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Communication: Dynamical embedding: Correct quantum response
from coupling TDDFT for a small cluster with classical near-field
electrodynamics for an extended region
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We show how to obtain the correct electronic response of a large system by embedding; a small region
is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical
electrodynamics evolution using the Near-Field method over a larger external region. The propaga-
tions are coupled through a combined time-dependent density yielding a common Coulomb potential.
We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its
influence on the dynamical charge transfer between an adsorbed H2O molecule and the substrate,
giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent dif-
ferential spectra) with much less computational effort. The results demonstrate that atomistic embed-
ding electrodynamics is promising for nanoplasmonics and nanopolaritonics.© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4804544]

Molecular plasmonics (a.k.a. nanopolaritonics),1–4 a new
field investigating the interaction between molecules and sur-
face plasmons, requires modeling of a large number of elec-
trons coupled to an electromagnetic field. Time dependent
density functional theory (TDDFT) has been widely used to
study quantum effects in plasmonics5–7 that are missing in
conventional classical electrodynamics models.8–10 However,
TDDFT is expensive so a multiscale approach bridging the
molecular and plasmonic scales is needed.11–13

Recently, we developed an embedding electrodynamics
approach.14 (For other approaches see Refs. 15–20) Our ap-
proach describes nanostructures as quantum systems embed-
ded within a frequency-dependent dielectric medium; the sys-
tems are propagated simultaneously, coupled through an over-
all time-dependent potential. The method was demonstrated
on a one-dimensional jellium system.

Here we extend the quantum embedding method, with
the new feature of explicit inclusion of molecular orbitals that
are expanded with atomic basis sets. The electrodynamics of
the entire system is calculated by propagating each subsys-
tem (TDDFT for the quantum part and near-field (NF)10 for
the classical part) simultaneously and the common Coulomb
potential is evaluated and used at each step. We demonstrate
that the resulting atomistic embedding method is successful
at mimicking full scale TDDFT for describing the plasmonic
response of a Mg slab and the dynamical charge transfer (CT)
between an adsorbed H2O molecule and substrate. Thus, the
work demonstrates that embedding is useful even for chemi-
cally covalent systems (metal-molecule here) and that a small
quantum region is sufficient for realistic simulation of the
molecular response, with the classical NF part ensuring that
there are no energy reflection effects from the edges of the
quantum region. The resulting embedding methodology is not
restricted to TDDFT/NF and is appropriate for more elaborate
quantum theories.

The key in the embedding is that both the embedded
quantum system and the classical environment are subjected
to the same electric potential φ, obtained from the time-
dependent combined quantum+classical density through a
time-dependent Poisson equation (using e = ¯ = me = 1),

−ε0∇ · (ε(r)∇φ(r, t))

= n(r, t)− nion(r)+ ρNF(r, t)

+ ε0∇
2(δφext(r, t)), (1)

where we introduced the classical static dielectric constant of
the background ε(r), the quantum electron density n, the ionic
background nion, the NF electron density ρNF, and the exter-
nal potential δφext. This equation is general and as explained
below the dynamic response of the background is accounted
for in ρNF(r, t).

Once it is accepted that the same electric potential gov-
erns both the quantum and classical systems, the rest of the
formalism is straightforward. The quantum electron density,
n(r, t) = 2

∑occ
i |ψi(r, t)|2, is obtained by propagating the

time-dependent Kohn-Sham (TD-KS) equation

i
∂ψi(r, t)

∂t
= ĥψi(r, t)

=

(

−
1

2
∇2 + φ(r, t)+ δφext(r, t)

+υxc(r, t)

)

ψi(r, t), (2)

where we introduced the time-dependent single-particle
Hamiltonian operator ĥ and the exchange correlation (xc) po-
tential υxc. Note that the ion-electron interaction is included
in the overall NF potential φ, determined through Eq. (1).

The classical background is described by the NF method,
where the main ingredient is the NF density. (This facilitates
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the embedding since the NF and TDDFT densities combine
straightforwardly.) The NF density is obtained from a sum of
a small number (labeled Nj, typically 1–9) of Drude-Lorentz

classical polarizations, ρNF(r, t) = −∇ ·
∑Nj

j=1 Pj fulfilling

d2

dt2
Pj (r, t) = −αj (r)

d

dt
Pj (r, t)− ω̄2j (r)Pj (r, t)

+ ε0βj (r)E(r, t), (3)

where the Drude-Lorentz coefficients are obtained by fit-
ting the frequency dependent dielectric response. The Drude-
Lorentz fit is used for the same reason that it is popular in full
scale Maxwell studies, i.e., it enables the representation of
a delayed frequency-dependent response through an instan-
taneous time-dependent propagation. The electric field is as-
sumed longitudinal

E(r, t) = −∇φ(r, t)− ∇δφext(r, t). (4)

Numerically, the time-dependent equations (Eqs. (2) and (3))
are propagated simultaneously, maintaining self-consistency
between the classical NF fields and quantum TD-KS orbitals.
In practice, the TD-KS equations are represented by atomic
basis sets; in this work the density matrix D (rather than indi-
vidual orbitals) is propagated as usual,

D(t + 1t) = U(t + 1t, t)D(t)U†(t + 1t, t), (5)

and a Magnus expansion is used for U,

U(t + 1t, t) = exp

(

−i1tS−1
h

(

t +
1t

2

))

, (6)

where we introduced the atomic orbital overlap and single-
particle matrices, S and h. Simultaneously, the NF polariza-
tions are propagated using a simple leap-frog algorithm that
discretizes Eq. (3), see Ref. 10 for details.

The initial conditions for the propagation are that before
the excitation the potential φ0 = φ(t = 0) does not vary in
time, so that the static KS orbitals, ψ i, 0’s, fulfill

(

−
1

2
∇2 + φ0(r)+ υxc(r)

)

ψi,0(r) = εiψi,0(r), (7)

simultaneously with the overall static Poisson equation, which
becomes

−ε0∇
2φ0(r) = n0(r)− nion(r)

+ (ε(r, 0)− ε0)∇φ0(r). (8)

After convergence, the static NF density and TDDFT orbitals
are subjected to a delta-function pulse φext(r)δ(t) and Eqs. (2)
and (3) are propagated forward in time.

We apply the atomistic embedding electrodynamics to
study the plasmonic response of a Mg(0001) slab and its in-
fluence on the CT between an adsorbed H2O molecule and a
Mg substrate. (All nuclei are frozen here, though the method
is equally applicable when the nuclei move; in the classi-
cal region, the jellium response should then be taken as ex-
perimental, including nuclear polarization effects.) Mg is an
ideal initial substrate, as its electronic structure description is
simple (unlike transition metals such gold or silver), it pos-
sesses a well-defined plasmon and conjugates well to sim-
ple molecules. Unlike gold or silver, however, the plasmon is

FIG. 1. Embedding a Mg(0001) slab. The entire 6-layer Mg slab is parti-
tioned as a 3-layer 3 × 4 Mg cluster with 36 atoms (solid gray spheres) of
size 9.6 × 11.1 × 7.8 Å3 embedded within a near-field (NF) metal (trans-
parent part). The Mg cluster is the central upper part of the entire slab.
The adsorption geometry of a H2O molecule (red and white spheres) is also
displayed.

in the UV (∼9 − 10 eV) so we used water as the adsorbed
molecule as it has a strong absorption feature around that
energy.

The embedding strategy is illustrated in Fig. 1. We im-
plemented the method in the SIESTA package,21 using norm-
conserving pseudopotentials,22 double-zeta plus polarization
basis sets, and the generalized gradient approximation func-
tional with Perdew-Burke-Ernzerhof parameterization (GGA-
PBE) functional.23 Periodic boundary condition was used for
infinite slab. Further, a single k-point sampling is used, which
is reasonable because of the size of the system (we verified
that the important feature, the DOS (density of states) is al-
most the same for many- and single-point sampling). The
dielectric function of the Mg metal is fitted to a full-scale
TDDFT calculation with a single Drude-Lorentz oscillator
with parameters α1 = 0.5 eV, β1 = 10.892 eV2, and ω̄1 = 0.32
eV; the fit is excellent in the relevant frequency range (2−16
eV), as seen in Fig. 2. All quantum/classical interfaces were
chosen between adjacent atomic planes and the NF electron
density (i.e., β(r)) falls off smoothly (over 0.8 Å) to reduce
discontinuities. We study the linear response of system to an
electric delta-function (in time) pulse with polarization nor-
mal to the surface. All propagations use a uniform 1t = 0.5
a.u. for 2000 steps.

First, a clean slab (no H2O) is studied. The dynamical
response of the Mg(0001) slab is given by the normalized
average dipole moment, d̄(t) =

n·d(t)
|E0|Na

(Na is the total num-
ber of atoms, n is the unit surface normal, and d is the to-
tal dipole). The corresponding average polarizability is ᾱ(ω)
=

∫

dt eiωt−ηt d̄(t), where η = 0.15 eV is used for broadening.
The calculated dipoles using different methods are com-

pared in Fig. 2(a). All results decay initially due to band-
structure induced damping.24 The full-scale TDDFT calcu-
lation for the entire slab serves as a benchmark and is used
to fit the parameters in the NF calculations. However, the
uniform decay in the NF result is more physical since both
the finite k-sampling and adiabaticity of the xc potential� � � � � � � � � � � 	 
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FIG. 2. (a) Normalized average dipoles and (b) absorption coefficients
(imaginary part of the polarizabilities) for a clean Mg slab calculated by dif-
ferent methods: fully TDDFT (all quantum), NF (classical), and embedding.
In (c) and (d) the embedding result is compared with dipoles and absorption
of a free cluster (clu-TDDFT) and a bare dielectric environment (env-NF).

underestimate the plasmonic damping in TDDFT.25 The em-
bedding dipole agrees well with both other methods till
200 a.u. and continues to track the NF result with a good phase
agreement up to 300 a.u.

The success of embedding is also demonstrated in the
frequency-domain absorption (Fig. 2(b)), where all responses
are similar. Figures 2(c) and 2(d) prove that embedding is
necessary, since a small non-embedded cluster shows dipole-
moment oscillations characteristic of reflection. Therefore,
the atomistic embedding is necessary—the embedding facili-
tates the transport of the time dependent electric signal from
the quantum to the classical region without reflections.

We next focus on the effect of a H2Omolecule adsorption
on the plasmon resonance and the CT between the molecule
and the Mg(0001) slab. The molecule lies flat on the surface
and the O atom is right on top of a surface Mg atom with a
distance of 2.4 Å. This structure mimics many experiments
studying plasmonics and polaritonics. The GGA functional
is limited for CT, but our main goal is to demonstrate that
embedding enables the use of a small cluster, so the accuracy
of the details of the functional, which will mainly affect the
molecular CT, is less relevant; future studies will incorporate
long-range functionals for CT.

Figure 3(a) shows the differential absorption coefficient,
i.e., the change of the imaginary part of polarizability before
and after molecular adsorption. The full TDDFT calculation
shows that the absorption near the plasmon resonance around
8.7 eV is reduced when a molecule is added. This is due to en-
ergy transfer from the metal to the molecule. Without the di-
electric environment, the cluster+H2O result fails to describe
this behavior, but when the NF environment is embedded, the
dip is reproduced.

To further study the effects of the H2O adsorption,
we show in Fig. 3(b) the imaginary part of the frequency-
dependent Mulliken charge transfer on the molecule
(1Q̄(ω) = 1

|E0|

∫

dt eiωt−ηt1Q(t), where 1Q(t) is the charge
transferred to the molecule) as it is an indication of the in-

FIG. 3. (a) Differential polarizability between adsorbed and clean Mg sur-
face and (b) dynamical charge transfer to the H2O by the different methods:
full TDDFT of the entire system (339 atoms), an isolated small cluster of the
embedded H2O molecule with 36 Mg atoms, which does not agree with the
TDDFT results; and embedding quantum mechanical clusters with 36 and 90
(“big” Mg atoms; the TDDFT and both embedded clusters show an overall
shoulder between 7 and 8.5 eV (with better agreement for the larger cluster),
while the free cluster is strongly shifted to lower frequencies.

volvement of CT in the plasmonic absorption. Again, em-
bedding reproduces the TDDFT charge transfer, whereas a
free cluster+molecule model is qualitatively different. For
embedding with a 36 atom cluster 1Q̄(ω) shows a peak at
∼5.5 eV (also manifested as a small feature in the differen-
tial absorption) due to residual interaction between the cluster
edge and the molecule, which disappears when a larger em-
bedded cluster is used (a three layer 5 × 6 cube, with 90 Mg
atoms). For the bigger cluster, the spectral shape of the CT os-
cillation has a shoulder at ∼7 eV, in good agreement with full
TDDFT.

The new embedding method is much cheaper than all-
TDDFT simulations since the expensive TDDFT part is only
performed for a small cluster; for example, the 36 atom simu-
lation was 12 times faster than a full 339 atom TDDFT study,
while the 90 atoms cluster took 5 times less than the full study.
Furthermore, the savings will be much larger for bigger sys-
tems where the TDDFT effort scales as the square or cube of
the system size, depending on the implementation.

Finally, our embedding method is not restricted to
TDDFT and NF electrodynamics: for example, for the quan-
tum subsystem, advanced theories, such as a TD optimized
effective potential26 or even TD correlated wavefunction
methods,27 can be directly employed; these advanced theo-
ries will be used in the future for describing CT and Raman
processes in nanoplasmonics.

The calculations were performed using the computing re-
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