

August 6, 2011

Chemistry in the News

Ref: Chem. Commun., 2000, 1915–1916. DOI: 10.1039/b006055k

Coordination Compounds

- Na₂[PtCl₂(ox)₂] sodium dichloridobis(oxalato)platinate(IV)
 Overall complex charge = -2
 - **Ligand charge** = CI^{-1} and oxalato $C_2O_4^{2-1}$
 - Metal charge + ligand charge = overall complex charge

- [CoBr(NH₃)₅]SO₄ pentaamminebromidocobalt(III) sulfate
 Overall complex charge = -2
 - **Ligand charge** = Br^{-1} and NH_3
 - Metal charge + ligand charge = overall complex charge

• Co = +3

Overview

The Nature of Gases
The Gas Laws
Molecular Motion
Real Gases

The Nature of Gases

- Properties of Gases
- Pressure
- Measuring Pressure
 - Manometers
 - Barometers
- Units of Pressure

The States of Matter

Differences between Gases and Condensed (Liquid, Solid) Phases

Gases	Liquids, Solids
Molar Volume - Large - 24,000 cm ³ /mol	Molar Volume — Small 10-100 cm ³ /mol
Distance between particles Large - 30 x 10 ⁻¹⁰ m separation	Distance between particles - Slightly larger than bond lengths - 3-5 x 10 ⁻¹⁰ m separation
Interatomic (intermolecular) forces play very small role in behavior	Behavior strongly influenced by long-range and short range forces

The Gaseous State

- Macroscopic Properties (mass density)
 - Temperature, Pressure and Volume
 - Ideal Gas Law
- Microscopic Properties (number density)
 - Molecular Motions (Kinetic Theory)
 - Collisions between molecules
- Real Gases
 - Intermolecular forces
 - van der Waals equation

The Chemical Composition of Air

Constituent	Formula	Fraction by Volume
Nitrogen	N ₂	0.7808
Oxygen	O ₂	0.2095
Argon	Ar	0.00934
Carbon Dioxide	CO ₂	0.00038
Other Constituents:		0.9995

Neon, Helium, Methane, Krypton, Hydrogen, Dinitrogen monoxide, Xenon, Water, Ozone, Carbone Monoxide, Nitrogen Dioxide, Sulfur Dioxide

Pressure of Gases

10

Pressure – force exerted by gas on its surroundings

What are 'Surroundings'?

Everything except the gas

Surroundings in this room – walls, floor, ceiling, people, chairs, etc...

(a)

(b)

Pressure of Gases

Pressure – force exerted by gas on its surroundings

What are 'Surroundings'?

Everything except the gas

Surroundings in this room – walls, floor, ceiling, people, chairs, etc...

(a)

Evangelista Torricelli (1608 – 1647) Glass tube filled with mercury (Hg) Turned upside down into dish of Hg Mercury fell, leaving a vacuum Height of Hg \sim 760 mm (varies by day and location)

Measuring Pressure - Barometer

12

Balance between liquid Hg tube and a 2^{nd} tube of the same area and the height of Earth's atmosphere.

Height of the Hg varies as it balances the atmospheric pressure

How the Barometer works: Physical definition of Pressure

$$P = \frac{F}{A} \qquad F = mg$$
$$P = \frac{F}{A} = \frac{mg}{A}$$

Volume = Area \times height

$$V = Ah \qquad A = \frac{V}{h}$$

 $Force = mass \times acceleration$

How the Barometer works: Physical definition of Pressure

 $P = \rho g h$

How the Barometer works: Physical definition of Pressure

	$ ho$ (Hg) = 13.5951 g/cm 3
$P = \rho g h$	$g = 9.80665 \text{ m/s}^2$
	h = 760 mm

Calculate the atmospheric pressure in Pascals (1 Pa = 1 kg/ms^2):

The Manometer

16

<u>Manometer</u> – U-shaped tube connected to experimental system

For an <u>open-tube</u> manometer:

Open side higher than closed side:

 $P_{sys} = P_{atm} + P_{h}$

Open side lower than closed side:

$$\label{eq:psys} \begin{split} \mathsf{P}_{\mathsf{sys}} &= \mathsf{P}_{\mathsf{atm}} - \mathsf{P}_{\mathsf{h}} \\ & P_{\mathsf{h}} = \rho g h \end{split}$$

Units of Pressure

17

TABLE 9.2 Units of Pressure

Unit	Definition or Relationship
pascal (Pa)	1 kg m ⁻¹ s ⁻²
bar	$1 imes 10^5$ Pa
atmosphere (atm)	101,325 Pa
torr	1/760 atm
760 mm Hg (at 0°C)	1 atm
14.6960 pounds per square inch (psi, lb in ^{-2})	1 atm

© 2007 Thomson Higher Education

1 atm = 1.01325 bar = 760 mm Hg = 101,325 Pa Standard Pressure (1 bar) 1 mm Hg = 1 Torr

The Gas Laws

- Avogadro's Law
- Boyle's Law
- Charles' Law
- Ideal Gas Law
- □ Gas Density
- Stoichiometry with Gases
- Mixtures of Gases

Avogadro's Law

 $V \propto n$

gas moles, n

Volume, V

Charles' Law

Charles' Law and Temperature

Gay-Lussac's and Avogadro's Laws

Boyle's Law Pressure and Volume	PV = Constant	Constant T,n
Charles's Law Temp and Volume	$\frac{V}{T}$ = Constant	Constant P,n
Avogadro's Law moles and Volume	$\frac{n}{V}$ = Constant	Constant T,P
Gay-Lussac's Law Pressure and Temp	$\frac{P}{T}$ = Constant	Constant V,n

Gas Law Practice

- Two 100 mL round bottom flasks are connected by a stopcock. With the stopcock closed, nitrogen gas at 2.00 atm is contained in one of the flasks. Calculate the pressure of the gas when the stopcock is opened.
- Oxygen is contained in a flexible balloon. At room temperature (23 °C), the balloon is 0.50 L in volume. Calculate the size of the balloon on a hot day (38 °C).
- 3. Methane gas is sealed in a 250 mL E-flask at room temperature. It exerts 1.15 atm of pressure at this temperature. What is the pressure of the methane at 110 °C?

Deriving the Ideal Gas Law

Ideal Gas Law

$$V \propto \frac{nT}{P} \longrightarrow V = R \frac{nT}{P}$$

Therefore:

R = Universal Gas Constant

PV = nRT

R = 0.082058 L atm/mol K

R = 8.314472 J/mol K

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

More about the Ideal Gas Law:

27

Ideal gas law is a <u>State Equation</u> – which relates State Functions

<u>State Function</u> – property of a system determined by the current state of the system

Pressure Volume Temperature Altitude Energy

<u>**Path Function</u>** – properties determined by the path taken work heat miles hiked</u>

Ideal Gas Law: Approximations

Ideal Gas Law Practice

29

- What volume will 2.00 g of hydrogen gas take up at STP?
 - (STP = standard temperature and pressure, 1 atm and 0 $^{\circ}$ C)

Ideal Gases: Molar Volume

Gases have high Molar Volumes (V_m):

$$V_m = \frac{V}{n} = \frac{nRT/P}{n} = \frac{RT}{p}$$

STP (standard T and P) \rightarrow

$$V_{m} = 22.41 \text{ L/mol}$$

SATP (standard ambient T and P) \rightarrow

$$V_{m} = 24.79 \text{ L/mol}$$

ldeal gas	22.41
Argon	22.09
Carbon dioxide	22.26
Nitrogen	22.40
Oxygen	22.40
Hydrogen	22.43

Ideal Gases: Gas Density

31

Molar Concentration – # moles per unit Volume

can be applied to any fluid phase

<i>n</i>	PV/RT	<i>P</i>
\overline{V}^{-}	\overline{V}	\overline{RT}

Density – # grams per unit Volume

$$\rho = \frac{m}{V} = \frac{n\mathsf{M}}{V} = \frac{(PV/RT)\mathsf{M}}{V} = \frac{\mathsf{M}P}{RT}$$

Gas is compressed \rightarrow both molar concentration & density increases

Chemical Calculations for Gases: Ideal Gas Law & Stoichiometry

Practice Problem:

$$Cu_{(s)} + 4H^{+}_{(aq)} + 2NO_{3}^{-}_{(aq)} \rightarrow 2NO_{2(g)} + Cu^{2+}_{(aq)} + 2H_{2}O_{(l)}$$

6.80 g $Cu_{(s)}$ is consumed.

 $NO_{2(g)}$ is collected at P = 0.970 atm, T = 45 °C.

Calculate the volume of $NO_{2(g)}$ produced:

Solution:

Mixtures of Gases

33

<u>**Partial Pressure</u>** of a single gas component: pressure it would exert if it were the only gas component present</u>

$$P_{tot} = P_{N_2} + P_{O_2}$$

John Dalton:

 $P_{tot} =$ sum of partial pressures of component gases

Dalton's Law

$$P_{tot} = P_A + P_B + P_C + \cdots$$

Mixtures of Gases

34

Г

$$P_A = n_A \frac{RT}{V} \qquad \qquad P_{tot} = P_A + P_B + P_C + \cdots$$

$$P_{tot} = P_A + P_B + P_C + \dots = (n_A + n_B + n_C + \dots)\frac{RT}{V} = n_{tot}\frac{RT}{V}$$

$$P_{A} = n_{A} \frac{RT}{V} / P_{tot} = n_{tot} \frac{RT}{V} \longrightarrow \frac{P_{A}}{P_{tot}} = \frac{n_{A}}{n_{tot}} P_{A} = \frac{n_{A}}{n_{tot}} P_{A}$$

$$P_A = X_A P_{tot}$$
 $X_A = \frac{n_A}{n_{tot}}$ $X_A = \frac{Mole \ fraction}{of \ gas \ A}$

Mixtures of Gases

35

The atmospheric pressure at the surface of Venus is 90.8 atm.

The Venusian atmosphere is 96.5 % CO₂ and 3.5 % N₂ by Volume.

Compute the mole fraction and partial pressure of N_2 in the Venusian atmosphere.

$$P_A = X_A P_{tot}$$
 $X_A = \frac{n_A}{n_{tot}}$ $X_A = \frac{Mole \ fraction}{of \ gas \ A}$

Molecular Motion

- Diffusion and Effusion
- □ Kinetic Model of Gases
- Maxwell Distribution of Speeds

Diffusion and Effusion of Gases

37

<u>Diffusion</u> – gradual dispersal of 1 substance through another <u>Effusion</u> – escape of a gas through a small hole into a vacuum

Size of the hole is small vs the distance between particles

- Gas molecules collide w/ walls
- One side of wall has higher Pressure
- When a molecule "collides" with the hole, it escapes
- More chance of molecule colliding with hole on higher pressure side
- Overall molecules escape through the hole

Graham's Law of Effusion

Temperature and Effusion

39

Rate of effusion increases with the square root of the Temperature:

$$\frac{Rate_{eff}(T_1)}{Rate_{eff}(T_2)} = \sqrt{\frac{T_1}{T_2}}$$

Combined with:

$$v_{ave} \propto Rate_{eff}$$

The average speed of a gas is:

Proportional to

Inversely proportional to

Kinetic Theory of Gases

40

Ideal Gas LawFound experimentally through observationPV = nRTSummarizes the macroscopic properties of a gasWhat about the microscopic behavior?

The behavior of individual gas atoms and molecules.

Kinetic Theory of Gases

```
Developed in 19<sup>th</sup> Century by:
```

Rudolf Clausius, James Clerk Maxwell and Ludwig Boltzmann

Uses a model of a gas and basic laws of physics to explain the measured properties of a gas

Microscopic understanding of Boyle's Law

Microscopic mechanical definition of Temperature

Kinetic Theory of Gases: Assumptions

Kinetic Theory

Model based on gas particle motion

KE = Energy of translational motion

Assumptions about the gas molecules:

- 1. In continuous random motion
- 2. Infinitesimally small points
- 3. Move in straight lines until they collide
- 4. Do not influence each other except during a collision

42

Pressure arises when gas molecules collide with a surface

Can calculate the force of each impact and the rate of collisions

43

1st step: Calculate change of momentum of one collision

Next step: how many collisions in time Δt ?

44

 $\frac{\# \text{ Collisions in time } \Delta t:}{\ln 1D:}$ All molecules within a distance $d = v_x \Delta t$ $\frac{\ln 3D:}{\text{All molecules within a volume}}$ $V = Av_x \Delta t$

 $N_{Av_x\Delta t} = \frac{Av_x\Delta t}{V} \times N$

Number of molecules in $V = Av_x \Delta t$ is:

45

Half the molecules are moving towards the wall, so the Number of collisions is:

$$N_{coll} = \frac{1}{2} \frac{NAv_x \Delta t}{V}$$

Total Change in Momentum –

$$\Delta p_{tot} = \frac{1}{2} \frac{NAv_x \Delta t}{V} \times 2mv_x$$

$$\Delta p_{tot} = \frac{NmAv_x^2 \Delta t}{V}$$

$$F = \frac{\Delta p_{tot}}{\Delta t} = \frac{NmAv_x^2}{V}$$

Force = $\Delta p / \Delta t$

46

Force =
$$\Delta p / \Delta t$$
 $F = \frac{NmAv_x^2}{V}$

Pressure = F/A
$$P = \frac{F}{A} = \frac{NmAv_x^2}{VA}$$
 $P = \frac{Nmv_x^2}{V}$

Keep in mind, not all molecules have the same speed:

Use average speed Now we relate <v_x> to the <u>root-mean-square</u> speed

$$P = \frac{Nm\langle v_x^2 \rangle}{V}$$
$$v_{rms} = \sqrt{\langle v^2 \rangle}$$

47

Speed vs. Velocity - Velocity is a vector which indicates direction of motion as well as rate of motion

$$v^{2} = v_{x}^{2} + v_{y}^{2} + v_{z}^{2}$$
$$v_{rms}^{2} = \left\langle v_{x}^{2} \right\rangle = \left\langle v_{x}^{2} \right\rangle + \left\langle v_{y}^{2} \right\rangle + \left\langle v_{z}^{2} \right\rangle$$

2

0

$$v_{rms}^2 = \left\langle v^2 \right\rangle = 3 \left\langle v_x^2 \right\rangle$$

$$\left\langle v_{x}^{2}\right\rangle = \left\langle v_{y}^{2}\right\rangle = \left\langle v_{z}^{2}\right\rangle$$

2

$$\left\langle v_{x}^{2}\right\rangle = \frac{1}{3}v_{rms}^{2}$$

50

What is the typical speed of a gas molecule?

Compare U_{rms} for a) He atom (M = 4.0026 g/mol)at 298 K b) Xe atom (M = 131.293 g/mol) at 298 K c) He atom (M = 4.0026 g/mol) at 500 K

> 1360 m/s 238 m/s 1760 m/s

Maxwell-Boltzmann Distribution

Different molecules of gas have a distribution of speeds

James Clerk Maxwell: distribution of speeds based on molar mass (M) and temperature (T)

$$\Delta N = Nf(v)\Delta v$$

DN = # gas molecules with speeds in the range (v) – (v + Δv)

$$f(v) = 4\pi \left(\frac{\mathsf{M}}{2\pi RT}\right)^{3/2} v^2 e^{-\mathsf{M}v^2/2RT}$$

Maxwell-Boltzmann Distribution

 $\Delta N = Nf(v)\Delta v$

$$f(v) = 4\pi \left(\frac{\mathsf{M}}{2\pi RT}\right)^{3/2} v^2 e^{-\mathsf{M}v^2/2RT}$$

As M increases –

Average speed decreases

Range of speeds narrows

Maxwell-Boltzmann Distribution

Deviations from Ideal Behavior
Van der Waals Equation
Joule Thomson Effect

Ideal Gas Law:

$$PV = nRT$$

What is an 'Ideal Gas'?

- Low P, High T
- Gas particles have V = 0
- No interactions between gas particles
- Collisions with walls are perfectly elastic (KE of gas particles is conserved)

Both Quantitative and Qualitative observations show that the ideal gas model isn't perfect:

Quantitative Observations:

- When gases are cooled or compressed, they condense into liquid form
- Gas molecules must interact with each other cohesion shows attractive forces
- Liquids are difficult to compress repulsive forces between molecules!

57

Qualitative Observations:

Compare the behavior of real gases to an ideal gas

Measure the compression factor Z:

$$\mathbf{Z} = \frac{\mathbf{PV}}{\mathbf{nRT}}$$

For an Ideal Gas: Z = 1

$$PV = nRT$$

Ideal Gas Law Assumptions

- Gas particles have zero Volume
- Zero interactions between gas particles

What affect do attractive and repulsive forces between molecules have on the relationships between P,V,T?

Effect of <u>repulsive</u> forces:

Molecules cannot occupy the same space at the same time

Molecules exclude other molecules from the volumes they occupy

$$Volume \rightarrow V - nb$$

($\underline{\mathbf{b}}$ = excluded volume per mole)

Result of <u>repulsive</u> forces:

Molecules are pushed away from each other, toward walls

$$P(V-nb) = nRT$$

Effect of *attractive* forces:

Molecules attracted to each other form pairs and clumps

Tendency to cluster reduces the effective # of gas 'molecules'

Rate of collisions with the wall is reduced, therefore P is reduced

$$P = \frac{nRT}{V - nb} - a\frac{n^2}{V^2}$$

Reduction in pressure:

Proportional to the square of N/V (pairs of molecules)

<u>a</u> depends on the strength of the attractive forces

60

TABLE 9.3 van der Waals Constants of Several Gases				
Name	Formula	<i>a</i> (atm L ² mol ⁻²)	<i>b</i> (L mol ⁻¹)	
Ammonia	NH_3	4.170	0.03707	
Argon	Ar	1.345	0.03219	
Carbon dioxide	CO ₂	3.592	0.04267	
Hydrogen	H ₂	0.2444	0.02661	
Hydrogen chloride	HCI	3.667	0.04081	
Methane	CH ₄	2.253	0.04278	
Nitrogen	N ₂	1.390	0.03913	
Nitrogen dioxide	NO ₂	5.284	0.04424	
Oxygen	O ₂	1.360	0.03183	
Sulfur dioxide	SO ₂	6.714	0.05636	
Water	H ₂ O	5.464	0.03049	

© 2007 Thomson Higher Education

$$Z = \frac{PV}{nRT} = \frac{V}{V - nb} - \frac{a}{RT} \frac{PV}{V}$$

< 1 Attractive forces dominate

Real vs Ideal Gas

62

A sample of 8.00 kg of gaseous nitrogen fills a 100.-L flask at 300. °C.

Calculate the pressure of the gas as real gas, and as an ideal gas.

Do attractive or repulsive forces dominate?

$$P = \frac{nRT}{V - nb} - a\frac{n^2}{V^2}$$

TABLE 9.3 van der Waals Constants of Several Gases				
Name	Formula	<i>a</i> (atm L ² mol ⁻²)	<i>b</i> (L mol ⁻¹)	
Ammonia	NH_3	4.170	0.03707	
Argon	Ar	1.345	0.03219	
Carbon dioxide	CO ₂	3.592	0.04267	
Hydrogen	H ₂	0.2444	0.02661	
Hydrogen chloride	HCI	3.667	0.04081	
Methane	CH ₄	2.253	0.04278	
Nitrogen	N ₂	1.390	0.03913	

Joule Thomson Effect

63

Gases can be liquified by reducing T

Lower T corresponds to lower v_{rms}

.... Slower molecules means lower temperature

Remember, we now consider interactions between molecules

As particles separate, they are moving <u>against</u> pull of PE

Particles moving "uphill" will slow down

Joule – Thomson Effect - Real gases cool as

they expand

