Q1. An important part of this question are the instructions (as with any question) and so even though they appear to be 'long', I suggest that you should read them carefully. A couple of times. It's hardly a bloody novel! So, here goes:

a) \[
\begin{align*}
&\text{CH}_3 \\
&\text{D} \\
&\text{H}_2/\text{Pt} \quad \rightarrow \quad \text{CH}_3 \\
&\text{D} \\
\end{align*}
\]

Catalytic hydrogenation proceeds with **SYN** selectivity and so the two Hs will end up on the same face of the allene, so the CH3 and D will be **CIS** on the cyclohexane ring – and depending upon which face the H2 attacks from, you will get one enantiomer or the other.

b) \[
\begin{align*}
&\text{CH}_3 \\
&\text{D} \\
&\text{H}_3(\text{OAc})_2/\text{H}_2\text{O} \quad \rightarrow \quad \text{CH}_3 \\
&\text{D} \\
&\text{NaBH}_4 \\
\end{align*}
\]

Oxymercuration/reduction proceeds with **ANTI**-stereospecificity and **MARKOVNIKOV** regioselectivity, meaning that the -OH group will end up on the more substituted end of the allene, and that it will be **TRANS** to the -HgOAc group, which, in the second step is swapped for a H with the NaBH4 reagent, so -OH and -H end up **TRANS**. Work through the mechanism if you are unsure. Initial formation of the mercurinium ion can occur...
on either the top or bottom face of the allene, resulting in the formation of enantiomers.

$$\text{CH}_3$$

(i) $\text{BH}_3 \cdot \text{THF}$

(ii) $\text{NaOH/H}_2\text{O}_2$

Hydroboration/oxidation proceeds with *SYN* stereo-specificity and *ANTIMARKOVNIKOV* regioselectivity, so initially, the -BH_2 and -H will add to the same face of the allene, and the -BH_2 will add to the less substituted end. In the second step, the -BH_2 is converted into an -OH group, which is cis to the -H. Again, the two enantiomers arise from BH_3 adding to one or the other faces of the allene.

$$\text{CH}_3$$

(i) O_3

(ii) Me_2S

This ozonolysis reaction cuts the $\text{C}=\text{C}$ bond down the middle ($\text{C}=\text{C} \rightarrow \text{C}=\text{O}$, $\text{O}=\text{C}$) and puts an oxygen atom on each end, so in this case we form a compound with a ketone at one end, and an aldehyde at the other. Don't lose any carbon atoms!!

$$\text{CH}_3$$

I-Cl

emer
So, the most important part of this question, is figuring out what attacks what... Let's consider iodine monochloride (I-Cl) - how is it polarized? Well, Cl is more electronegative than I, so we expect: \[\delta^+ \delta^- \]\[I-Cl \]

and so the nucleophilic allene will attack the I first, hence:

\[\text{Note: cyclic iodonium ion could form on either the top or bottom face of the allene, accounting for the formation of enantiomers.} \]

So, the next question, is where does the Cl\(^-\) attack from? Well, it must attack from the opposite face of the iodonium ion, so the Cl and I will end up trans, but at which C atom does the Cl\(^-\) attack. Well, it attacks at the one which can best stabilize the charge, and hence attacks at the more substituted one, so overall, we have ANTI-Stereospecificity and MARKOWITZ regioselectivity.
f) \[\text{CH}_3 \quad \text{D}_2/\text{Pd} \rightarrow \quad \text{CH}_3 \quad (\text{+}) \]

Again, addition of \(\text{D}_2 \) (just like \(\text{H}_2 \)) is \textbf{SYN}
selective, and so \(\text{D}_2 \) will add across either
face of the alkene (giving rise to enantiomers).
In this case, there is \textbf{NO} need to show relative
stereochemistry, as it is meaningless — the \text{CH}_3
group is cis to a \text{D} and trans to a \text{D}, so
there is no point in trying to draw relative
stereochemistry!!

g) \[\text{CH}_3 \quad (\text{i}) \text{Hg(OAc)}_2/\text{H}_2\text{O} \quad \text{CH}_3 \quad (\text{+}) \]
\[\text{(ii)} \text{NaBD}_4 \]

Same as part (b), but in the last step, we
replace the \text{Hg(OAc)}_2 group for \text{D} rather
than an \text{H}, and again, there is \textbf{NO} need to
show relative stereochemistry, as both the \text{CH}_3
and \text{OH} groups are both cis and trans to \text{D}
atoms. But a pair of enantiomers is formed
as the initial mercurinium ion can form on
either face of the alkene.

h) \[\text{CH}_3 \quad (\text{i}) \text{BD}_3/\text{THF} \quad \text{CH}_3 \quad (\text{+}) \]
\[(\text{ii}) \text{NaOH, H}_2\text{O}_2 \]

Same as part (c), but by using \text{BD}_3 instead of
\text{BH}_3, you get a \text{D} where you would have
gotten an \text{H} in part (c), otherwise, exactly
the same \textbf{SPECIFICITY} and \textbf{REGIOSELECTIVITY}.
Well, well. This one was sneaky. So, what happens first? - That should be easy, we form a bromonium ion...

And again, we can form this on either face of the alkene (leading to enantiomers). Now, what opens up the bromonium ion in the second step? Answer: CH₃OD.

This proceeds with anti-stereospecificity (attack from face opposite Br⁺) and with Markovnikov regioselectivity, and hence CH₃OD attacks at the more substituted carbon atom (better able to stabilize the charge). In the last step, another mononucleophile deprotonates, and our final product only contains one D atom!
No need to show relative stereochemistry here, for the same reasons expressed earlier. First step is simply formation of the most stable tertiary carbocation:

\[\text{and then in the second step, the } \text{Cl}^- \text{ attacks either face of the carbocation (leading to enantiomers) to give the product with Markovnikov regioselectivity.} \]

Q2) The first three samples in Q2 you are told give only one unique ozonolysis product, and so this means that the alkene must be symmetrical about the C=C bond, and there are only 3 of these that fit the bill, and they are:

\[\text{E} \quad \text{K} \quad \text{O} \]

\[\downarrow \text{O}_3 \text{etc} \quad \downarrow \text{O}_3 \text{etc} \quad \downarrow \text{O}_3 \text{etc} \]

\[\text{Same} \quad \text{Same} \quad \text{Same} \]
So next, simply decide what happens when each one of these is reacted with Br₂ in CCl₄, hence:

So, E gives ENANTIOMERS and is, therefore, SAMPLE 2.

So, O gives a MESO compound, and is, therefore, SAMPLE 3.

So, K must be SAMPLE 1.

That wasn’t too bad, but now it gets harder, as samples 4 and 5 could be any of the other ones... where do we begin?
Well, when you react an unsymmetrical alkene with Br₂ in CCl₄, there are a few options.

If \(R₁ = R₂ \) AND \(R₃ = R₄ \), then the product will be achiral, as no stereocenters are formed. Any other situation will result in the generation of at least one (or sometimes two) stereocenters, which in the absence of any other pre-existing stereocenter, will result in the formation of enantiomers, i.e.,

\[
\text{Br} \quad \text{R}³ \quad \text{NO CHIRAL CENTERS}
\]

If \(R₁ = R₂ \) AND \(R₃ \neq R₄ \) (or vice versa),

\[
\text{Br} \quad \text{R}³ \quad \text{ONE CHIRAL CENTER, ENANTIOMERS FORMED.}
\]

\[
\text{Br} \quad \text{R}² \quad \text{R}³ \quad \text{Two Chiral Centers, Enantiomers Formed}
\]

If \(R₁ \neq R₂ \) AND \(R₃ \neq R₄ \),

\[
\text{Br} \quad \text{R}² \quad \text{R}³ \quad \text{Enantiomers}
\]

If \(R₁ \text{ or } R₂ \text{ or } R₃ \text{ or } R₄ \) contains a stereocenter,

\[
\text{Br} \quad \text{R}² \quad \text{Br} \quad \Rightarrow \text{DIASTEREOISOMERS}
\]
Because, in the last example, the stereocenter in R^1 is fixed, and does not change in the reaction, the new products will be the following:

Assume stereocenter in R^1 is (S)
Assume the new stereocenters are either (RS) or (SR)

Then the products will be (SRS) or (SSR) which are diastereoisomers.

So sample (5) must be either M or R and the only alkene in which $R_1 = R_2$ and $R_3 = R_4$ where $R_1/R_2 \neq R_3/R_4$ is alkene D

which will give 2 ozonolysis products

\Rightarrow and $\quad \overset{O}{\text{H}} - \overset{\text{H}}{\text{H}}$

and one achiral bromination product

$\quad \overset{\text{Br}}{\text{H}} \quad \overset{\text{Br}}{\text{H}} \quad \Leftarrow \text{no chiral centers}$
Q3 Explain the mechanism for:

\[
\begin{align*}
\text{CO}_2\text{H} & \xrightleftharpoons{\text{I}_2} \xrightarrow{\text{NaHCO}_3} \text{CO}_2\text{H} \quad \text{(I)}
\end{align*}
\]

accounting for stereospecificity and regioselectivity.

Acid/base reactions occur quickly, so the first step is the reaction of the carboxylic acid with the weak base:

\[
\begin{align*}
\text{CO}_2\text{H} & \xrightarrow{\text{NaHCO}_3} \text{Na}_2\text{CO}_3 \\
\downarrow & \\
\text{CO}_2\text{H}^+ & + \text{HCO}_3^- \quad \text{(v. weak acid)}
\end{align*}
\]

The second step involves the reaction of the alkene with \(\text{I}_2\), as shown below:

\[
\begin{align*}
\text{CO}_2\text{H}^+ & \xrightarrow{\text{I}_2} \xrightarrow{\text{CO}_2\text{I}^+} \\
\end{align*}
\]

To form a cyclic iodonium ion, just like you saw with \(\text{Br}_2\) and \(\text{Cl}_2\) forming cyclic...
Chloronium and bromonium ions — why did most of you draw carbocations??

If you reversed the order of steps 1-2-2, you did not lose any points.

What happens next, well, the species that opens the iodonium ion must be the \(\text{CO}_2^\ominus \) group that is already part of the molecule, and this will, like all these reactions, proceed with antistereo-specificity.

![Chemical structure diagram](image)

So, the incoming \(\text{CO}_2^\ominus \), and the I atom end up on opposite faces, resulting in a cis ring junction. Now, what about regioselectivity?

Well, notice that the \(\text{CO}_2^- \) attacked the less substituted C atom, (the one least able to stabilize the charge), because if it had attacked at the more substituted C atom, this would have resulted in a very strained 4-membered ring, instead of the much happier 5-membered ring we observe.
Q24. This was a GINME!

\[
\begin{align*}
\text{E} & \quad \text{EC} \\
\text{TS}_1^{(+)} & \quad \text{INT}^{(\circ)} \\
\text{RTS}^{(+)} & \quad \Delta G^{+} \\
\Delta G^{+} & \quad \Delta G^{\circ} \\
\Delta G^{\circ} & \quad \Delta G^{(+)}
\end{align*}
\]

(+1) for \(\text{TS}_1 > \text{TS}_2 \)

9 points for all the stuff above, and if you missed any, you only have yourself to blame!

Structure of \(\text{TS}_1 \ (\pm 2) \)

\[
\begin{align*}
\text{Structure of} & \quad \circ \\
\text{TS}_1 \ (\pm 2) & \quad \text{ INT} \ (\pm 2) \\
\text{INT} \ (\pm 2) & \quad \text{TS}_2 \ (\pm 2)
\end{align*}
\]

\(\text{8-} \) don't forget partial charges

\(\text{8+} \) don't forget the \(\text{Cl}^- \)

again, don't forget the charges

This question was essentially straight from the notes - just with a different alkene
consider the first step in the reaction:

\[
\text{Cl} + \text{HCl} \rightarrow \text{Cl}^+ \text{Cl}^{-}
\]

Which carbocation is more stable? The first one is, because you can resonance stabilize it as shown below:

\[
\text{Cl}^+ \text{Cl}^{-} \leftrightarrow \text{Cl}^+ \text{Cl}^{-}
\]

This resonance-stabilized carbocation is more stable than the corresponding \(\text{C}^+ \) formed from cyclopetene in part (a), and so the reaction is faster, as \(\text{Ag}^+ \) on the energy profile will be much smaller. The reaction then proceeds as shown below:

\[
\text{Cl}^+ \text{Cl}^{-} + \text{Cl}^{-} \rightarrow \text{Cl}^+ \text{Cl}^{-}
\]
Q5. Ok, first things first, phenol is NOT one million times more acidic than cyclohexanol because one has a pKa value of 10, and the other 16. That's just restating the question!! I want to know WHY?

consider the conjugate bases:

\[
\begin{align*}
\text{There is no stabilization of the charge possible - in fact, it is destabilized by the inductive effect of the alkyl group attached to the O.}
\end{align*}
\]

But,

\[
\begin{align*}
\text{Phenolate (the anion derived from phenol) is stabilized by resonance, distributing the \(-ve\) charge over a much larger area, leading to stabilization.}
\end{align*}
\]

DRAWING THIS:

and talking about resonance has no bearing on the charge on oxygen, so this did not
count as a complete answer (nor did drawing me resonance forms of phenol before you lose the H+).

As the F atom is moved closer to the O-, the compound is more acidic, i.e., 2-fluorophenol is more acidic than 3-fluorophenol, and 4-fluorophenol is about as acidic as phenol itself — this simple drop in acidity as the F is moved further away can simply be attributed to the inductive effect. The strong electron-withdrawing property of F reduces the charge density on the O-, thereby stabilizing it, and making the compound more acidic. This through bond effect, however, falls off very quickly with distance, hence explaining the observed trend.
So, why don't we see the same trend for the electron withdrawing -NO₂ group. Why is 4-nitrophenol just as acidic as 2-nitrophenol?

Consider the following resonance forms:

\[
\text{\begin{align*}
\text{2-NO}_2 & \quad \leftrightarrow \quad \text{2-NO}_2 \\
\text{4-NO}_2 & \quad \leftrightarrow \quad \text{4-NO}_2
\end{align*}}
\]

With the -NO₂ group in either the 2 or 4 positions, it is possible to draw an additional resonance form in which the negative charge is delocalized into the NO₂ group. You CANNOT do this if the NO₂ group is in the 3 position.

\[
\text{\begin{align*}
\text{3-NO}_2 & \quad \text{cannot delocalize into NO}_2 \\
\end{align*}}
\]
So, since resonance (in this case) is much more significant than the inductive effect, both the 2-\(\text{NO}_2\) and 4-\(\text{NO}_2\) compounds are about as acidic as each other as a consequence of extra resonance stabilization (the inductive effect is swamped out), but the 3-\(\text{NO}_2\) compound is less acidic, because it does not have the extra resonance stabilization.

(Q6Bonus) This may have looked pretty frightening, but is quite straightforward (thanks to Prof Hardinger for this question)

- First step, is protonation of the alkene

\[\text{H} + \text{alkene} \rightarrow \text{alkene}^+\] \(\text{(most stable } 3^\circ \text{ C}^+\text{)}\)

Now, in the carbocation, we have an electrophilic part (\(\text{C}^+\)) and a nucleophilic part (\(\text{C} = \text{C}\)), so the following reaction can happen:

\[\text{carbocation} \rightarrow \text{with two possible outcomes}\]
Either C4, or C5 will form a bond to C1. If we choose C4, not only do we form a strained 4-membered ring, but we form a secondary carboxation. If we choose C5 on the other hand, then we form a relatively stable 5,5 ring system, and a tertiary carboxation, not a secondary one.

The final step, is elimination of H+ from the final carboxation, via an E1-like process:

This is the favored product over these two:

Disubstituted

Tetrasubstituted

Not (not) 120°
QT BONUS: Synthesis!

\[
\text{H} \equiv \text{H} \rightarrow \text{H} \equiv \text{D} ?
\]

The first thing to notice here is that the product has only one C atom, but the starting material has two, so we can rule out hydrogenation or oxymercuration as that would give us products with two C atoms. One obvious retrosynthetic disconnection is:

\[
\begin{align*}
\text{H} & \equiv \text{O} \\
\text{D} & \rightarrow \\
\text{H} & \equiv \text{H} \\
\text{D} & \equiv \text{D}
\end{align*}
\]

because you know that the forward reaction could be achieved with ozonolysis: i.e.,

\[
\begin{align*}
\text{H} & \equiv \text{H} \\
\text{D} & \equiv \text{D} \quad (i) \text{O}_3 \\
\text{H} & \equiv \text{O} \times 2 \\
\text{D} & \equiv \text{D} \quad (ii) \text{Me}_2\text{S}
\end{align*}
\]

So, how do we make \(\text{H} \equiv \text{H} \) from \(\text{H} \equiv \text{H} \)?

It's pretty clear that we have added \(\text{D}_2 \) across a triple bond with SYN selectivity, and the only way to do that is using the following reaction:
\[
H-C≡C-H \xrightarrow{D_2} H-C≡C-H
\]
Linear catalyst

and then we complete the synthesis by performing the ozonolysis reaction.