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We extend the recently developed near-field (NF) method to include an arbitrary number of di-
electrics. NF assumes that the dipoles and fields respond instantaneously to the density, without
retardation. The central task in NF is the solution of the Poisson equation for every time step, which
is here done by a conjugate gradient method which handles any dielectric distribution. The optical re-
sponse of any metal-dielectric system can now be studied very efficiently in the near field region. The
improved NF method is first applied to simple benchmark systems: a gold nanoparticle in vacuum and
embedded in silica. The surface plasmons in these systems and their dependence on the dielectrics
are reproduced in the new NF approach. As a further application, we study a silver nanoparticle-
based structure for the optical detection of a “lipid” (i.e., dielectric) layer in water, where the layer is
wrapping around part of the metallic nanostructure. We show the ∼0.1-0.15 eV shift in the spectrum
due to the presence of the layer, for both spherical and non-spherical (sphere+rod) systems with
various polarizations. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726076]

I. INTRODUCTION

There is much interest in the optical properties of metal-
lic nanostructures with sizes below 50 nm,1–3 due to their
potential applications in bio-sensing,4, 5 optoelectronics,6

and photo-chemistry.7, 8 Theoretically, there has also been
much effort for understanding electrodynamics of metallic
nanostructures9–13 and the mechanism of their dynamic cou-
pling to nearby molecules14–20 at sub-wavelength scales.

Recently we developed the near-field (NF) method,21

which quantitatively studies electrodynamics of nanostruc-
tures at sub-wavelength scales. When the size of the
nanostructure is much smaller than the optical wavelength,
retardation effects can be neglected. Then, the longitudinal
component of electric field dominates so that the field is a
gradient of an instantaneous scalar potential which fulfills
the Poisson equation. NF therefore studies only the time-
propagation of the longitudinal electric field, ignoring the
transverse terms. The main advantage of NF is that the time
step used for the evolution of electric field can be as high
as a few atomic units, hundreds of times larger than that re-
quired in the Yee-type Maxwell finite-difference time-domain
approach22 for sub-nanometer scales.

In NF, at each time step a Poisson equation has to be
solved. If there are no dielectrics (i.e., no semiconductor and
insulators) or there is only a single dielectric without vacuum,
the Poisson equation can be solved by an FFT (fast-Fourier-
transform) convolution integral, as was done in our original
NF paper.21

Dielectrics are ubiquitous however in nanostructures. We
therefore extend here NF to include an arbitrary number of di-
electrics by solving the Poisson equation using conjugate gra-
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dients. With the modified NF approach, the optical response
of any sub-wavelength metal-dielectric system can now be
studied. To test the efficiency and accuracy of the method,
we first study the optical response of a gold nanoparticle in
vacuum and dielectric medium. Then, as an application, we
design an Ag nanostructure for the optical detection of a lipid
(i.e., dielectric) layer in water. The calculation details the op-
tical response sensitivity to the dielectric coefficient of the
lipid, so the designed structure may be a suitable model de-
vice for biological probing.

The paper is organized as follows. The NF formalism
with the conjugate gradient extension is described in Sec. II.
We then present the numerical results for benchmark systems
and designed probing nanostructures in Sec. III. Discussion
and conclusions follow in Secs. IV and V, respectively.

II. METHODOLOGY

A. Permittivities

Just like in Maxwell descriptions, NF assumes that the
dielectric permittivity of a metal can be represented as a sum
of Lorentzian oscillators,

ε(r, ω) = ε∞(r) + ε0

N∑
j=1

βj (r)

ω̄2
j (r) − iαj (r)ω − ω2

. (1)

Here, ε∞(r) is the material-dependent frequency-independent
term. For metals, we can adopt ε∞(r) = ε0. The material-
dependent Lorentzian parameters αj(r), β j(r), and ω̄j (r) are
real-valued and N is the number of Lorentzian oscillators. In-
stead of using the typical number of oscillators N ∼ 2 − 4
(Ref. 23), we apply up to 9 oscillators to fit the permittiv-
ity over a wide frequency range (0.6 ∼ 6.7 eV) (Ref. 21).
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The reason is that due to the large time step, the fitted absorp-
tion and natural frequencies (αj and ω̄j ) cannot be too large,
so a larger number of terms is needed to fit, with the added
benefit that the fits are now very accurate.

Equation (1) is also formally appropriate for dielectrics.
Unlike metals, for near-IR to near-UV frequencies the permit-
tivity of most dielectrics is usually close to a real-valued con-
stant, so it can be represented by a real frequency-independent
term,

ε (r, ω) = ε∞ (r) ,

where generally ε∞(r) > 0, so that there are no Lorentzian
oscillator terms for dielectrics (β j = 0 in the dielectric region).

B. Near-field equations

As demonstrated in our previous work, NF is essentially
the time-dependent version of the frequency-dependent Pois-
son algorithm, where one solves

∇ · (ε(r, ω)Ẽ(r, ω)) = 0. (2)

Here, Ẽ(r, ω) is the total electric field. To solve this equa-
tion in the time domain we introduce, as in Maxwell finite-
difference time domain (FDTD), approaches the metallic po-
larization and current density:

P̃p (r, ω) = (ε (r, ω) − ε∞ (r)) Ẽ (r, ω) , (3)

J̃p (r, ω) = −iω (ε (r, ω) − ε∞ (r)) Ẽ (r, ω) , (4)

where “p” denotes that this is a metallic (“plasmonic”) contri-
bution. Using the Lorentzian-oscillators representation of the
permittivity in Eq. (1), the time-dependent polarization and
current density in the metal evolve as (with j = 1, . . . , N)

∂Pj (r, t)
∂t

= Jj (r, t) , (5)

∂Jj (r, t)
∂t

= −αj (r)Jj (r, t) − ω̄2
j (r)Pj (r, t) + ε0βj (r)E(r, t),

(6)

and the metallic polarization and current density are defined
as

Pp (r, t) =
Nj∑
j=1

Pj (r, t), (7)

and

Jp (r, t) =
Nj∑
j=1

Jj (r, t) . (8)

Equations (5) and (6) are propagated by the leapfrog
algorithm,

Pj (r, t + dt) = Pj (r, t) + dtJj

(
r, t + dt

2

)
(9)

and

Jj

(
r, t + dt

2

)
=

1 − αj (r)

2
dt

1 + αj (r)

2
dt

Jj

(
r, t − dt

2

)

− dt

1 + αj (r)

2
dt

(ω̄2
j (r)Pj (r, t)

− ε0βj (r)E(r, t)), (10)

with the initial conditions

Pj (r, t = 0) = Jj

(
r, t = −dt

2

)
= 0.

Equation (10) is similar to the treatment of the permittivity in
Maxwell approaches; the differences come in the representa-
tion of the electric field. In the Maxwell FDTD approach, the
electric field is propagated as an independent variable, while
in NF it is obtained from the overall polarization as follows.
From Eqs. (2) and (3) it follows that

∇ · (Pp + ε∞(r)E) = 0,

and since this equation also holds in the time domain, we can
define an individual metallic charge density as

ρp = −∇ · Pp (r, t) . (11)

The NF ansatz is that the electric field is a sum of an external
field and a transverse induced part,

E (r, t) = −∇ϕ (r, t) + Eext (r, t) , (12)

resulting at

− ∇ · (ε∞ (r) ∇ϕ (r, t)) = ρp (r, t) − ∇ · (ε∞ (r) E0) δ (t) ,

(13)
where we typically use a spatially uniform impulse, i.e.,

Eext (r, t) = E0δ (t) .

As mentioned, for purely metals-vacuum systems ε∞(r) = ε0

so Eq. (13) then boils down to the Poisson equation, −∇2ϕ(r,
t) = ρ(r, t)/ε0, which is easily solved by convolution. How-
ever, for dielectrics Eq. (13) is not trivial. To solve it we divide
the potential to two parts, labeled qualitatively as dielectric
and metallic

φ (r, t) = δ (t) φd (r) + φp (r, t) ,

where

φp(r, t = 0) = 0,

and we note that in practice the delta function in time is rep-
resented as

δ (t = ndt) =
{

0 n > 0
1
dt

n = 0.

The two potentials fulfill then

− ∇ · (ε∞ (r) ∇ϕd (r)) = −∇ · (ε∞ (r) E0) (14)

and

− ∇ · (ε∞(r)∇ϕp(r, t)) = ρp(r, t). (15)
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To summarize this section: at t = 0, the Poisson equation for
the dielectric part (Eq. (14)) is solved; the electric field at t
= 0 is then obtained from Eq. (12), the result multiplied by
1/dt, and then Eqs. (9), (10), (12) and (15) are propagated in
time.

C. Conjugate gradient solution of the Poisson
equation

The only remaining issue is the solution of Eqs. (14) (for
t = 0 ) and (15) (for t > 0 ) which are of the general form

Âφ = ρ, (16)

where

Â ≡ −∇ · (ε (r) ∇) . (17)

Since usually ε∞(r) > 0, the matrix representation of opera-
tor −∇ · (ε(r)∇) is positive-definite, and Eq. (17) is there-
fore easily solved by an iterative conjugate gradient (CG)
method24 as follows.

We start from a guess of ϕ(0) (generally vanishing poten-
tial). Suppose at step i, we have an approximate solution ϕ(i) ;
the residual or the difference from the correct electron density
is defined as

r (i) = ρ − Âϕ(i). (18)

If we have arrived at the exact solution, the residual will van-
ish, i.e., ∫

|r (i)|2 ≈ 0, (19)

and otherwise we try to update the solution with the conjugate
searching direction vector p(i) (starting with p(0) = r(0)) and a
scalar coefficient α(i), calculated from

α(i) =
∫ |r (i)|2∫
p(i)Ap(i)

. (20)

The solution is updated as

ϕ(i+1) = ϕ(i) + α(i)p(i), (21)

and the corresponding residual is now

r (i+1) = ρ − Âϕ(i+1) = r (i) − α(i)Âp(i). (22)

The conjugate searching direction will also be updated,

p(i+1) = r (i+1) + β(i)p(i), (23)

with the scalar ratio β(i) given by

β(i) =
∫ |r (i+1)|2∫ |r (i)|2 . (24)

With a sufficient number of iteration steps, we can reach the
solution of the Poisson equation with an arbitrary accuracy.
In our implementation, the convergence criterion is set as∫ |r (i)|2d3r < 10−5

∫
ρ2

0d3r, where we introduce the density
at t = 0. With this criterion, the convergence is to the same ab-
solute magnitude at all times. At the latter propagation times,
when the density term in the Poisson equation is smaller,
fewer iteration steps are sufficient to reach the same absolute
error (with larger relative errors, of course). The number of

iteration steps is further reduced at late times since the so-
lution for the φ(ndt) is used as the starting solution for φ((n
+ 1)dt). Taken together, these two facts lead to a reduction in
the number of iteration steps as a function of time (from about
60 initially to about 20 later on, as mentioned below).

III. RESULTS

We test the dielectrics-enabled version of NF for two
benchmarks involving gold and silver. The fit of the metallic
Lorentzian parameters to experimental values25 is taken from
our previous work.21 We first test gold spherical nanoparticles
in vacuum and silica. Then we study the sensitivity of silver
nanostructures for optical detection of a lipid layer in water.
In all simulations, the conjugate-gradient solution converged
rather quickly; typically up to 60 conjugate iterations were
used at the beginning, but as one propagates in time, the num-
ber of conjugate gradient steps is reduced, so in average we
use about 20 iterations per time step.

A. Absorption efficiency

In all simulations below, the optical properties are deter-
mined by the absorption coefficient, defined as

Qext = 1

πa2
· 4πω

nc |E0|2
∫

Im
(

P̃ (r, ω) · E0

)
d3r. (25)

Here, a is the radius of the spherical particle, n is the re-
fractive index of the surrounding medium, and P̃ (r, ω) is the
frequency-dependent total polarization defined as

P̃ (r, ω) = P̃p (r, ω) + (ε∞ (r) − εb) Ẽ (r, ω) ,

where

Ẽ(r, ω) ≡
∫

exp(iωt)E(r, t)dt = −∇φ̃(r, ω) + E0,

and the frequency-dependent polarization and densities are
similarly defined. In Eq. (25), we introduce εb ≡ ε0n2. Fi-
nally, in some of the simulations below we use a non-spherical
system (sphere+rod), but for simplicity keep the same pref-
actor definition, i.e., use only the cross-section area ( πa2)
of the sphere in the prefactor in Eq. (25). Also note that we
use the term absorption and extinction interchangeably here,
since NF has no retardation and therefore no scattering, so the
extinction and absorption coefficients are equal.

B. Spherical nanoparticle in vacuum

We first study a spherical particle in vacuum. We studied
such systems in our previous work which developed the NF
technique,21 but we repeat the simulations since we replace
the Fourier-transform convolution21 for the Poisson equation
by conjugate gradients. The radius of each particle is set as
a = 5 nm, but the method is invariant to overall scale change
as it is an NF approach. A uniform grid spacing (dx = dy
= dz = 0.25 nm) was used with a cubic box of (L = 16 nm)3.
The time-step is dt = 2 a.u.∼0.05 fs and Eqs. (9), (10), (12)
and (15) were propagated for several thousand atomic units
till convergence.
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FIG. 1. Near-field calculation of extinction (absorption) efficiency for an Au
spherical nanoparticle in vacuum (solid lines). The particle radius is 5 nm,
and the simulation spacing is �x = 0.25 nm. With increasing box size, the
NF result approaches the Mie scattering spectrum (the dashed line). The re-
sults are labeled by the number of grid points in each dimension, so they
correspond to grid sizes of L = 16-32 nm; for comparison, the particle diam-
eter is 10 nm.

Figure 1(a) gives the calculated Qext as a function of fre-
quency. The spectrum shows a major response at 2.4 eV due
to the dipole surface plasmon resonance. For a bigger box size
(L = 32 nm), with the same spacing, the spectrum is similar
and shifted down in magnitude approaching closer the analyt-
ical Mie theory limit which should be achieved for L → ∞,
dx → 0. One way to view the box size dependence is that
for large boxes there is less interaction between dipoles at
periodic images of the cell; alternately, we can view the de-
pendence as emerging from reflection of the field near the
edges and this implies that perhaps analytical continuation
approaches such as perfectly matched layers will allow the
use of smaller boxes.

C. Nanoparticle embedded in silica

We further apply the approach to study the optical ab-
sorption efficiency for a gold nanoparticle embedded in sil-
ica, a nanostructure which is well studied both theoretically
and experimentally.9, 26, 27 For optical frequencies, the dielec-
tric permittivity of silica is almost a constant, so we use a
frequency-independent term εSiO2 = 2.25ε0. The calculation
is similar to the previous spheres-in-vacuum example, but we
found that a somewhat smaller grid spacing (0.167 nm) was
necessary here.

Figure 2 gives the calculated extinction (i.e., absorp-
tion) efficiency of gold a nanoparticle embedded in silica.
The spectrum shows a plasmon resonance around 2.0 eV,
red-shifted from 2.4 eV when in vacuum, as in Fig. 1(a).
When increasing the simulation box, the plasmon resonance
blueshifts, approaching again the exact Mie calculation result
in the dashed line. Also note that there is a small artificial peak
around ω = 1.9 eV, which is a finite dx effect (more specif-
ically, at a finite dx there are artificial spatial edges which
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FIG. 2. NF calculation of the extinction (absorption) efficiency of an Au
nanoparticle embedded in silica (εSiO2 = 2.25ε0). The particle radius is again
5 nm while the grid spacing is �x = 0.167 nm. With increasing box size, the
NF results approach Mie theory (dashed line) except for a small peak around
1.9 eV which disappears when dx is smaller (not shown).

emerge when a sphere is described in a 3D Cartesian coor-
dinate system, and the large field at these edges modifies the
overall peak structure).

D. Nanostructures for detection of a flexible lipid layer

Inspired by the tunability of the surface plasmon reso-
nance by the metal-dielectric interface, we studied the spec-
trum of a lipid layer in water, and tested the sensitivity of the
spectrum to the dielectric constant of the lipid and therefore to
the presence of the layer. Such a system could be considered
as a simple example for dielectric-induced photodetection of
a dielectric lipid layer’s presence.

Figure 3 shows the designed probing nanostructures, a
single silver sphere and a silver sphere+rod combination. The
system is immersed in water. A lipid layer, when present, is
assumed to wrap around the sphere but not the rod.

The layer is modeled as a dielectric shell with an outer
radius of 5 nm. In the sphere+rod combination, the latter is
cylindrical with length 7 nm. Two rod diameters were studied,
1 nm and 2 nm. For the sphere+rod system, we studied both
perpendicular and parallel polarizations. The permittivity of
water is taken as εHO2 = 1.8ε0, and for the lipid εlipid = 2.2ε0.
The box size was the same (L = 16 nm) as in the pure sphere
case. The grid mesh is as dense as 128 × 128 × 128 to get
close to converged results.

Figure 4(a) shows the optical response of a silver spheri-
cal particle with and without a lipid layer attached. The major
peak at 3.3 eV of an isolated Ag particle in water is redshifted
to 3.15 eV when the lipid layer is attached. This resonance
comes from the dipole surface plasmon at the spherical metal-
water interface.

We then study (Fig. 4(b)) the sphere+rod system for a
rod with diameter d = 1 nm. When the incoming light is po-
larized perpendicular to the rod, the response is similar to
that in an isotropic spherical particle, so that when the lipid
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(a) (b) 

(c) (d) 

FIG. 3. Schematic illustrations of an Ag nanostructure for the optical detec-
tion of a lipid layer in water. (a) A single Ag nanoparticle with diameter 6 nm
in water and (b) with lipid layer surrounded. (c-d) like (a-b), but now a rod of
length 7 nm is attached on the sphere.

layer wraps around the sphere the major resonance is red-
shifted by ∼0.15 eV. With the light polarization parallel to
the rod, another mode appears at ∼1 eV due to the plas-
monic resonances at the rod end. But the major resonance at
3.3 eV still survives and when lipid layer is attached it red-
shifts again to ∼3.15 eV. Note that even for this small mesh
(dx = 0.125 nm), the calculation is not fully converged with
dx due to the small rod size (1nm), leading to an artificial split
of the low-frequency feature.
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FIG. 4. Calculated extinction (absorption) efficiency of the different nanos-
tructures in Fig. 3, using εH2O = 1.8ε0 and εlipid = 2.2ε0. Panel (a) shows
the optical response before and after the Ag nanoparticle is wrapped by the
lipid layer. Panel (b) gives the optical response of a complex nanostructure
(sphere+rod with rod diameter 1 nm) before and after lipid adsorption. Both
parallel and perpendicular polarizations are studied. (The splitting of the two
peaks at low frequencies at in panel (b) is an artifact due to finite grid dis-
cretization.) Panel (c) is similar to (b), but for d = 2 nm.
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FIG. 5. The evolution of the optical response of a bare and wrapped (shaded
areas) Ag sphere+rod structure, as a function of the dielectric constant of the
wrapping lipid layer. Here the light polarization is perpendicular to the rod.

The results for a thicker rod (diameter 2 nm) before and
after lipid wrapping are given in Fig. 4(c). As before the res-
onance above 3 eV is shifted down by 0.15eV, while due to
the smaller aspect ratio of the rod the parallel plasmon mode
is now at a higher frequency around 1.4-1.5eV and is again
sensitive (by a shift of ∼0.1 eV) to the presence of the lipid
layer.

Note that there are multiple peaks around 1.4 and 1.5 eV.
In essence, this is because the sphere splits the parallel plas-
mon mode.

To further investigate the optical sensitivity of a dielec-
tric wrapped sphere+rod system to the dielectric constant, we
performed a series of calculations in Fig. 5. The layer permit-
tivity is varied gradually from 1.4ε0 to 3.0ε0, and the light
polarization is perpendicular to the rod. For a layer permittiv-
ity of 1.4ε0, the response of attached structure is blueshifted
with respect to the unattached due to the smaller permittivity
of the lipid compared to water. But with increasing layer per-
mittivity, the resonance peak continues to redshift. The results
demonstrate the sensitivity of optical response of nanostruc-
tures to the dielectric property of the layer. Since the results
are scale independent in the sub-wavelength limit, structures
in the ranges of 2-100 nm could potentially benefit from such
detection.

IV. DISCUSSION

The CG method used here is very efficient in solving
the generalized Poisson equation, and the calculation can
be further accelerated if preconditioning is used. We also
note that at this stage, CG the based method is limited to
dielectrics with ε∞(r) > 0, since only with this condition
could −∇ · (ε(r)∇) be positive-definite. However, plasmon-
ics of metallic nanostructures in contact with metamaterials
or gain media with ε∞(r) < 0 are also of great interests. One
future goal is to enable the NF method to include materials
with negative dielectric function. This could be achieved, e.g.,
by solving the Poisson equation self-consistently, i.e., by an
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iterative solution of

−∇2φ (r, t) = ρp (r, t)
ε0

+ ∇ ·
(

ε∞ (r) − ε0

ε0
∇φ (r, t)

)
.

V. CONCLUSIONS

In conclusion, we extended NF electrodynamics to in-
clude dielectrics. Using CG, the non-trivial generalized Pois-
son equation in the NF formalism is economically solved with
arbitrary accuracy, and the numerical effort is comparable to
the integral convolution method which was previously used
by us for non-dielectrics (i.e., metals+vacuum). The new ap-
proach is applied to study the optical response of metallic
spherical nanoparticles in dielectrics. The benchmark results
are in good agreement with analytical Mie scattering.

As an application of the dielectrics-enabled NF method,
we designed a silver nanoparticle based structure for the op-
tical detection of a wrapped lipid layer in water. The calcu-
lations show that the major optical response of nanostructure
is mostly sensitive to the dielectric properties of the layer, as
well as to the polarization. Such structures could potentially
be applied for detection and characterization of absorbed lipid
layers.

Finally, with ordinary dielectrics included in the NF
method, it is now a powerful tool which can be widely used to
study near-field optics in various metal-dielectric nanostruc-
tures. Applications for embedding with the time-dependent
Schrödinger equation for molecules will be discussed in fu-
ture works.
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