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We develop an approach for dynamical (ω > 0) embedding of mixed quantum mechanical
(QM)/classical (or more precisely QM/electrodynamics) systems with a quantum sub-region, de-
scribed by time-dependent density functional theory (TDDFT), within a classical sub-region, mod-
eled here by the recently proposed near-field (NF) method. Both sub-systems are propagated si-
multaneously and are coupled through a common Coulomb potential. As a first step we implement
the method to study the plasmonic response of a metal film which is half jellium-like QM and
half classical. The resulting response is in good agreement with both full-scale TDDFT and the
purely classical NF method. The embedding method is able to describe the optical response of the
whole system while capturing quantum mechanical effects, so it is a promising approach for studying
electrodynamics in hybrid molecules-metals nanostructures. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4745847]

I. INTRODUCTION

Optical properties of metal nanostructures are a focus of
nanoscience in the recent decade due to wide applications
in various disciplines. The responses of metallic nanostruc-
tures at sub-wavelength scales are dominated by localized
surface plasmon resonances (LSPR), i.e., the collective oscil-
lation of valence electrons in metals. These plasmonic cur-
rents exhibit various novel dynamical phenomena, such as
surface enhanced Raman scatterings (SERS),1–3 single photon
emissions,4, 5 plasmon-exciton hybridization,6–8 and dynami-
cal electron transfer or charge separation between adsorbed
molecules and substrates.9, 10 Further, we earlier predicted that
the molecular dipoles can even guide plasmonic currents.11, 12

These features led to the emergence of a new field, labeled
nanopolaritonics or molecular plasmonics.

Modeling nanopolaritonics requires the combination
of the electrodynamics of nanostructures and associ-
ated molecules. The LSPR in metallic nanostructures
is usually studied with classical electrodynamics, either
analytically, e.g., with Mie theory13, 14 and plasmon hy-
bridization model,15, 16 or numerically, typically with finite-
difference time domain (FDTD),17, 18 or the discrete dipole
approximations.19–21 Recently, we proposed the near-field
(NF) method22 for studying the optical response of nanostruc-
tures at sub-wavelength scales. The NF is essentially a time-
dependent Poisson equation method, and solves the Maxwell
equations with the approximation that the electric field is lon-
gitudinal and retardation effects are negligible. The method
has been successfully applied to study the optical response
of metallic nanostructures at sub-wavelength scales and has
been extended to include an arbitrary number of dielectrics.23
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Although the optical responses of nanostructures can
be described by classical electrodynamics, the electronic
dynamics in molecule can only be correctly studied by
quantum mechanics. Recently, ab initio calculations such
as time-dependent density functional theory (TDDFT) have
been performed to understand the plasmonic coupling be-
tween metallic nanostructures and molecule-metallic hybrid
nanostructure systems,24–28 revealing the importance of quan-
tum effect at sub-nanometer contacting regime. However,
due to numerical constraints, only nanostructures involving
hundreds of atoms have been computationally studied, sizes
beyond ∼2 nm are not accessible by fully quantum methods.
To bridge the gap between different sizes in the molecule-
nanostructure system, various approaches have been
developed. The general strategy is to treat the molecular sys-
tem as quantum mechanical while the metallic nanostructure
is classically described. To list a few, Masiello and Schatz de-
veloped a many-body theory on SERS processes;29 they also
reported a numerical approach combining TDDFT and FDTD
methods to study the enhanced absorption of molecules ad-
sorbed on metal surface.30, 31 Jensen et al. have developed
an atomistic electrodynamics32 model and coupled it with
TDDFT, which has been used to study the relation between
optical response of a hybrid system and molecule-metal sep-
aration and adsorption orientations.33 Recently, we have also
developed different models to couple electrodynamics with
molecule described by a two-level quantum system.12, 34–37

An alternative solution proposed here is embedding, i.e.,
the interface region, including both adsorbed molecule and
nearby finite metal cluster, is described by full-fledged quan-
tum mechanical approach; while the rest of the nanostructure
is treated as classical or described by some less accurate quan-
tum mechanical (QM) model. The idea is analogous to em-
bedding methods in electronic structure.38–40 The goal of the
embedding here is to obtain correct optical response of the
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hybrid nanometer sized system, while capturing the static and
dynamic quantum effects of coupling between molecule and
metal substrate.

The specific dynamical embedding proposed here com-
bines a time-dependent quantum mechanical propagation (in
practice TDDFT) with NF. The embedding is very simple
since in NF the dynamics is non-retarded and is determined
only by a longitudinal electric field, due to an overall elec-
tric potential, just as in typical quantum (i.e., most TDDFT)
descriptions. By sharing the common potential which is cal-
culated from both embedded region and the rest of the NF
region, the two subsystems interact and propagate simultane-
ously. Using this embedding scheme the optical response of a
large multi-scale system is correctly captured at a reasonable
computational cost. The resulting TDDFT-NF embedding ap-
proach is promising for the study of nanopolaritonics effect,
as well as the electrodynamics enhancement and chemical en-
hancement in SERS and other combined photonics-materials
effects.

Here we present the general approach and a first imple-
mentation, the plasmon response of a thin metal film. The
general formalism is given in Sec. II. We then implement the
method in a metallic thin film slab which is half-QM and half-
NF (Sec. III). Finally discussion and conclusions follow in
Sec. IV.

II. GENERAL METHODOLOGY

We first describe the general methodology and in Sec. III
specialize to a model one-dimensional (1D) system.

There are two regions, a quantum mechanical one de-
scribed here by DFT and TDDFT, and a classical one de-
scribed by electrodynamics – here, specifically, by the NF
approach, which is the long wavelength limit of the time-
dependent Maxwell equations. We start with NF and then turn
to TDDFT. Afterwards, we describe the embedding, which
has two facets: both the connecting potential through a sin-
gle potential related to the overall densities, and also the re-
lation between the parameters used and the initial static state.
Atomic units (e = ¯ = me = 1) are used.

A. Time-dependent NF equations

The classical part is handled here by NF, a time-
dependent Poisson algorithm. It relates the charge density in
the classical region to a polarization,

ρNF (r, t) = −∇ · P (r, t) , (1)

which in turn is related to the electric field. In the frequency
domain the relation is

P̃ (r, ω) = (ε (r, ω) − ε0) Ẽ (r, ω) , (2)

where in practice a Lorentzian expansion is used to describe
the dielectric permittivity,

ε(r, ω) = ε∞(r) +
Nj∑
j=1

ε0βj (r)

ω̄2
j (r) − iαj (r)ω − ω2

. (3)

Here, Nj ranges typically from ω̄2, depending on the mate-
rial and the level of sophistication needed, while ε∞, β j, ω̄j ,
and αj are Lorentzian-oscillator fitting parameters. (Note that
P is not the full polarization, which has an additional com-
ponent (ε∞(r) − ε0)E(r, ω), associated with the frequency-
independent part of the permittivity; however, that component
is accounted for by the way the Poisson equation is solved.)

Equation (2) is then transformed (as in FDTD) to the time
domain with auxiliary quantities Pj for each oscillator,

P (r, t) =
Nj∑
j=1

Pj (r, t) , (4)

d2

dt2
Pj (r, t) = −α (r)

d

dt
Pj (r, t) − ω̄2

j (r) Pj (r, t)

+ ε0βj (r) E (r, t) . (5)

In NF, the electric field is assumed longitudinal, and is
then related to the overall electrostatic potential

E (r, t) = −∇φ (r, t) + Eext (r, t)

= −∇φ (r, t) + Eext,0 (r) δ(t), (6)

where we introduced an external field Eext, 0, typically a pulse
with a uniform spatial distribution (delta function in time).

For a classical-only description, the potential is deter-
mined from the NF charge density ρNF. However, anticipating
the embedding in the next stage, we note that the Coulomb
potential for electrons needs to be obtained from a Poisson
equation relating the potential to the overall charge density,
which yields

−∇ · (ε∞ (r) ∇φ (r, t)) = ρtot (r, t)

−∇ · (ε∞ (r) Eext,0 (r))δ(t), (7)

with the total charge defined as

ρtot (r, t) = −n (r, t) + ρb (r) + ρNF (r, t) . (8)

Here, n(r, t) is the electronic number density due to the
quantum (DFT) region, and ρb is the ionic background den-
sity. This simple Poisson relation is the central connection for
the embedding.

The initial conditions for the NF equations, before the ap-
plication of the pulse, are a stationary polarization and electric
field. This is obtained from the static forms of the equations
above (Eqs. (4)–(8)), yielding

Pj,0 (r) = ε0βj (r)

ω̄2
j (r)

E0 (r) , (9)

so

P0 (r) =
⎛
⎝ε∞ (r) − ε0 + ε0

Nj∑
j=1

βj (r)

ω̄2
j (r)

⎞
⎠ E0 (r) , (10)

and

ρNF,0 (r) = −∇ · P0 (r) , (11)



074113-3 Y. Gao and D. Neuhauser J. Chem. Phys. 137, 074113 (2012)

where

−∇ · (ε∞ (r) ∇φ0 (r)) ≡ −n0 (r) + ρb (r) + ρNF,0 (r) ,

(12)
and the subscript “0” on the densities and fields refers to the
static period before the pulse application.

B. DFT and TDDFT

The quantum region is treated through the time-
dependent TDDFT equations for a set of orbitals, 	m(r, t):

i
∂

∂t
	m (r, t) =

(
−1

2
∇2 + veff (r, t)

)
	m (r, t) , (13)

where veff, the time-dependent effective potential, is the sum
of an electrostatic and an exchange-correlation (XC) part,

veff (r, t) = −φ (r, t) + vxc (r, t) . (14)

The electrostatic part is obtained by the solution of the
Poisson equation, Eq. (7); it involves a quantum number den-
sity, n(r, t) obtained in TDDFT from the occupied orbitals:

n (r, t) = 2
∑
m

|	m (r, t)|2 . (15)

The dependence of the XC potential on the charge den-
sity is uncertain, especially when embedding is used; here we
choose the simplest approach where the exchange correlation
functional is the usual adiabatic XC functional of the instan-
taneous electric density, vxc (r, t) = δExc/δn (r, t), but other
options will be explored in the future.

The initial conditions for the orbitals, before the appli-
cation of the pulse, is that they solve the time-independent
Kohn-Sham equation,

Em	m,0 (r) =
(

−1

2
∇2 + veff (r)

)
	m,0 (r) . (16)

Here, as in the latter time-dependent evolution,

veff (r) = −φ0 (r) + vxc (r) , (17)

and Eq. (12) relates the densities to the potential, with

n0(r) = 2
∑
m

|	m,0 (r)|2. (18)

The electronic structure of the hybrid system is calculated
iteratively until the self-consistent Eqs. (9)–(12) and (16)–(18)
are converged. At convergence, the static dipole moment,
which is a combination of a quantum and NF parts, is

dtot,0 = dQM,0 + dNF,0 ≡
∫

(ρb (r) − n0 (r)) rdr

+
∫

P0 (r) dr. (19)

C. Time propagation

After convergence of the static quantities a pulse is ap-
plied and the combined NF and TDDFT equations are solved

simultaneously. Previously, we have presented the leap-frog
approach to propagating the NF equations, so we only briefly
review it here. We define the current densities as

Jj (r, t) = ∂Pj (r, t)
∂t

. (20)

Then, the initial conditions on the time-dependent prop-
agations are (in a slight variation on the previous formalism,
designed to allow for simple application of the delta-function
pulse at t = 0):

Pj (r, t = −�t) = Pj0 (r) ,

Jj

(
r, t = −�t

2

)
= 0.

The leap-frog algorithm is then

Pj (r, t + �t) = Pj (r, t) + �tJj

(
r, t + �t

2

)
, (21)

Jj

(
r, t + �t

2

)
= 1 − αj

2 �t

1 + αj

2 �t
Jj

(
r, t − �t

2

)
− �t

1 + αj

2 �t

× (
ω̄2

j Pj (r, t) − ε0βj (r) E (r, t)
)
, (22)

and E(r, t = n�t) and φ(r, t = n�t) are obtained by solving
Eqs. (6)–(8), with δ(t) replaced by δn0/�t.

In conjunction, the Kohn-Sham orbitals are also propa-
gated; the simplest way is through a split operator (though
other approaches are also feasible) such as, in loose notation:

	m (r, t + �t) = e−iveff(r,t)�t/2e−iKdt e−iveff(r,t)�t/2	m (r, t) .

(23)
Here, veff is both time- and space-dependent (we use

the usual LDA adiabatic potential), and K is the kinetic en-
ergy operator. Other possible variants include self-consistent
(forward-backward) propagations, etc.; these will be dis-
cussed in a future publication.

The result of the calculation can be summarized in the
overall time-dependent induced dipole, defined as

δdtot (t) = δdQM (t) + δdNF (t)

≡
∫

(ρb (r, t) − n (r, t)) rdr − dQM,0

+
∫

P (r, t) dr − dNF,0. (24)

The optical absorption coefficient, σ abs(ω), is determined
from imaginary part of the dynamical polarizability in the fre-
quency domain,

σabs (ω) ≡ 4πω

c
Im α (ω) = 4πω

c
Im

⎛
⎝δd (ω) · Êext,0∣∣∣Êext,0

∣∣∣

⎞
⎠ .

(25)
where

δd (ω) ≡
∫

eiω t δdtot (t) dt. (26)
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D. Parameter consistency

Beyond the overall theme of using a single Coulomb po-
tential based on the combined density or Eq. (8), the remain-
ing issues are the division of space to classical and quantum
regions, and the relation between the parameters used for ε(r,
ω) and the DFT functionals.

We first discuss the division to two parts. We envision a
small QM region, and a classical region which encompasses
it. The division between the two is through a dividing func-
tion, f(r), so that

ρb (r) = f (r) ρ̄b (r) , (27)

and

βj (r) = (1 − f (r)) β̄j (r) , (28)

where ρ̄b is the density which would have been used if a
purely QM description was used throughout the whole region,
and analogously β̄j is the Lorentzian-oscillator strength coef-
ficient which would have been used if a purely classical NF
description was taken. The dividing function, f(r), is mostly 1
(for the QM region) or 0 (classical region), and varies rapidly
but continuously in a small QM/classical interface region. The
reason for Eqs. (27) and (28) is that the Lorentzian oscillators,
if taken as physically motivated quantities, are proportional to
the classical charge density, so that using f and 1 − f gives a
smooth transition from a classical to a quantum charge den-
sity. (Future work will examine the detailed dependence on
the smoothness parameter of the dividing function f but in our
simulations the results were barely dependent on the details
of f as long as it varies from 0 to 1 over less than 3 a.u.)

Next, consider the relation between the DFT and electro-
dynamics parameters. For embedding to be successful, we re-
quire that at least long wavelength excitations (q → 0) should
have equal effects in both the classical and quantum regions;
put differently, this requires that

ε̄DFT (q → 0, ω > 0) = ε (q → 0, ω > 0) , (29)

where ε̄DFT is a bulk QM index of refraction associated with
the region near the border of the quantum mechanical re-
gion, and the right hand side refers to the electrodynamics
(NF here) index of refraction. Typically the embedding will
be done over a piece of metal so that ε̄DFT refers to the metal.

Note that the equations above imply that one should ide-
ally not mix an experimentally derived susceptibility with an
arbitrary DFT exchange-correlation (or exchange-correlation-
memory) functional, but instead either fit QM to an experi-
mentally derived ε(q = 0, ω > 0); or, as done here, replace
the experimental electrodynamics susceptibility by one which
is designed to fit the QM susceptibility.

E. Jellium slab

The following discusses the embedding for a simplest
case where near the edges of the QM region the nuclear po-
tential is constant (i.e., the border of the QM region is a metal
with a jellium potential). We emphasize that jellium is just
a special case; the discussion above is general, and more so-
phisticated descriptions of the metal (with more complicated

indices of refraction than the jellium’s) are feasible. Further,
the jellium needs only be used near the edge, and within the
quantum regions any potential (such as molecular) could be
used.

In the jellium-metal case, ρ̄b (r) = ρ0 near the edge of the
QM (DFT) region. The limit of the metallic susceptibility at
large wavelength in that region is

χjellium,DFT (q = 0, ω > 0) = −ω2
p

ω2
, (30)

so that for the classical subsystem, the metal is described here
by the dielectric permittivity of a single (Nj = 1) dissipation-
less (αj = 0) Lorentzian oscillator:

ε (r, ω) = ε0

(
1 + β (r)

ω̄2 − ω2

)
, (31)

so

ε∞ (r) = ε0,

and also

β (r) = (1 − f (r)) g (r) β0,

and

β0 = 4πρ0.

Here, g(r) is the shape function of the overall structure. Note
that we have introduced a small restoring force part through a
ω̄2 parameter; this is necessary for proper self-consistency, so
that Eq. (10) can be solved for the initial polarization. Further,
the sign of this ω̄2 parameter is necessary for numerical con-
vergence of the initial conditions (see Sec. III) and its intro-
duction is acceptable since our interest is only at high frequen-
cies and not in the static susceptibility so the modification of
the index of refraction at low frequencies will not affect the
dynamical results. We have numerically checked that the re-
sults are not influenced by the magnitude of ω̄ as long as it is
sufficiently small.

We note that Eqs. (9)–(12) show that in the static (pre-
pulse) case there is still an induced electron density in the
classical region due to the density profile in the quantum re-
gion. The induced electron density in the classical region is

ρNF (r) = −∇ · P0 (r) = −∇ · {(ε (r, 0) − ε0) E0 (r)}

= −∇ ·
(

ε0β (r)

ω̄2
∇φ0 (r)

)
, (32)

and the Coulomb potential is evaluated directly by convolu-
tion, since here ε∞(r) = ε0:

φ(r) = 1

4πε0

∫
ρNF(r′) + ρb(r′) − n0(r′)

|r − r′| dr′. (33)

III. TEST-CASE: ONE-DIMENSIONAL JELLIUM SLAB

A. One-dimensional formulation

To keep the system simple, we implement the embedding
method to study the plasmonic response of a metal film. The
film is modeled as half quantum mechanical (jellium back-
ground) and half classical. The jellium extends between −L
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< z < 0, and the classical NF half between 0 < z < L. In
our previous notation, the shape of the film is g(z) = 1 for |z|
< L, and 0 otherwise.

We used a Fermi-Dirac-like transfer function, f(z), which
changes from 1 in the quantum region (z < 0) to 0 in the
positive region, and its width is labeled as σ . The 1D equa-
tions are very similar to the 3D counterpart; the only differ-
ence is that, since the Hamiltonian is only z-dependent, the
time-dependent 3D orbitals are reduced to 1D quantum well
states ψn fulfilling(

−1

2

d2

dz2
+ veff (z)

)
ψn (z, t) = i∂

∂t
ψn (z, t) , (34)

which are normalized as
∫

dz |ψn (z, t)|2 = 1, while the
three-dimensional density, obtained by integrating the x-y
wave-vector, is then as usual

n (z, t) = 1

π

εn<EF∑
n

(EF − εn) |ψn (z, t)|2 . (35)

The rest of the equations proceed as before. We as-
sume that the system is perturbed by a constant longitudi-
nal optical field pulse Eext (r, t) = Eext,0δ(t)z, so that the one-
dimensional Poisson equation is solved directly from

− d2

dz2
φ (z, t) = ρb (z) + ρNF (z, t) − n (z, t)

ε0
(36)

(the term involving the divergence of the constant external
filed times the polarization in Eq. (6) vanishes).

B. Numerical results

For the 1D test case, we implemented the embedding
approach to study the optical response of a metal slab
with jellium density of ρ0 = 0.08 (correspondingly, rs

= 3.0 and β0 = 0.11) and thickness 2L = 120 (recall that
a.u. units are used throughout). A Fermi-Dirac function
f (z) ∼ 1/

(
1 + exp

(− z
2σ

))
is used for smooth separation

of the quantum and halves, with σ = 1.0 a.u. The resulting
structure of the hybrid system is illustrated in Fig. 1. Since
1D periodic boundary conditions are used along the z
direction, a large simulation region of 600 a.u. is employed,
guaranteeing the elimination of inter-cell interaction. A total
number of 512 grid points are used, giving a grid spacing
�z = 1.17 a.u. which is sufficient to ensure convergence. A
Lorentzian-oscillator parameter ω̄ = 0.041 is used to model
the metal in the NF region.41–44

Figure 2 gives the calculated static charge density distri-
butions, both quantum mechanical and NF. The electron den-
sity of the QM jellium region at z ∼ −L, the vacuum-QM
interface, shows a Friedel oscillation, which is in exact agree-
ment with that obtained by using a full QM jellium calcu-
lations for the whole film. At the QM-NF interface (z ∼ 0),
the distribution is smooth since we adopted a smooth posi-
tive background, although the decay depths are different for
electrons and the jellium background. Also, at the QM-NF in-
terface, the classical charge distribution established a dipole
layer pointing from the QM to the NF regions, which almost
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FIG. 1. Schematics of embedding approach for metal slab with thickness
120 a.u. The left half is modeled by jellium and quantum mechanical (QM)
description, while the right half is studied with near-field (NF) method. The
transition from the quantum to classical regions is artificially smoothed in the
figure, i.e., in practice it is much more abrupt, around 2 a.u.

balances the dipole created by ρb(z) − n0(z); the total charge
density then gives rise to an almost vanishing dipole layer at
z ∼ 0. The resulting total charge distribution shows that the
embedding interface, or QM-NF transition region has little
effect on the electronic structure at vacuum-QM interface.

Once the static quantities are produced, we proceed to
the time-dependent simulations. As this is a first implemen-
tation, we are not trying to employ an efficient TDDFT ap-
proach so a small time step (�t = 0.025 a.u.) is used. Note
that a major advantage of the NF approach, the possibility of
using large steps, is lost now since the QM simulations dic-
tate a small step; however, NF is still convenient to use in the
embedding since it is potential-based, and, further, future sim-
ulations will employ more sophisticated TDDFT propagation
schemes with larger time steps.

An external delta-function pulse Eext (r, t = 0) = 1
�t

E0z
is applied and at t > 0 the external field vanishes. A small
initial delta-function field strength is used (E0 = 10−5 a.u.)

−90 −60 −30 0 30 60 90

0

0.5

1

1.5

z (a.u.)

ρ(
z)

/ρ
0 (

ar
b.

 u
ni

ts
)

 

 

Full jellium

n
0
(z)

ρ
NF,0

(z)

ρ
tot,0

(z)

FIG. 2. Static charge distributions of the hybrid system. The jellium or QM
electron density (solid blue line) n0(z) shows a Friedel oscillation at the
vacuum-jellium interface, in exact agreement with that obtained from a full
QM calculation (dashed blue line). While the NF density (solid red line)
ρNF, 0(z) established a static non-vanishing dipole at the jellium-NF inter-
face, which approximately balances the dipole built by ρb(z) − n0(z). The
total static charge distribution ρtot, 0(z) is also given (solid black line).
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FIG. 3. Normalized dynamical induced dipole strength obtained by embed-
ding method. The total dipole strength and the contributions from QM elec-
trons and the NF subsystem are all displayed. The embedding result is in
agreement with that calculated using either full QM TDDFT (dashed line) or
classical NF method (dotted-dashed line).

to ensure that the response is linear. Equations (21)–(23) are
propagated for 80.0 fsec (∼2000 a.u.).

Figure 3 gives the calculated time-dependent induced
dipole moment per area per the external electric field of the
hybrid QM-NF system. The total dipole oscillates with a pe-
riod of ∼20 a.u. The figure also shows the dipole component
due to the QM electrons and the NF part. Initially, each com-
ponent contributed half of the total dipole moment of the hy-
brid system, consistent with our division of the system as half
QM and half classical. Latter, there is a slight shift between
the components.

In Figure 2 we have also performed full QM TDDFT and
classical NF calculations for the whole film with thickness
of 2L for comparison. The simulations show that the dipole
in the hybrid system is almost indistinguishable from the full
QM TDDFT result, and they differ from the NF oscillation
since the classical dipole is an exact sinusoidal function of
time without dephasing. The non-constant amplitude of the
dipole in either hybrid or full QM systems is due to the energy
transfer between plasmons and electron-hole pairs.
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FIG. 4. Frequency-dependent optical absorption of the hybrid system (solid
line). The spectra obtained by using full QM TDDFT (dashed line) and clas-
sical NF calculation (dotted-dashed line) are given for comparison.
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The obtained time-dependent dipole moments are con-
verted into frequency-dependent optical absorption spectrum,
as given in Fig. 4. A decay function of the form e−t/η is used
for all three systems to broaden the spectra, with η = 400 a.u.
This plot quantifies the physical process shown in Fig. 3, i.e.,
the plasmon resonance in the hybrid system produces that in
the full QM jellium system. Comparing the hybrid system and
full QM jellium film, both the plasmon frequency and spectral
shape are almost the same. Compared with classical-only NF
spectrum, the optical absorption of the hybrid system is not as
sharp as that obtained using a classical-only NF calculation.
This is due to that fact that the classical model involves no
damping for the plasmon resonance. In addition, the plasmon
resonance energy in the hybrid system is red-shifted with re-
spect to the classical result; this is due to the spill-out effect
of the QM electrons at the vacuum-jellium interface, so that
the effective electron density participating in the plasmon res-
onance is lowered.

This picture is corroborated in Fig. 5, in which the dy-
namical induced QM electron densities are investigated. The
distribution obtained from the hybrid system again coincides
with that calculated using the full QM jellium model, demon-
strating that the spatial properties also reproduced by the em-
bedding approach. Thus, the embedding scheme successfully
gives overall correct electrodynamics of the whole system
combining QM jellium and classical NF sub-ones.

IV. DISCUSSION AND CONCLUSIONS

Although the system we have studied is as simple as 1D
and jellium-like, the formalism is general and can be directly
extended to 3D systems, and the whole system can be arbi-
trarily divided into sub-systems of two different descriptions.

In practice, there will be considerations such as the best
shape of the transition function, f(r); a smoother function
will reduce the static dipole in the interface region and lead
to closer match between the fully quantum and embedding
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dipole. Further, for realistic descriptions it will be advisable
to introduce memory and damping potentials such that the
TDDFT response will be guided by the experimental values
that determine the NF Lorentzian-oscillator parameters, in-
stead of the opposite route taken here. Future works will also
tackle the issue of modification of the functionals to account
for the presence of the NF region.

In the embedding approach, the QM sub-region only
shares a common Coulomb potential, thus the QM meth-
ods used for this region is most naturally a potential based
method, such as DFT or TDDFT. More elaborate QM descrip-
tions can be adopted. These include correlated wave-function
methods (e.g., configuration interaction), but they will also
most likely be coupled through an overall potential.

The outlined modifications are only going to add to
the overall framework, developed here, which should give
quantitatively accurate results due to the two ingredients –
the use of a common Coulomb potential, and the matching of
the susceptibilities.

Finally, we note that the same overall approach is going
to be applicable when other dynamical embedding schemes
are applied; for example, our recent dynamical orbital-free
density functional (OF-DFT) approach45 could be used in-
stead of the Maxwell relation, and has the added advan-
tage that not only the long-wavelength susceptibilities are
matched, but the whole ε(q, ω) is matched between the clas-
sical and quantum regions.
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