CHEMISTRY XL-14A

GASES

Chemistry in the News

Ref: Chem. Commun., 2000, 1915-1916. DOI: 10.1039/b006055k

Coordination Compounds

$\square \mathrm{Na}_{2}\left[\mathrm{PtCl}_{2}(\mathrm{ox})_{2}\right]$ sodium dichloridobis(oxalato)platinate(IV)
\square Overall complex charge $=-2$
\square Ligand charge $=\mathrm{Cl}^{-1}$ and oxalato $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
\square Metal charge + ligand charge $=$ overall complex charge
$-\mathrm{Pt}+(-6)=-2$

- $\mathrm{Pt}=+4$
$\square\left[\mathrm{CoBr}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$ pentaamminebromidocobalt(III) sulfate
\square Overall complex charge $=-2$
\square Ligand charge $=\mathrm{Br}^{-1}$ and NH_{3}
\square Metal charge + ligand charge $=$ overall complex charge
- Co $+(-1)=+2$
- $\mathrm{Co}=+3$

Overview

\square The Nature of Gases
\square The Gas Laws
\square Molecular Motion
\square Real Gases

The Nature of Gases

\square Properties of Gases
\square Pressure
\square Measuring Pressure

- Manometers
\square Barometers
\square Units of Pressure

The States of Matter

Differences between Gases and Condensed (Liquid, Solid) Phases

Distance between particles Large $-30 \times 10^{-10} \mathrm{~m}$ separation

Interatomic (intermolecular) forces play very small role in behavior

Liquids, Solids

Molar Volume -
Small $10-100 \mathrm{~cm}^{3} / \mathrm{mol}$

Distance between particles -
Slightly larger than bond lengths -
$3-5 \times 10^{-10} \mathrm{~m}$ separation

Behavior strongly influenced by long-range and short range forces

The Gaseous State

- Macroscopic Properties (mass density)
- Temperature, Pressure and Volume
- Ideal Gas Law
- Microscopic Properties (number density)
- Molecular Motions (Kinetic Theory)
- Collisions between molecules
- Real Gases
- Intermolecular forces
- van der Waals equation

The Chemical Composition of Air

Constituent	Formula	Fraction by Volume
Nitrogen	N_{2}	0.7808
Oxygen	O_{2}	0.2095
Argon	Ar	0.00934
Carbon Dioxide	CO_{2}	0.00038

Neon, Helium, Methane, Krypton, Hydrogen, Dinitrogen monoxide, Xenon, Water, Ozone, Carbone Monoxide, Nitrogen Dioxide, Sulfur Dioxide

Pressure of Gases

Pressure - force exerted by gas on its surroundings
What are 'Surroundings'?
Everything except the gas
Surroundings in this room - walls, floor, ceiling, people, chairs, etc...

Pressure $=\frac{\text { Force }}{\text { Area }}$

Pressure of Gases

Pressure - force exerted by gas on its surroundings
What are 'Surroundings'?
Everything except the gas
Surroundings in this room - walls, floor, ceiling, people, chairs, etc...

Evangelista Torricelli (1608-1647)
Glass tube filled with mercury (Hg)
Turned upside down into dish of Hg
Mercury fell, leaving a vacuum
Height of $\mathrm{Hg} \sim 760 \mathrm{~mm}$ (varies by day and location)

Measuring Pressure - Barometer

Balance between liquid Hg tube and a $2^{\text {nd }}$ tube of the same area and the height of Earth's atmosphere.

Height of the Hg varies as it balances the atmospheric pressure

How the Barometer works: Physical definition of Pressure

$$
\begin{aligned}
& P=\frac{F}{A} \quad F=m g \\
& P=\frac{F}{A}=\frac{m g}{A} \\
& \text { Force }=\text { mass } \times \text { acceleration } \\
& V=A h \quad A=\frac{V}{h} \\
& V=\frac{m g h}{V}
\end{aligned}
$$

How the Barometer works: Physical definition of Pressure

$$
\begin{aligned}
& P=\frac{m g h}{V} \\
& \text { Density }==\frac{\text { mass }}{\text { Volume }} \quad \rho=\frac{m}{V} \\
& P=\rho g h
\end{aligned}
$$

How the Barometer works: Physical definition of Pressure

$$
P=\rho g h
$$

$$
\begin{aligned}
& \rho(\mathrm{Hg})=13.5951 \mathrm{~g} / \mathrm{cm}^{3} \\
& \mathrm{~g}=9.80665 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~h}=760 \mathrm{~mm}
\end{aligned}
$$

Calculate the atmospheric pressure in Pascals ($1 \mathrm{~Pa}=1 \mathrm{~kg} / \mathrm{ms}^{2}$):

The Manometer

16

Manometer - U-shaped tube connected to experimental system

For an open-tube manometer:
Open side higher than closed side:

$$
P_{s y s}=P_{a t m}+P_{h}
$$

Open side lower than closed side:

$$
\begin{aligned}
& P_{\mathrm{sys}}=P_{\mathrm{atm}}-P_{h} \\
& \qquad \mathbf{P}_{\mathbf{h}}=\boldsymbol{\rho g h}
\end{aligned}
$$

Units of Pressure

T A B L E 9.2 Units of Pressure

Unit	Definition or Relationship
pascal (Pa)	$1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
bar	$1 \times 10^{5} \mathrm{~Pa}$
atmosphere (atm)	$101,325 \mathrm{~Pa}$
torr	$1 / 760 \mathrm{~atm}$
$760 \mathrm{~mm} \mathrm{Hg}\left(\right.$ at $\left.0^{\circ} \mathrm{C}\right)$	1 atm
14.6960 pounds per square inch $\left(\right.$ psi, $\left.\mathrm{lb} \mathrm{in}^{-2}\right)$	1 atm

© 2007 Thomson Higher Education
$1 \mathrm{~atm}=1.01325 \mathrm{bar}=760 \mathrm{~mm} \mathrm{Hg}=101,325 \mathrm{~Pa}$
Standard Pressure (1 bar)
$1 \mathrm{~mm} \mathrm{Hg}=1$ Torr

The Gas Laws

\square Avogadro's Law
\square Boyle's Law
\square Charles' Law
\square Ideal Gas Law
\square Gas Density
\square Stoichiometry with Gases
\square Mixtures of Gases

Avogadro's Law
 $V \propto n$

Boyle's Law

$$
\begin{aligned}
& P \propto \frac{1}{V} \\
& +\Rightarrow \rightarrow{ }^{-} \\
& P_{1} V_{1}=P_{2} V_{2}
\end{aligned}
$$

Charles' Law

Charles' Law and Temperature

$$
V=V_{0}\left(1+\frac{T}{273.15^{\circ} \mathbf{C}}\right)
$$

T (units of ${ }^{\circ} \mathrm{C}$)

$$
{ }^{\circ} \mathrm{F}=\frac{9}{5}^{\circ} \mathrm{C}+32
$$

$\mathrm{T}=-273.15 \mathrm{C}$?
Must be the lowest possible T!
$\mathrm{T}=0 \mathrm{~K} \quad$ Absolute Zero
$T(K)=T\left({ }^{\circ} \mathrm{C}\right)+273.15$

Gay-Lussac's and Avogadro's Laws

Boyle's Law	$P V=$ Constant	Constant T,n
Pressure and Volume	$\frac{V}{T}=$ Constant	Constant P,n
Charles's Law	$\frac{n}{V}=$ Constant	Constant T,P
Avogadro's Law moles and Volume	$\frac{P}{T}=$ Constant	Constant V,n
Gay-Lussac's Law Pressure and Temp		

Gas Law Practice

Two 100 mL round bottom flasks are connected by a stopcock. With the stopcock closed, nitrogen gas at 2.00 atm is contained in one of the flasks. Calculate the pressure of the gas when the stopcock is opened.
2. Oxygen is contained in a flexible balloon. At room temperature ($23^{\circ} \mathrm{C}$), the balloon is 0.50 L in volume. Calculate the size of the balloon on a hot day (38 ${ }^{\circ} \mathrm{C}$).
3. Methane gas is sealed in a 250 mL E-flask at room temperature. It exerts 1.15 atm of pressure at this temperature. What is the pressure of the methane at $10^{\circ} \mathrm{C}$?

Deriving the Ideal Gas Law

$$
V \propto n
$$

Avogadro's Law

$$
\left.\underset{V \propto \frac{1}{P}}{V \text { orles law }}\right\}
$$

$$
V \propto T
$$

Charles's Law

Ideal Gas Law

$$
V \propto \frac{n T}{P} \longrightarrow V=R \frac{n T}{P}
$$

Therefore:

$$
\begin{gathered}
R=\text { Universal Gas Constant } \\
R=0.082058 \mathrm{Latm} / \mathrm{mol} \mathrm{~K}
\end{gathered}
$$

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

More about the Ideal Gas Law:

Ideal gas law is a State Equation - which relates State Functions

State Function - property of a system determined by the current state of the system

Pressure Volume Temperature Altitude Energy

Path Function - properties determined by the path taken work heat miles hiked

Ideal Gas Law: Approximations

Ideal Gas Law Practice

\square What volume will 2.00 g of hydrogen gas take up at STP?
(STP $=$ standard temperature and pressure, 1 atm and $0^{\circ} \mathrm{C}$)

Ideal Gases: Molar Volume

Gases have high Molar Volumes (V_{m}):

$$
V_{m}=\frac{V}{n}=\frac{n R T / P}{n}=\frac{R T}{p}
$$

STP (standard T and P) \rightarrow

$$
\mathrm{V}_{\mathrm{m}}=22.41 \mathrm{~L} / \mathrm{mol}
$$

SATP (standard ambient T and P) \rightarrow

$$
\mathrm{V}_{\mathrm{m}}=24.79 \mathrm{~L} / \mathrm{mol}
$$

	Ideal gas
Argon	22.41
Carbon dioxide	22.09
Nitrogen	22.26
Oxygen	22.40
Hydrogen	22.40

Ideal Gases: Gas Density

Molar Concentration - \# moles per unit Volume
can be applied to any fluid phase

$$
\frac{n}{V}=\frac{P V / R T}{V}=\frac{P}{R T}
$$

Density - \# grams per unit Volume

$$
\rho=\frac{m}{V}=\frac{n \mathrm{M}}{V}=\frac{(P V / R T) \mathrm{M}}{V}=\frac{\mathrm{M} P}{R T}
$$

Gas is compressed \rightarrow both molar concentration \& density increases

Chemical Calculations for Gases: Ideal Gas Law \& Stoichiometry

Practice Problem:

$$
\mathrm{Cu}_{(\mathrm{s})}+4 \mathrm{H}_{(\mathrm{aq})}^{+}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$6.80 \mathrm{~g} \mathrm{Cu}_{(s)}$ is consumed.
$\mathrm{NO}_{2(\mathrm{~g})}$ is collected at $\mathrm{P}=0.970 \mathrm{~atm}, \mathrm{~T}=45^{\circ} \mathrm{C}$.
Calculate the volume of $\mathrm{NO}_{2(\mathrm{~g})}$ produced:

Solution:

$$
\mathrm{V}\left(\mathrm{NO}_{2(\mathrm{~g})}\right)=5.76 \mathrm{~L}
$$

Mixtures of Gases

Partial Pressure of a single gas component: pressure it would exert if it were the only gas component present

John Dalton:
$P_{\text {tot }}=$ sum of partial pressures of component gases

Dalton's Law

$$
P_{\text {tot }}=P_{A}+P_{B}+P_{C}+\cdots \ldots .
$$

$P_{t o t}=P_{N_{2}}+P_{O_{2}}$

Mixtures of Gases

$$
\begin{gathered}
P_{A}=n_{A} \frac{R T}{V} \quad P_{t o t}=P_{A}+P_{B}+P_{C}+\cdots \\
P_{\text {tot }}=P_{A}+P_{B}+P_{C}+\cdots=\left(n_{A}+n_{B}+n_{C}+\cdots\right) \frac{R T}{V}=n_{\text {tot }} \frac{R T}{V} \\
P_{A}=n_{A} \frac{R T}{V} / P_{t o t}=n_{t o t} \frac{R T}{V} \longrightarrow \frac{P_{A}}{P_{t o t}}=\frac{n_{A}}{n_{\text {tot }}} \quad P_{A}=\frac{n_{A}}{n_{t o t}} P_{t o t} \\
P_{A}=X_{A} P_{t o t} \quad X_{A}=\frac{n_{A}}{n_{t o t}} \quad X_{A}=\frac{\text { Mole fraction }}{\text { of gas A }}
\end{gathered}
$$

Mixtures of Gases

The atmospheric pressure at the surface of Venus is 90.8 atm .

The Venusian atmosphere is $96.5 \% \mathrm{CO}_{2}$ and $3.5 \% \mathrm{~N}_{2}$ by Volume.

Compute the mole fraction and partial pressure of N_{2} in the Venusian atmosphere.

$$
P_{A}=X_{A} P_{\text {tot }} \quad X_{A}=\frac{n_{A}}{n_{\text {tot }}} \quad X_{\mathrm{A}}=\frac{\text { Mole fraction }}{\text { of gas } \mathrm{A}}
$$

Molecular Motion

\square Diffusion and Effusion
\square Kinetic Model of Gases
\square Maxwell Distribution of Speeds

Diffusion and Effusion of Gases

Diffusion - gradual dispersal of 1 substance through another
Effusion - escape of a gas through a small hole into a vacuum
Size of the hole is small vs the distance between particles

- Gas molecules collide w/ walls
- One side of wall has higher Pressure
- When a molecule "collides" with the hole, it escapes
- More chance of molecule colliding with hole on higher pressure side
- Overall - molecules escape through the hole

Graham's Law of Effusion

Thomas Graham -
Constant T: rate inversely proportional to square root of molar mass

$$
\text { Rate }_{e f f} \propto \sqrt{\frac{1}{\mathrm{M}}}
$$

Which suggests that:
When you compare effusion of different gases: $\quad v_{\text {ave }} \propto \sqrt{\frac{1}{M}}$

$$
\frac{\operatorname{Rate}_{e f f}(A)}{\operatorname{Rate}_{e f f}(B)}=\sqrt{\frac{\mathrm{M}_{B}}{\mathrm{M}_{A}}}
$$

$$
\frac{\operatorname{Time}_{\text {eff }}(A)}{\operatorname{Time}_{\text {eff }}(B)}=\sqrt{\frac{M_{A}}{M_{B}}}
$$

Temperature and Effusion

Rate of effusion increases with the square root of the Temperature:

$$
\frac{\operatorname{Rate}_{e f f}\left(T_{1}\right)}{\operatorname{Rate}_{e f f}\left(T_{2}\right)}=\sqrt{\frac{T_{1}}{T_{2}}}
$$

Combined with:

The average speed of a gas is: Proportional to

$$
\sqrt{T}
$$

Inversely proportional to

Kinetic Theory of Gases

Ideal Gas Law
$P V=n R T$

Found experimentally through observation
Summarizes the macroscopic properties of a gas

What about the microscopic behavior?
The behavior of individual gas atoms and molecules.
Kinetic Theory of Gases
Developed in $19^{\text {th }}$ Century by:
Rudolf Clausius, James Clerk Maxwell and Ludwig Boltzmann
Uses a model of a gas and basic laws of physics to explain the measured properties of a gas

Microscopic understanding of Boyle's Law
Microscopic mechanical definition of Temperature

Kinetic Theory of Gases: Assumptions

Kinetic Theory

Model based on gas particle motion
$K E=$ Energy of translational motion

Assumptions about the gas molecules:

1. In continuous random motion
2. Infinitesimally small points
3. Move in straight lines until they collide
4. Do not influence each other except during a collision

Kinetic Theory:

Pressure arises when gas molecules collide with a surface

Can calculate the force of each impact and the rate of collisions

Kinetic Theory:

$1^{\text {st }}$ step: Calculate change of momentum of one collision
Elastic collision with wall: $\mathrm{V}_{\text {after }}=-\mathrm{v}_{\text {before }}$

$$
\Delta p_{x}=m\left(-v_{x}\right)-m v_{x}=-2 m v_{x}
$$

Next step: how many collisions in time Δt ?

Kinetic Theory:

\# Collisions in time Δt :

In 1D:
All molecules within a distance
$d=v_{x} \Delta t$
ln 3D:
All molecules within a volume

$$
V=A v_{\mathbf{x}} \Delta t
$$

Number of molecules in $V=A v_{\mathbf{x}} \Delta t$ is:

$$
N_{A v_{\Delta} \Delta t}=\frac{A v_{x} \Delta t}{V} \times N
$$

Kinetic Theory:

Half the molecules are moving towards the wall, so the Number of collisions is:

$$
N_{\text {coll }}=\frac{1}{2} \frac{N A v_{x} \Delta t}{V}
$$

Total Change in Momentum - $\quad \Delta p_{\text {tot }}=\frac{1}{2} \frac{N A v_{x} \Delta t}{V} \times 2 m v_{x}$

$$
\Delta p_{t o t}=\frac{N m A v_{x}^{2} \Delta t}{V}
$$

$$
F=\frac{\Delta p_{t o t}}{\Delta t}=\frac{N m A v_{x}^{2}}{V}
$$

Kinetic Theory:

Force $=\Delta \mathrm{p} / \Delta t$

$$
\begin{gathered}
F=\frac{N m A v_{x}^{2}}{V} \\
P=\frac{F}{A}=\frac{N m A v_{x}^{2}}{V A} \quad P=\frac{N m v_{x}^{2}}{V}
\end{gathered}
$$

Keep in mind, not all molecules have the same speed:

Use average speed
Now we relate $\left\langle v_{\mathbf{x}}\right\rangle$ to the root-mean-square speed

$$
\begin{aligned}
& P=\frac{N m\left\langle v_{x}^{2}\right\rangle}{V} \\
& v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}
\end{aligned}
$$

Kinetic Theory:

Speed vs. Velocity - Velocity is a vector which indicates direction of motion as well as rate of motion

$$
v_{r m s}^{2}=\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle
$$

Random Motion means that

$$
\left\langle v_{x}^{2}\right\rangle=\left\langle v_{y}^{2}\right\rangle=\left\langle v_{z}^{2}\right\rangle
$$

$$
v_{r m s}^{2}=\left\langle v^{2}\right\rangle=3\left\langle v_{x}^{2}\right\rangle \quad\left\langle v_{x}^{2}\right\rangle=\frac{1}{3} v_{r m s}^{2}
$$

Kinetic Theory:

$$
P=\frac{N m\left\langle v_{x}^{2}\right\rangle}{V} \quad\left\langle v_{x}{ }^{2}\right\rangle=\frac{1}{3} v_{r m s}^{2} \longrightarrow P=\frac{N m v_{r m s}^{2}}{3 V}
$$

$$
N=n N_{A} \quad \longrightarrow P=\frac{n N_{A} m v_{r m s}^{2}}{3 V}
$$

$$
\mathrm{M}=m N_{A} \quad \longrightarrow \quad P=\frac{n \mathrm{M} v_{r m s}^{2}}{3 V}
$$

Boyle's Law as a function of mean-square speed

$$
P V=\frac{1}{3} n \mathrm{M} v_{r m s}^{2}
$$

Kinetic Theory:

Boyle's Law as a function of mean-square speed

$$
P V=\frac{1}{3} n \mathrm{M} v_{r m s}^{2}
$$

$$
\begin{array}{ccc}
P V=n R T & \longrightarrow & n R T=\frac{1}{3} n \mathrm{M} v_{r m s}^{2} \\
3 R T=\mathrm{M} v_{r m s}^{2} \longrightarrow & v_{r m s}^{2}=\frac{3 R T}{\mathrm{M}} \\
v_{r m s}=\sqrt{\frac{3 R T}{\mathrm{M}}} & T=\frac{\mathrm{M} v_{r m s}^{2}}{3 R}
\end{array}
$$

Kinetic Theory:

What is the typical speed of a gas molecule?

$$
v_{r m s}=\sqrt{\frac{3 R T}{\mathrm{M}}}
$$

Compare $\mathrm{U}_{\mathrm{rms}}$ for
a) He atom $(\mathrm{M}=4.0026 \mathrm{~g} / \mathrm{mol})$ at 298 K
b) Xe atom ($\mathrm{M}=131.293 \mathrm{~g} / \mathrm{mol}$) at 298 K
c) He atom $(\mathrm{M}=4.0026 \mathrm{~g} / \mathrm{mol})$ at 500 K

$$
\begin{array}{ll}
1360 \mathrm{~m} / \mathrm{s} \\
238 \mathrm{~m} / \mathrm{s}
\end{array} \quad 1760 \mathrm{~m} / \mathrm{s}
$$

Maxwell-Boltzmann Distribution

Different molecules of gas have a distribution of speeds
James Clerk Maxwell: distribution of speeds based on molar mass (M) and temperature (T)

$$
\Delta N=N f(v) \Delta v
$$

DN = \# gas molecules with speeds in the range
$(v)-(v+\Delta v)$

$$
f(v)=4 \pi\left(\frac{\mathrm{M}}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-\mathrm{M} v^{2} / 2 R T}
$$

Maxwell-Boltzmann Distribution

Maxwell-Boltzmann Distribution

Real Gases

\square Deviations from Ideal Behavior
\square Van der Waals Equation
\square Joule Thomson Effect

Real Gases

(c)

$$
\text { Ideal Gas Law: } \quad P V=n R T
$$

What is an 'Ideal Gas'?

- Low P, High T
- Gas particles have $V=0$
- No interactions between gas particles
- Collisions with walls are perfectly elastic (KE of gas particles is conserved)

Real Gases

Both Quantitative and Qualitative observations show that the ideal gas model isn't perfect:

Quantitative Observations:

- When gases are cooled or compressed, they condense into liquid form
- Gas molecules must interact with each other - cohesion shows attractive forces
- Liquids are difficult to compress - repulsive forces between molecules!

Real Gases

Qualitative Observations:
Compare the behavior of real gases to an ideal gas

Measure the compression factor Z:

$$
Z=\frac{P V}{n R T}
$$

For an Ideal Gas:

$$
Z=1
$$

Van der Waals Equation of State

$$
P V=n R T
$$

Ideal Gas Law Assumptions

- Gas particles have zero Volume
- Zero interactions between gas particles

What affect do attractive and repulsive forces between molecules have on the relationships between $\mathrm{P}, \mathrm{V}, \mathrm{T}$?

Van der Waals Equation of State

Effect of repulsive forces:
Molecules cannot occupy the same space at the same time
Molecules exclude other molecules from the volumes they occupy

$$
\begin{aligned}
& \text { Volume } \rightarrow V-n b \\
& (\underline{\mathbf{b}}=\text { excluded volume per mole) }
\end{aligned}
$$

Result of repulsive forces:

Molecules are pushed away from each other, toward walls

Increased collisions with walls

Van der Waals Equation of State

$$
P(V-m b)=n P r
$$

Effect of attractive forces:
Molecules attracted to each other form pairs and clumps
Tendency to cluster reduces the effective \# of gas 'molecules'
Rate of collisions with the wall is reduced, therefore P is reduced

$$
P=\frac{n R T}{V-n b}-a \frac{n^{2}}{V^{2}}
$$

Reduction in pressure:
Proportional to the square of N / V (pairs of molecules)
a depends on the strength of the attractive forces

Van der Walls Equation of State

61

$$
P=\frac{n R T}{V-n b}-a \frac{n^{2}}{V^{2}} \longleftrightarrow\left(P+a \frac{n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

TA BL E 9.3 van der Walls Constants of Several Gases

Name	Formula	$\boldsymbol{a}\left(\mathbf{a t m ~ L}{ }^{2} \mathbf{~ m o l}^{-\mathbf{2}}\right)$	$\boldsymbol{b}\left(\mathrm{L} \mathrm{mol}^{-\mathbf{1}}\right)$
Ammonia	NH_{3}	4.170	0.03707
Argon	Ar	1.345	0.03219
Carbon dioxide	CO_{2}	3.592	0.04267
Hydrogen	H_{2}	0.2444	0.02661
Hydrogen chloride	HCl	3.667	0.04081
Methane	CH_{4}	2.253	0.04278
Nitrogen	N_{2}	1.390	0.03913
Nitrogen dioxide	NO_{2}	5.284	0.04424
Oxygen	O_{2}	1.360	0.03183
Sulfur dioxide	SO_{2}	6.714	0.05636
Water	$\mathrm{H}_{2} \mathrm{O}$	5.464	0.03049

$Z=\frac{P V}{n R T}=\frac{V}{V-n b}-\frac{a}{R T} \frac{n}{V}$

$Z>1$ Repulsive forces dominate
 $Z<1 \quad$ Attractive forces dominate

Real vs Ideal Gas

A sample of 8.00 kg of gaseous nitrogen fills a $100 .-\mathrm{L}$ flask at $300 .{ }^{\circ} \mathrm{C}$.
Calculate the pressure of the gas as real gas, and as an ideal gas.
Do attractive or repulsive forces dominate?

$$
P=\frac{n R T}{V-n b}-a \frac{n^{2}}{V^{2}}
$$

T A B L E 9.3 van der Waals Constants of Several Gases

Name	Formula	$\boldsymbol{a}\left(\mathbf{a t m ~}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{2}}\right)$	$\boldsymbol{b}\left(\mathrm{L} \mathrm{mol}^{-\mathbf{1}}\right)$
Ammonia	NH_{3}	4.170	0.03707
Argon	Ar	1.345	0.03219
Carbon dioxide	CO_{2}	3.592	0.04267
Hydrogen	H_{2}	0.2444	0.02661
Hydrogen chloride	HCl	3.667	0.04081
Methane	CH_{4}	2.253	0.04278
Nitrogen	N_{2}	1.390	0.03913

Joule Thomson Effect

63

Gases can be liquified by reducing T
Lower T corresponds to lower $\mathrm{v}_{\mathrm{rms}}$
.... Slower molecules means lower temperature

Remember, we now consider interactions between molecules

As particles separate, they are moving against pull of PE

Particles moving "uphill" will slow down

Joule - Thomson Effect - Real gases cool as they expand

