energy atomic orbitals

Contributions are dependent on energy level

MO diagram for HF

Orbitals in Polyatomic Molecules

An electron pair in a bonding orbital helps to bind together the whole molecule - can become very complex

Occasionally some MOs are neither bonding nor antibonding -these are called nonbonding orbitals

MO Diagram for Carbon Monoxide

Organic Molecules

Chemists commonly mix VB and MO theories when discussing organic molecules:
VB theory is good for talking about σ bonds MO theory is better for considering π bonds

Consider Benzene ($\mathrm{C}_{6} \mathrm{H}_{6}$):
VB perspective - each C is sp^{2} hybridized

π Orbitals of Benzene

84

Coordination Compounds

FIGURE 16.17 When potassium cyanide is added to a solution of iron(II) sulfate, the cyanide ions replace the $\mathrm{H}_{2} \mathrm{O}$ ligands of the $\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ complex (left) and produce a new complex, the hexacyanoferrate(II) ion, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ (right). The blue color is due to the polymeric compound called Prussian blue, which forms from the cyanoferrate ion.

Colors of Coordination Compounds

Aqueous solutions of $\left[\mathrm{Fe}(\mathrm{SCN})\left(\mathrm{OH}_{2}\right)_{5}\right]^{2+}$, $\left[\mathrm{Co}(\mathrm{SCN})_{4}\left(\mathrm{OH}_{2}\right)_{2}\right]^{2-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{OH}_{2}\right)_{2}\right]^{2+}$, and $\left[\mathrm{CuBr}_{4}\right]^{2-}$

Biological Importance

Coordination Compounds

\square Metals in the d-block form coordination compounds
\square Coordination compound electrically neutral compound in which at least on of the ions present is a complex
\square Ligands - ions or molecules that are attached to the central metal atom or ion

\square Coordination number - number of ligands attached to the central metal

Shapes of Complexes

3 A square-planar complex
2 A tetrahedral complex
1 An octahedral complex

Shapes of Complexes

4 Dimethylmercury (0)

Nomenclature

$\square\left[\mathrm{FeCl}\left(\mathrm{OH}_{2}\right)_{5}\right]^{+}$pentaqquachloridoiron(II)
\square Overall complex charge $=+1$
\square Ligand charge $=\mathrm{Cl}^{-1}$ and OH_{2} (water)
\square Metal charge + ligand charge $=$ overall complex charge

- $\mathrm{Fe}+(-1)=+1$
- $\mathrm{Fe}=+2$
$\square\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{OH}_{2}\right)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$ triamminetriaquacobalt(III) sulfate
\square Overall complex charge $=+3$
\square Ligand charge $=0$
- $\mathrm{Co}=+3$

Common Ligands

Formula*	Name
Neutral ligands	
OH_{2}	aqua
NH_{3}	ammine
NO	nitrosyl
CO	carbonyl
$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	ethylenediamine (en)
$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	diethylenetriamine (dien)

Common Ligands

```
Anionic ligands
F-
Cl-
Br
I-
OH-
O-
CN-
CN+
NCS
NCS
NO}\mp@subsup{}{2}{-}\mathrm{ as O-NO-
NO
CO}\mp@subsup{3}{}{2-}\mathrm{ as O-CO}\mp@subsup{2}{}{2-
C2O}\mp@subsup{\textrm{O}}{4}{}\mp@subsup{}{}{2-}\mathrm{ as }\mp@subsup{}{}{-}\mp@subsup{\textrm{O}}{2}{}\mp@subsup{\textrm{CCO}}{2}{-
```



```
\(\mathrm{SO}_{4}{ }^{2-}\) as \(\mathrm{OSO}_{3}{ }^{2-}\)
```

fluorido
chlorido
bromido
iodido
hydroxido
oxido
cyanido-кС
isocyanido, cyanido-к N
thiocyanato-к N
isothiocyanato, thiocyanato-кS
nitrito-к O
nitro, nitrito-к N
carbonato-к O
oxalato (ox) ${ }^{\dagger}$
ethylenediaminetetraacetato (edta) ${ }^{\text {S }}$
sulfato

Prefixes

$\square 1$ mono
$\square 2$ di (bis)
$\square 3$ tri (tris)
$\square 4$ tetra (tetrakis)
$\square 5$ penta (pentakis)
$\square 6$ hexa (hexakis)
$\square 7$ hepta
$\square 8$ octa

Prefixes in parentheses are used when the ligand already contains a Greek prefix or is polydentate

Example: ethylenediamine oxalato (bidentate)

More Nomenclature

$\square \mathrm{Na}_{2}\left[\mathrm{PtCl}_{2}(\mathrm{ox})_{2}\right]$ sodium dichloridobis(oxalato)platinate(IV)
\square Overall complex charge $=-2$
\square Ligand charge $=\mathrm{Cl}^{-1}$ and oxalato $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
\square Metal charge + ligand charge $=$ overall complex charge

- $\mathrm{Pt}+(-6)=-2$
- $\mathrm{Pt}=+4$
$\square\left[\mathrm{CoBr}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$ pentaamminebromidocobalt(III) sulfate \square Overall complex charge $=-2$
\square Ligand charge $=\mathrm{Br}^{-1}$ and NH_{3}
\square Metal charge + ligand charge $=$ overall complex charge
- Co $+(-1)=+2$
- $\mathrm{Co}=+3$

Polydentate Ligands

\square Some ligands attach to the metal more than once

8 Ethylenediamine, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Bidentate ligand

Polydentate Ligands

\square Some ligands attach to the metal more than once

10 Ethylenediaminetetraacetic acid Hexadentate ligand

11 An edta complex

Coordination Isomers

(a) trans- $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$
(b) cis- $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$

Coordination Isomers

(a) trans- $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$
(b) $c i s-\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$
(c) cis-[$\left.\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$

