Supramolecular Self-Assemblies of β-Cyclodextrins with Aromatic Tethers: Factors Governing the Helical Columnar versus Linear Channel Superstructures

Yu Liu,*† Zhi Fan,† Heng-Yi Zhang,† Ying-Wei Yang,† Fei Ding,† Shuang-Xi Liu,† Xue Wu,† Takehiko Wada,§ and Yoshihisa Inoue*§

† Contribution from the Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
‡ Department of Physics, Nankai University, Tianjin 300071, P. R. China
§ ICORP Entropy Control Project (JST), Department of Molecular Chemistry, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan

Figure S1 The molecular structure of Mono[6-O-(4-bromobenzene)]-β-CD (1)
Figure S2 The molecular structure of Mono[6-O-(4-nitro-phenyl)]-β-CD (2)
Figure S3 The molecular structure of Mono[6-O-(4-formyl-phenyl)]-β-CD (3)
Figure S4 The molecular structure of Mono(6-phenylseleno-6-deoxy)-β-CD (4)
Figure S5 The molecular structure of Mono[6-O-(4-hydroxybenzoyl)]-β-CD (5)
Figure S6 The dimeric structure of the compound 5.
Figure S7 Plot from 1H NMR data of 2 as a function of total concentration to determine the aggregation equilibrium constant. The closed circles are the experimental data points, and the line is the theoretical curve based on the calculated values as equation $\delta_{\text{obsd}} = \delta_\text{m} + f_d (\delta_\text{m} - \delta_\text{n}) = \delta_\text{m} + (\delta_\text{m} - \delta_\text{n}) \left(\frac{1 + 8 \text{K}_a \text{C}}{(1 + 8 \text{K}_a \text{C})^{1/2}} - \frac{1}{1 + 8 \text{K}_a \text{C}} \right)$.
Figure S8 ITC titration data of β-CD (13.0 mM) with mono[6–O-(4–nitrobenzene)]-β-CD (0.62 mM) (2) in H$_2$O at 25 °C.