CHEMISTRY
XL-14A

CHEMICAL
EQUILIBRIA
August 20, 2011
Robert lafe

Unit Overview

\square Reactions at Equilibrium
\square Equilibrium Calculations
\square Le Châtelier's Principle
Catalysts

Reactions at Equilibrium

\square Reversibility of Reactions
\square Law of Mass Action
\square Gas Phase Equilibrium
\square Solution Phase Equilibrium
\square Extent of Reaction
\square Direction of Reaction

K
K_{p}
K_{c}
using K
Q vs K

Introduction to Chemical Equilibrium

We previously assumed all reactions proceeded to completion
However: many reactions approach a state of equilibrium
Equilibrium - condition of a chemical reaction in which chemical change ceases and no further change occurs spontaneously

Equilibrium - a dynamic equilibrium between reactants and products in a chemical reaction.

At Equilibrium:

- Forward and reverse reactions simultaneous with equal rates
- No further net conversion of reactants to products unless the experimental conditions have been changed

The equilibrium state is characterized by the

$$
\text { Equilibrium Constant (} \mathrm{K}_{\mathrm{eq}} \text {) }
$$

Reversibility of Reactions

A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $2 \mathrm{NH}_{3}(\mathrm{~g}) \underset{\mathrm{N}}{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

Reversibility of Reactions

Dissolve $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in pure water
Dissolve in 10 M HCl

The Nature of Chemical Equilibrium

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \longleftrightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

As time progresses, rate $=$ concentration/time slows
When rate(s) = constant, reaction is at equilibrium

The Nature of Chemical Equilibrium Characteristics of the Equilibrium State

1. No Macroscopic Change
2. Reached Spontaneously
3. Dynamic Balance of Forward/Reverse Processes
4. Same regardless of direction of approach

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \quad\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}
$$

Situations which appear to be equilibrium, but are not:
Steady State - macroscopic concentrations are constant, even though system is not at equilibrium

1 process removes species while $2^{\text {nd }}$ process supplies species
Homeostasis - body tries to maintain blood pH, etc...

Equilibrium Data

1864: Norwegians Cato Guldberg and Peter Waage discovered the mathematical relationship that summarized the composition of a reaction mixture at equilibrium

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})$ at 1000 . K

$P_{\mathrm{SO}_{2}}($ bar $)$	$P_{\mathrm{O}_{2}}($ bar $)$	$P_{\mathrm{SO}_{3}}($ bar $)$	K^{*}
0.660	0.390	0.0840	0.0415
0.0380	0.220	0.00360	0.0409
0.110	0.110	0.00750	0.0423
0.950	0.880	0.180	0.0408
1.44	1.98	0.410	0.0409

*Average K: 0.0413

$$
\frac{\left(P_{D} / P^{\circ}\right)^{d}\left(P_{E} / P^{\circ}\right)^{e}}{\left(P_{B} / P^{\circ}\right)^{b}\left(P_{C} / P^{\circ}\right)^{c}}=K
$$

The Empirical Law of Mass Action

$$
\mathrm{bB}+\mathrm{cC} \quad \rightleftarrows \mathrm{dD}+\mathrm{eE}
$$

At equilibrium (independent of starting conditions) the law of mass action is constant

(unitless)
$a_{B}=$ 'activity' of species B
$K=$ equilibrium constant

Magnitude of K tells us about the equilibrium state
$K \gg 1$, (activities of products) \gg (activities of reactants) at equilibrium
$K \ll 1$, (activities of products) \ll (activities of reactants) at equilibrium

'Activity'

$$
\begin{aligned}
& \text { Ideal Gas } \\
& a_{B}=\frac{P_{B}}{P^{\circ}} \\
& \text { Ideal Solution } \\
& a_{B}=\frac{[B]}{c^{\circ}}
\end{aligned}{P^{\circ}=1 b a r}^{\text {Pure Liquid }} \quad \mathbf{a}=1
$$

Gas Phase Reactions

$$
\mathrm{bB}+\mathrm{cC} \rightleftarrows \mathrm{dD}+\mathrm{eE}
$$

$$
\begin{array}{ll}
\frac{a_{D}^{d} a_{E}^{e}}{a_{B}^{b} a_{C}^{c}}=K & \text { a = activity of reacting species } \\
\text { For ideal gases: } a_{B}=\frac{P_{B}}{P^{\circ}} \quad \text { where } \mathrm{P}^{\circ}=1 \mathrm{bar}
\end{array}
$$

$$
\frac{\left(P_{D} / P^{\circ}\right)^{d}\left(P_{E} / P^{\circ}\right)^{e}}{\left(P_{B} / P^{\circ}\right)^{b}\left(P_{C} / P^{\circ}\right)^{c}}=K \longrightarrow \frac{P_{D}^{d} P_{E}^{e}}{P_{B}^{b} P_{C}^{c}}=K\left(P^{\circ}\right)^{(d+e-b-c)}
$$

$$
\frac{P_{D}^{d} P_{E}^{e}}{P_{B}^{b} P_{C}^{c}}=K_{P} \quad K_{P}=K\left(P^{\circ}\right)^{(d+e-b-c)}
$$

$* * * *$ Note $^{* * * * *}$
Your textbook refers
to K P_{p} as K

Gas Phase Reactions

\square Write the equilibrium expression for the following reaction:

$$
\mathrm{CO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftarrows \mathrm{CO}_{2(\mathrm{~g})}
$$

Molarity

\square Molarity is a unit commonly used to describe the concentration of a solution

Solution - homogeneous mixture of two or more substances
Solute - one or more minor components in a solution
Solvent - the major component of a solution, medium for solute
\square Molarity - the number of moles per unit volume ($\mathrm{mol} / \mathrm{L}=\mathrm{M}$)

$$
\text { Molarity }=\frac{n_{\text {solute }}}{V_{\text {solution }}}\left(\frac{m o l}{L}\right)=M
$$

\square It can also be used to describe the molar volume of a gas

$$
\text { Molarity }=\frac{n_{\text {gas }}}{V_{g a s}}\left(\frac{m o l}{L}\right)=M
$$

Reactions in Solution

$$
\mathrm{bB}+\mathrm{cC} \quad \rightleftarrows \mathrm{dD}+\mathrm{eE}
$$

$$
\begin{array}{ll}
\frac{a_{D}^{d} a_{E}^{e}}{a_{B}^{b} a_{C}^{c}}=K \quad \text { a = activity of reacting species } \\
& \text { For ideal solutions: } a_{B}=\frac{[B]}{c^{\circ}} \quad \text { where } c^{\circ}=1 \mathrm{M}
\end{array}
$$

$$
\frac{\left([D] / c^{\circ}\right)^{d}\left([E] / c^{\circ}\right)^{e}}{\left([B] / c^{\circ}\right)^{b}\left([C] / c^{\circ}\right)^{c}}=K \longrightarrow \frac{[D]^{d}[E]^{e}}{[B]^{b}[C]^{c}}=K\left(c^{\circ}\right)^{(d+e-b-c)}
$$

$$
\frac{[D]^{d}[E]^{e}}{[B]^{b}[C]^{c}}=K_{C} \quad K_{C}=K\left(c^{\circ}\right)^{(d+e-b-c)}
$$

Reactions in Solution

Write the equilibrium expression for the following reaction:
$\mathrm{Cl}_{2(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-} \rightleftarrows \mathrm{ClO}_{(\mathrm{aq})}^{-}+\mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Pure Substances and Multiples Phases

$$
\frac{a_{D}^{d} a_{E}^{e}}{a_{B}^{b} a_{C}^{c}}=K
$$

$$
a=\text { activity of reacting species }
$$

For solids: $a_{\text {(pure solid) }}=1$
For liquids: $a_{(\text {pure liquid) }}=1$

$\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftarrows \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

$$
K=P_{\mathrm{H}_{2} \mathrm{O}}
$$

$$
K=\left[I_{2}\right]
$$

$$
K=P_{C O_{2}}
$$

Mixed Phase Reaction

Write the equilibrium expression for the following reaction:

$$
\begin{gathered}
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+} \rightleftarrows \mathrm{Zn}^{2+}{ }_{(\text {aq) }}+\mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{ll}} \\
K=\frac{a_{\mathrm{Znaq}_{a q}^{2+}} a_{H_{2(a q)}} a_{H_{2} O_{(l)}}^{2}}{a_{Z n_{(s)}} a_{H_{3} O_{a q}^{+}}^{2}} \\
K=\frac{\left(\left[\mathrm{Zn}^{2+}\right] / 1 M\right)\left(P_{H_{2}} / 1 \mathrm{~atm}\right)(1)^{2}}{(1)\left(\left[H_{3} O^{+}\right] / 1 M\right)^{2}} \quad K=\frac{\left[Z n^{2+}\right] P_{H_{2}}}{\left[H_{3} O^{+}\right]^{2}}
\end{gathered}
$$

Extent of a Reaction

Phosgene $\left(\mathrm{COCl}_{2}\right)$ is an important intermediate in the manufacture of certain plastics. It is produced by the reaction:

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows \mathrm{COCl}_{2(\mathrm{~g})}
$$

Use the law of mass action to write the equilibrium expression for this reaction

At $600 \mathrm{C}, \mathrm{K}=0.20$. Calculate the partial pressure of phosgene in equilibrium with a mixture of $\mathrm{P}_{\mathrm{CO}}=0.0020 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{Cl} 2}=0.00030 \mathrm{~atm}$

Direction of Change in Reactions: Reaction Quotient (Q)

To determine the direction of a reaction, use the Reaction Quotient:

$$
Q=\frac{P_{D}^{d} P_{E}^{e}}{P_{B}^{b} P_{C}^{c}} \quad Q=\frac{[D]^{d}[E]^{e}}{[B]^{b}[C]^{c}}
$$

Q is the same expression as K
Q valid all the time
K valid only at equilibrium
The relationship between Q and K will determine the direction of a reaction

Direction of Change in Reactions: Q vs K

Equilibrium Calculations

\square K v K
\square Relationships between K's of reactions
\square Using K and $K_{c} \rightarrow$ ICE box calculations

K vs K_{C}

$$
\begin{array}{cc}
\frac{[D]_{e q}^{d}[E]_{e q}^{e}}{[B]_{e q}^{d}[C]_{e q}^{c}}=K_{C} & \frac{P_{D, e q}^{d} P_{E, e q}^{e}}{P_{B, e q}^{p} P_{C, e q}^{c}}=K \\
P_{X}=\frac{n_{X} R T}{V} & R=8.3145 \times 10^{-2} \frac{\mathrm{~L} \cdot \mathrm{bar}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
{[X]=\frac{n_{X}}{V}} & P_{X}=[X] R T
\end{array}
$$

K vs K_{C}

$$
\begin{gathered}
\frac{P_{D, e q}^{d} P_{E, e q}^{e}}{P_{B, e q} P_{C, e q}^{c}}=K \quad P_{X}=[X] R T \\
K=\frac{P_{D}^{d} P_{E}^{e}}{P_{B}^{b} P_{C}^{c}}=\frac{\left(\left[X_{D}\right] R T\right)^{d}\left(\left[X_{E}\right] R T\right)^{c}}{\left(\left[X_{B}\right] R T\right)^{b}\left(\left[X_{C}\right] R T\right)^{c}} \\
K=\frac{\left[X_{D}\right]^{d}\left[X_{E}\right]^{c}}{\left[X_{B}\right]^{b}\left[X_{C}\right]^{c}}(R T)^{d+e-b-c}=K_{c}(R T)^{d+e-b-c} \\
K=K_{c}(R T)^{d+e-b-c} \quad R=8.3145 \times 10^{-2} \frac{L \cdot b a r}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{gathered}
$$

K vs K ${ }_{C}$

At $1132^{\circ} \mathrm{C}$, for the following reaction:

$$
2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \rightleftarrows 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{S}_{2(\mathrm{~g})}
$$

$\mathrm{K}_{\mathrm{c}}=2.26 \times 10^{-4}$. What is the value of K at this temperature?

$$
K=K_{c}(R T)^{d+e-b-c} \quad R=8.3145 \times 10^{-2} \frac{\mathrm{~L} \cdot \mathrm{bar}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Relationships among Equilibrium Expressions

Case 1: Compare forward and reverse reactions
Case 2: Multiply a chemical reaction by a constant x
Case 3: Add or subtract chemical reactions (Hess's Law)

$$
\begin{aligned}
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} & \longleftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
\end{aligned} K_{1}=\frac{P_{\mathrm{H}_{2} \mathrm{O}}^{2}}{P_{H_{2}}^{2} P_{O_{2}}}
$$

Relationships among Equilibrium Expressions

Case 1: Compare forward and reverse reactions
Case 2: Multiply a chemical reaction by a constant x
Case 3: Add or subtract chemical reactions (Hess's Law)

$$
\begin{aligned}
& 2 \mathrm{H}_{\mathbf{2 (g)}}+\mathrm{O}_{2(\mathrm{~g})} \quad \longleftrightarrow \\
& \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \\
& \\
& \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad K_{1}=\frac{P_{\mathrm{H}_{2} \mathrm{O}}^{2}}{P_{H_{2}}^{2} P_{O_{2}}} \\
& K_{1^{\prime}}=\sqrt{\frac{P_{H_{2} \mathrm{O}}^{2}}{P_{H_{2}}^{2} P_{O_{2}}}}=\sqrt{K_{1}} \quad \mathrm{H}_{(\mathrm{g})} \quad K_{1^{\prime}}=\frac{P_{H_{2} \mathrm{O}}}{P_{H_{2}} P_{O_{2}}^{1 / 2}}
\end{aligned}
$$

Relationships among Equilibrium Expressions

Case 1: Compare forward and reverse reactions
Case 2: Multiply a chemical reaction by a constant x
Case 3: Add or subtract chemical reactions (Hess's Law)

$$
\begin{aligned}
2 \mathrm{BrCl}_{(\mathrm{g})} & \rightleftarrows \mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \\
\mathrm{r}_{\mathbf{2 (g)}}+\mathrm{I}_{\mathbf{2 (g)}} & \longleftrightarrow 2 \mathrm{IBr}_{(\mathrm{g})}
\end{aligned} \quad K_{1}=\frac{P_{C l_{2}} P_{B r_{2}}}{P_{B r C l}^{2}} \quad K_{2}=\frac{P_{I B r}^{2}}{P_{B r_{2}} P_{I_{2}}}
$$

$$
2 \mathrm{BrCl}_{(\mathrm{g})}+\mathrm{I}_{\mathbf{2 (\mathrm { g })}} \longleftrightarrow 2 \mathrm{IBr}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

$$
K_{3}=\frac{P_{I B r}^{2} P_{C l_{2}}}{P_{B r C l}^{2} P_{I_{2}}}=\frac{P_{C l_{2}} P_{B r_{2}}}{P_{B r C l}^{2}} \times \frac{P_{I B r}^{2}}{P_{I_{2}} P_{B r_{2}}}=K_{1} K_{2} \quad K_{3}=\frac{P_{I B r}^{2} P_{C l_{2}}}{P_{B r C l}^{2} P_{I_{2}}}
$$

$$
\text { If adding reactions: } \quad 1+2 \quad \rightarrow \quad \mathrm{~K}_{3}=\mathrm{K}_{1} \times \mathrm{K}_{2}
$$

$$
\text { If subtracting reactions: } 1-2 \quad \rightarrow \quad \mathrm{~K}_{3}=\mathrm{K}_{1} / \mathrm{K}_{2}
$$

Relationships among Equilibrium Expressions

At 1330 K , germanium(II) oxide (GeO) and tungsten(VI) oxide $\left(\mathrm{W}_{2} \mathrm{O}_{6}\right)$ are both gases. The following two equilibria are established simultaneously:

$$
\begin{array}{lll}
2 \mathrm{GeO}_{(\mathrm{g})}+\mathrm{W}_{2} \mathrm{O}_{6(\mathrm{~g})} & \rightleftarrows 2 \mathrm{GeWO}_{4(\mathrm{~g})} & \mathrm{K}=7000 \\
\mathrm{GeO}_{(\mathrm{g})}+\mathrm{W}_{2} \mathrm{O}_{6(\mathrm{~g})} & \rightleftarrows \mathrm{GeW}_{2} \mathrm{O}_{7(\mathrm{~g})} & \mathrm{K}=38,000
\end{array}
$$

Compute K for the reaction:

$$
\mathrm{GeO}_{(\mathrm{g})}+\mathrm{GeW}_{2} \mathrm{O}_{7(\mathrm{~g})} \quad \rightleftarrows 2 \mathrm{GeWO}_{4(\mathrm{~g})} \quad \mathrm{K}=\text { ? }
$$

Equilibrium Calculations: (R)ICE Box

For a Chemical Reaction:

Reaction	bB	cC	$\longleftrightarrow d \mathrm{D} \quad+$	eE
Initial $\mathrm{Pa}_{\text {a }}$	1 atm	1 atm	0 atm	0 atm
Change in P_{a}	-bx	-cx	$+d x$	+ex
Equilibrium P_{a}	$1-b x$	$1-c x$	$0+d x$	$0+\mathrm{ex}$
$K=\frac{P_{D}^{d} P_{E}^{e}}{P_{B}^{b} P_{C}^{c}}$		$K=$	$\frac{(d x)^{d}(e}{(1-b x)^{b}(1}$	$\frac{c)^{e}}{-c x)^{\prime}}$

Evaluating K from Reaction Data

At $600^{\circ} \mathrm{C}$, a gas mixture of CO and Cl_{2} has initial partial pressures of $P_{(\mathrm{CO})}=0.60 \mathrm{~atm}$ and $\mathrm{P}_{(\mathrm{Cl} 2)}=1.10 \mathrm{~atm}$. At equilibrium, the $\mathrm{P}_{(\mathrm{COCl2})}=0.10$ atm. Calculate K for this reaction:

$$
K=\frac{P_{C O C l_{2}}}{P_{C O} P_{C l_{2}}} \quad K=\frac{(0.10)}{(0.60-0.10)(1.10-0.10)}=\frac{0.10}{(0.50)(1.00)}=0.20
$$

Evaluating K from Reaction Data

Must take into account stoichiometric coefficients:

$$
2 \mathrm{As}(\mathrm{OH})_{6}^{3-}{ }_{(\mathrm{aq})}+6 \mathrm{CO}_{2(\mathrm{~g})} \rightleftarrows \mathrm{As}_{2} \mathrm{O}_{3(\mathrm{~s})}+6 \mathrm{HCO}_{3(\mathrm{aq})}^{-}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Evaluating K from Reaction Data

Graphite (solid carbon) is added to a vessel that contains $\mathrm{CO}_{2(\mathrm{~g})}$ at a pressure of 0.824 atm . The pressure rises during the reaction. The total pressure at equilibrium is 1.366 atm . Calculate the equilibrium constant:

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}
$$

Calculating Equilibrium Compositions

$\mathrm{H}_{2(\mathrm{~g})}$ and $\mathrm{I}_{2(\mathrm{~g})}$ are sealed in a flask with partial pressures: $\mathrm{P}\left(\mathrm{H}_{2}\right)=1.980$ atm and $P\left(I_{2}\right)=1.710$ atm. The sealed flask is heated to 600 K , and the gases quickly reach equilibrium. $\quad \mathrm{K}_{600 \mathrm{~K}}=92.6$

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \quad \longleftrightarrow \quad 2 \mathrm{HI}_{(\mathrm{g})}
$$

Calculate the equilibrium partial pressures of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at 600 K
Can solve this 3 ways:

1) Solve exactly using quadratic equation
2) Solve by approximation
3) Solve by successive approximation if 2 doesn't work

$$
a x^{2}+b x+c=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Le Châtelier's Principle

\square Adding and Removing Reagents
\square Changing Pressure
\square Effect of Temperature on Equilibrium
\square Effect of Temperature on K
Catalysts

Direction of Change in Reactions: Le Châtelier's Principle

Le Châtelier's Principle: A system in equilibrium that is subjected to a stress will react in a way that tends to counteract the stress

At equilibrium, the macroscopic properties of a system remain constant

When you perturb the equilibrium, the system will counteract the perturbation

- Changing the concentration of a reactant or product
- Changing the Volume or Pressure
- Changing the Temperature

Can maximize the yield by perturbing the system

Le Châtelier's Principle Adding or Removing Reagent

Change the concentration (or Partial Pressure) of a reagent
Consider how the change in concentration affects Q

$$
\begin{gathered}
2 \mathrm{HI}_{(\mathrm{g})} \\
\longleftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \\
Q=\frac{P_{H_{2}} P_{I_{2}}}{P_{H I}^{2}}
\end{gathered}
$$

Increase a Product (decrease a Reactant)

$$
Q>K \quad \text { Reverse (to the left) }
$$

Increase a Reactant (decrease a Product)
$Q<K \quad$ Forward (to the right)

Le Châtelier's Principle Changing Volume or Pressure

Specific to gas phase reactions
$2 \mathrm{P}_{2(\mathrm{~g})} \quad \rightleftarrows \quad \mathrm{P}_{4(\mathrm{~g})}$

Increase V (decrease P)
Reaction \rightarrow direction with greater $\mathrm{n}_{\text {gas }}$
Increase P (decrease V)
Reaction \rightarrow direction with fewer $n_{\text {gas }}$

Le Châtelier's Principle Changing the Temperature

Endothermic or Exothermic reactions

Endothermic Reaction - absorbs heat

Exothermic Reaction - gives off heat

Increase T ("adding heat")
Reaction will proceed endothermically
Trying to absorb excess heat
Increase T
Endothermic reaction \rightarrow forward
Exothermic reaction \rightarrow reverse
Decrease T
Endothermic reaction \rightarrow reverse
Exothermic reaction \rightarrow forward

Direction of Change in Reactions: Le Châtelier's Principle

$$
3 \mathrm{Al}_{2} \mathrm{Cl}_{6(\mathrm{~g})}
$$

Increase $\mathrm{P}\left(\mathrm{Al}_{2} \mathrm{Cl}_{6}\right)$
Increase Volume
Decrease Temperature (assume $\Delta \mathrm{H}<0$)

$$
\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+\mathrm{I}_{2(\mathrm{~g})} \quad \rightleftarrows \quad 2 \mathrm{HI}_{(\mathrm{g})}+\mathrm{S}_{(\mathrm{s})}
$$

The equilibrium constant at $110^{\circ} \mathrm{C}$ is $\mathrm{K}=0.0023$
For the following conditions, calculate Q and determine the direction of the reaction:
a) $P\left(I_{2}\right)=0.461 \mathrm{~atm}, P\left(\mathrm{H}_{2} \mathrm{~S}\right)=0.050 \mathrm{~atm}, \mathrm{P}(\mathrm{HI})=0.1 \mathrm{~atm}$
b) $\mathrm{P}\left(\mathrm{I}_{2}\right)=0.461 \mathrm{~atm}, \mathrm{P}\left(\mathrm{H}_{2} \mathrm{~S}\right)=0.050 \mathrm{~atm}, \mathrm{P}(\mathrm{HI})=1.0 \times 10^{-3} \mathrm{~atm}$

Temperature Dependence of K

Van't Hoff Equation

$$
\ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

$\Delta \mathrm{H}^{\circ}$ is the Enthalpy of a Reaction

$$
\begin{aligned}
& \Delta H^{\circ}<0-\text { Exothermic } \\
& \Delta H^{\circ}>0-\text { Endothermic } \\
& R=8.31451 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

Temperature Dependence of K

If $\Delta \mathrm{H}<0$ (exothermic reaction), then Increase in T reduces K
If $\Delta \mathrm{H}>\mathrm{O}$ (endothermic reaction), then Increase in T increases K

Direction of Change in Reactions: van't Hoff Equation

$$
\begin{aligned}
& \ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& 3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \mathrm{K}(298 \mathrm{~K})=5.9 \times 10^{5} \\
& \text { If } \Delta \mathrm{H}^{\circ}=-92.2 \mathrm{~kJ} / \mathrm{mol}, \text { calculate } \mathrm{K} \text { at } \mathrm{T}=600 \mathrm{~K}
\end{aligned}
$$

Catalysts

A Catalyst is a substance that increases the rate of a chemical reaction and is not consumed in the net reaction

$$
K=\frac{P_{N H_{3}}^{2}}{P_{N_{2}} P_{H_{2}}^{3}}
$$

Haber Process:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \stackrel{\mathrm{Fe}_{3} \mathrm{O}_{4}}{\rightleftarrows} 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}^{\circ}=-92.4 \mathrm{~kJ} / \mathrm{mol}$

Catalysts do not affect the equilibrium composition
They only change the path
Catalysts speed up both the forward and reverse reactions
You will learn more about catalysts in 14B when you study Reaction Kinetics

