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Abstract

We examine the effects of self-repulsion on the predictions of charge distribution in biased molecular junctions by the local density
functional theory methods. This is done using a functional with explicit long-range exchange term effects [R. Baer, D. Neuhauser, Phys.
Rev. Lett. 94 (2005) 043002]. We discuss in detail the new density functional, pointing out some of the remaining difficulties in the theory.
We find that in weakly coupled junctions (the typical molecular electronics case) local-density functionals fail to describe correctly the
charge distribution in the intermediate bias regime.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Self-repulsion is a prevalent problem in density func-
tional theory (DFT), to which various approaches of anal-
ysis and solutions have been developed [1–18]. Physically,
an electron should not repel itself; however, the Coulomb
direct interaction term in DFT has an electron–electron
repulsion which does not distinguish between the electrons,
so that each electron, in addition to repelling other elec-
trons, repels itself as well. In Hartree–Fock (HF) theory
the self-repulsion of an electron is exactly cancelled by
the exchange interaction. Such exact cancellation is missing
in standard DFT approaches, such as the local-density spin
density approximation (LSDA) [19], the generalized gradi-
ents approaches [5,20,21] where the exchange is expressed
as a local function of the electronic density or the popular
hybrid methods [22] where only a small part of explicit
exchange is used.
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The self-repulsion problem is prevalent in any descrip-
tion of a system with separated parts, be it an ionization
problem (where at the final state the electron and the mol-
ecule are well separated), electron affinity, or Rydberg
state. The problem might be especially acute for theoretical
estimates of conductance of molecular junctions, for which
many methods relying on DFT have been developed
[14,23–31]. In molecular electronics, as the bias changes
so does the charge distribution on the bridge and contacts;
a correct description of this charge distribution is impor-
tant for understanding the response (in terms of electric
current) to the bias.

Before discussing the remedies to self-repulsion we pres-
ent the simplest physical ramifications of the phenomena.
The problem is clearly seen in systems which contain at
least two separate subsystems which are weakly coupled.
Such a system could be as simple as two widely spaced
hydrogen atoms, or more complicated such as two quan-
tum dots, or a charge transfer complex. We will start with
the absolutely simplest system, well-spaced Hþ2 (with large
inter-proton distance of, say, 10 a.u.). When the two
hydrogen nuclei are well-spaced, the electron is in a sym-
metric double well, so its density is distributed evenly on
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the two protons. Let us now subject the system to an exter-
nal bias, i.e., an external electric field. One proton (say the
left one) is then biased lower relative to the other. The bias
can be quite small, e.g., much less than 1 eV; it only needs
to be larger than the weak tunneling coupling for an elec-
tron between the two protons. Naturally, the electron
under this small bias localizes on the lower potential left
proton. We obtain hydrogen atom with a nearby proton:
H+–H. This is a manifestation of a general principle of
quantum mechanics: several weakly coupled systems dis-
tribute charge in such a way that each has a total charge
equaling an integer multiple of the electron charge. This
is generally true, as long as the rare tunneling resonances
are not operative. This quantization is also related directly
to the concept of derivative discontinuities in DFT [3,4].
The ability of approximate electronic structure methods
to obey this rule is an important estimate of its robustness.
Hartree–Fock theory, for example respects this principle.

DFT, which uses a non-interacting electron description,
is expected to obey the integer electron principle as well.
However, the standard local approximate functionals of
DFT have a troubling feature: in weakly coupled systems
they tend to spuriously create resonance conditions in
which electrons are much too delocalized. It turns out that
in most local functional approximations, as is LSDA there
is a continuous leakage of charge, so that, at a bias of 1 eV,
say, the density is divided 55% on the lower-biased hydro-
gen and 45% on the other one. As mentioned above, even
at small bias we should see strong charge localization on
one of the hydrogen atoms at these distances. The origin
of this defect is the presence of the Coulomb repulsion term
LSDA which is obviously unphysical here in this one-elec-
tron system. The Coulomb electron repulsion is eased a lit-
tle by transferring some density from the left proton to the
right one, and the optimum is reached at 55%. Of course,
this is an artifact of LSDA unphysical, since for this 1-elec-
tron system there should not be any electron–electron
repulsion; the physical value is a single electron on the
lower-biased hydrogen. Indeed, solving Schrodinger’s
equation on a high quality grid shows for the same system
that 99.9% of the electronic charge is on the low biased
proton while only 0.1% is on the other.

A more formal way to characterize the problem is to
note that physically the plot of the excess charge as a func-
tion of bias should be almost step-like; when the left hydro-
gen is biased lower all the density is on it, and for the
opposite bias the right hydrogen is charged, and the transi-
tion between the two regions will take place in a very nar-
row voltage range. Density functional theory is formally
exact with the correct functional. However, LSDA (and
generalized gradients approximation (GGA)) cannot
address this since they describe exchange locally. Regular
hybrid functionals are able to describe some of this effect,
but not completely so that they are insufficient for prob-
lems which involve separate systems at large distances,
although some efforts have been advocated to solving this
problem. There have been several approaches to remedy
self-repulsion in DFT based on the self-interaction correc-
tion [2] or on exact exchange with no correlation removing.

We have recently proved [9] that a hybrid approach to
DFT in which the interaction is divided into a short-range
part and a long-range part where the exchange is treated
exactly, is a formally exact method. The only unknown in
the division is the exact value of the division parameter,
but we know a priori that at one value of the parameter
the division is exact. In addition, for practical applications,
an approximation is needed for the local short-range part,
which we treat with an LSDA approach; however, this part
by its structure should be well described with local
approaches. In this paper we first review in detail the the-
ory of the new functional (which we label ‘‘c = 1’’), includ-
ing two possible ways to implement it. We then apply it to
study the effect of self-repulsion in standard DFT approx-
imations in biased molecular junctions, including especially
a prototypical case of a system under bias connected to
leads; in our case this will be two metallic spheres acting
as leads connected to a smaller sphere representing a mol-
ecule under bias.
2. Theory

2.1. The exchange correlation energy

We now describe a new functional which is appropriate
for long-range charge transfer so that it is appropriate for
describing systems which are weakly coupled, and at the
same time keeps a good description of the chemical bond-
ing. This section repeats in greater detail the derivation in
Ref. [9].

The starting point is a division of the electron–electron
Coulomb repulsion to two part, a shielded and a deshielded
one, an idea first proposed by Savin [32], and further devel-
oped by Iikura et al. [16]. The deshielded potential is effec-
tive only at large distance, and falls off to a constant at
short ranges; we use here Yukawa or Gaussian forms:

ucðrÞ ¼
1�e�cr

r Yukawa;
erfðcrÞ

r Gaussian;

(
ð2:1Þ

where c is a parameter that characterizes the fall-off of the
interaction. Other splitting functions are possible, and a re-
cent interesting example is the erfgau function by Toulouse
et al. [33], which completely eliminates electron–electron
repulsion at short distance. The important feature is that
c is a continuous parameter such that for c =1 we
recover the usual Coulomb interaction in the deshielded
part, while any finite positive value of c is associated with
a damped deshielded potential which is finite at r = 0 and
yields 1/r at large distances; for c = 0 the electron–electron
repulsion vanishes and we are left with a non-interacting
system.

Another useful quantity is the shielded potential (the
potential complementary to the deshielded, with respect
to the Coulomb potential) is
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ycðrÞ ¼
1

r
� ucðrÞ ¼

e�cr

r Yukawa;
1�erfðcrÞ

r Gaussian;

(
ð2:2Þ

and it falls off rapidly to zero at intermediate and large
distances.

We use the new potential in the definition of the total
energy, as follows. The full exchange correction for the
fully-interacting system (i.e., for electrons that interact with
the original Coulombic potential) is written using the adia-
batic connection theory [34–36] as an integral [9]:

EXC½n� ¼
Z 1

0

hWc0 jŴ c0 jWc0 idc0 � EH½n�; ð2:3Þ

Wc refers to the ground-state wavefunction of an interact-
ing system under a Hamiltonian:

Ĥ c ¼ T̂ þ V̂ c þ Û c; ð2:4Þ
where Û c is a deshielded electron–electron Coulomb poten-
tial operator

Û c ¼
1

2

X
i6¼j

ucðrijÞ; ð2:5Þ

i.e., the electron interact via the deshielded potential, T̂ is
the kinetic energy of the electrons and V̂ c is a one-body po-
tential which is designed to keep the ground-state density,
n(r) fixed as a function of the coupling parameter c.

The final terms in Eq. (2.3) are the Hartree energy

EH½n� ¼
1

2

ZZ
nðrÞnðr0Þ
jr� r0j d3rd3r0; ð2:6Þ

and the two-body term Ŵc, which is defined as the deriva-
tive of the two-body potential as a function of the coupling
parameter, so:

Ŵ c ¼
1

2

X
i6¼j

wcðrijÞ; ð2:7Þ

where

wcðrÞ ¼
ducðrÞ

dc
; ð2:8Þ

so that for the Yukawa and Gaussian-type potentials,
respectively,

wcðrÞ ¼
ducðrÞ

dc
¼

e�cr Yukawa;
2ffiffi
p
p e�ðcrÞ2 Gaussian:

(
ð2:9Þ

Eq. (2.3) cannot be solved exactly since the integrand is not
generally known. The problem is that for determining the
wavefunction, even in a Monte-Carlo approach, one needs
to know Vc, the one-body potential; this potential depends
on the integration parameter so that when c changes the
one-body potential needs to change so that the full density
is unchanged. We do know however much about the poten-
tial and the wavefunction at the two extrema of c. For
c =1, i.e., no deshielding, the one-body potential is the
original electron–nuclear potential, and the wavefunction
is the complete many-body interacting one. For c = 0,
i.e., no interaction, the one-body potential is exactly
the Sham potential (which by definition is the potential
needed to reproduce for non-interacting system the original
density) and the wavefunction is a Slater-determinant
(assuming no degeneracies) of non-interacting orbitals.
This information gives us a good starting point for
approximations.

The first approximation uses information from just one
value, c = 0, i.e., assumes that the wavefunction does not
depend on c 0 and replaces Wc0 by W0. As is easy to see this
yields the Hartree exchange approximation for EXC. The
next level uses information from both c = 0 and c =1,
by approximating that

Wc0 ’
W0 c0 < c;

W1 c0 > c;

�
ð2:10Þ

i.e., replacing the wavefunction by the end values; here c is
a parameter which designates the division point. (As
proved in Ref. [9] and explained below, there is a definite
but unknown value of c where the approximation (2.10)
gives an accurate value of the exchange-correlation
energy.)

Formally the approximation (2.10), when inserted in the
adiabatic connection formula (Eq. (2.3)), gives:

EXC½n� ffi W0

Z c

0

Ŵ c0 dc0
����

����W0

� �

þ W1

Z 1

c
Ŵ c0 dc0

����
����W1

� �
� EH½n�: ð2:11Þ

In Ref. [9] we showed that for any system, there exists a va-
lue of the shielding parameter c[n] that renders Eq. (2.11)
exact:

EXC½n� ¼ hW0jÛ cjW0i þ hW1jŶ cjW1i � EH½n�; ð2:12Þ
where we introduce the operator for the screened part of
the Coulomb potential

Ŷ c ¼
1

2

X
i6¼j

ycðrijÞ: ð2:13Þ

We can pull out of EXC an exact exchange part with respect
to the interaction uc. This gives:

EXC½n� ¼ Euc

X ½n� þ hW1jŶ cjW1i

� 1

2

Z
nðrÞnðr0Þycðjr� r0jÞd3r d3r0; ð2:14Þ

where Euc

X ½n� is an explicit exchange defined by

Euc

X ½n� ¼ �
1

2

ZZ
P ðr; r0Þ2ucðjr� r0jÞd3rd3r0; ð2:15Þ

where P(r,r 0) is the non-interacting (Kohn–Sham) density
matrix. Eq. (2.14) can be written in terms of the exchange
correlation hole nXC(r, r 0) = n(r 0)[gXC(r, r 0) � 1] where
gXC(r, r 0) is the pair correlation function:

EXC½n� ¼ Euc

X ½n� þ
1

2

Z
nðrÞnXCðr; r0Þycðjr� r0jÞd3r d3r0:

ð2:16Þ
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Fig. 1. The ratio of ec
C to the LSDA correlation energy (as parameterized
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Eq. (2.16) should be compared to the well-known expres-
sion for the XC energy, using the averaged exchange-corre-
lation hole [1]:

EXC½n� ¼
1

2

ZZ
nðrÞ�nXCðr; r0Þ
jr� r0j d3r d3r0: ð2:17Þ

Note that the XC hole in Eq. (2.16) is that of the system,
while in Eq. (2.17) appears an adiabatically averaged XC
hole:

�nXCðr; r0Þ ¼
Z 1

0

nk
XCðr; r0Þdk; ð2:18Þ

where nk
XC is the XC hole of a system of electrons having of

density n(r) but interacting via the potential vk(r12) = k/r12.
Eq. (2.16) has the property of isolating an explicit exchange
term with respect to the long-range interaction. This term
by itself formally removes of the self-repulsion in the result-
ing functional. Of course, one disadvantage of Eq. (2.16) is
that there appears a new functional c[n] which in general is
unknown.

2.2. A practical size-consistent approach to c

One approach to using the theory for obtaining an
approximate DFT is to take c equal to some constant
(e.g., c = 1 a.u.) for all systems. This is complemented by
an appropriate correlation energy. While this is a drastic
approximation, it has the benefit of being size consistent.
As shown below, the results based on this approximation
are not overly sensitive to the value of the constant chosen.
For the Yukawa parameter we generally choose c ¼ 1a�1

0 .
The theoretical drawback of this method is that it is not
exact in any analytical known limit (such as the homoge-
neous electron gas). We discuss below an alternative
approach which does not suffer from this drawback.

In order to use this approximation, we further assume
that a local approximation is valid for Ec

XC in (2.16)

Ec
XC ffi

Z
ec

XCðnðrÞÞnðrÞd
3r: ð2:19Þ

Here, ec
XCðnðrÞÞ is computed using the partitioning:

ec
XC � e

yc

X þ ec
C: ð2:20Þ

The first part is the exchange energy of a homogenous elec-
tron gas (HEG) whereby the particles are interacting via a
screened (shielded) Coulomb potential. It is given by

e
yc

X ðnÞ ¼ �
3kF

4p
H

c
kF

� �
; ð2:21Þ

where kF is the Fermi momentum of the HEG,
kF = (3p2n)1/3 and [37]

HðqÞ ¼ 1� q2

6
� 4q

3
tan�1 2

q

� �
þ q2

24
ð12þ q2Þ

� ln
4

q2 þ 1

� �
ðYukawaÞ; ð2:22Þ
or [38]

HðqÞ ¼ 1� 4
ffiffiffi
p
p

3
qerf

1

q

� �

þ 2

3
q2 1� ðq2 � 2Þ 1� e

� 1
q2

h in o
ðGaussianÞ:

ð2:23Þ
A first approximation for the correlation energy can be
computed by adopting Eq. (2.16) for the HEG:

ec
CðnÞ ¼

n
2

Z 1

0

ghom
C ðn; xÞycðxÞ4px2 dx: ð2:24Þ

The treatment of polarized gases is straightforward. Since
exchange exists only between particles of like spins, the ex-
change energy must abide to the rule [39]:

EX½n"; n#� ¼ ðEX½2n"; 0� þ EX½0; 2n#�Þ=2: ð2:25Þ
The correlation energy can be handled by using the ‘‘polar-
ized’’ pair correlation function gCðrs; f; kFrÞ for the HEG.
Here rs = (3/4pn)1/3 is the density parameter, f =
(n" � n#)/n is the spin polarization and kF = (3p2n)1/3 is
the Fermi wave-vector. This function has been thoroughly
parameterized recently, based on accurate Monte Carlo
calculations for the fully polarized and unpolarized HEG
and on various known sum rules and exact conditions
[40,41]. We plot in Fig. 1 the ratio

g ¼ ec
C=e

LSDA
C ; ð2:26Þ

where eLSDA
C is the LSDA correlation energy (i.e., the corre-

lation energy of a HEG). For valence electrons the density
parameter is typically 1 < rs < 5. In this range (for f = 0) g
is close to but usually less than 1. Thus, the correlation en-
ergy of the on-homogeneous finite system is somewhat
weakened. It is also seen that in the high density limit
(when rs! 0) g converges to 2, while g! 0 for low
densities.

The g function for the Gaussian partitioning is shown in
Fig. 2. We find that the Yukawa g curve at c ¼ 1a�1

0 is sim-
ilar in shape to the Gaussian g curve at c ¼ 0:6a�1

0 .
in Ref. [45]) for the Yukawa partitioning.
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Fig. 2. The ratio g for Gaussian and Yukawa partitioning of the
interaction.

Table 1
The parameters for use in Eq. (2.28)

a b c d

Yuk, f = 0 0.9520 0.4281 0.7887 0.7770
Yuk, f = 1 1.1121 0.5103 0.7824 0.5823
Gau, f = 0 1.6478 0.4576 0.7821 0.5509
Gau, f = 1 1.6730 0.4361 0.7847 0.5867
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2.3. An approach to c consistent with the HEG

Although the method discussed in Section 2.2 is size-
consistent, it suffers from the fact that it does not reproduce
correct results in the HEG limit. In fact, for the HEG we
should have ec

C ¼ eLSDA
C . Thus we can determine the exact

cHEG(rs) from the equation

g cHEGðrs; fÞ
	 


¼ 1: ð2:27Þ

The function cHEG can be computed to high degree of accu-
racy using the Monte-Carlo based parameterization of the
pair correlation function [41]. We plot cHEG in Fig. 3. A
simple functional form can be used to approximate cHEG,
in a region of 0.01 < rs < 20:

cHEGðrsÞ ¼
1

arc
sð1þ b2rd

s Þ
: ð2:28Þ

The four parameters, giving useful accuracy are shown in
Table 1, as function of the case.
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Fig. 3. cHEG as a function of the density parameter rs for the unpolarized
and fully polarized electron gas.
For a non-homogeneous system we need to define func-
tional c[rs,f] such that if rsðrÞ ¼ r0

s and f(r) = f0 then
c½rs; f� ¼ cHEGðr0

s ; f
0Þ. The problem is that there are infi-

nitely many ways to do this. For example, one can take a
‘‘local density’’ average:

c½n"; n#� ¼
R

cHEGðrsðrÞ; fðrÞÞnðrÞd3rR
nðrÞd3r

: ð2:29Þ

Another possibility is to use c½n"; n#� ¼ cHEGð�rs;�fÞ where �rs

and �f are suitably averaged density and spin polarization
parameters. Unfortunately, there are infinitely many differ-
ent ways to determine �rs (or �f) for a non-homogeneous sys-
tem, which in the case of a constant n will give the HEG
density parameter. From the Thomas–Fermi–Dirac theory,
the non-interacting kinetic energy per particle in HEG is
tHEG
S ¼ 3k2

F=20 and the exchange energy per particle is (in
atomic units) eHEG

X ¼ �3kF=4p, where kF = a/rs is the Fer-
mi wave-vector and a � (9p/4)1/3. Using these relations,
one can define various functionals for the ‘‘average density
parameter’’ for non-homogeneous systems as follows:

�rð1Þs ¼ �
3aN e

4pEX

or �rð2Þs ¼ �
pa
5

EX

T s

� �
: ð2:30Þ

For the HEG both �rð1Þs and �rð2Þs give the same correct value
of rs. However, for non-uniform systems they can lead to
significantly different estimates of the average density
parameter. For example, using the valence electron density
of N2 �rð1Þs � 1:0 while �rð2Þs � 0:4 (note that when the 1s core
electrons are included, their high kinetic energy causes rð2Þs

to drop to extremely low values, around 0.1). With these
two estimates for we can create for N2 practically any value
we want for �rs, for example taking �rð3Þs � ð�rð2Þs Þ

2
=�rð1Þs , yields

using the above numbers �rð3Þs ¼ 2:5. Clearly, additional
physical insight must be sought before a proper theory
for c can be established. Since we do not have a complete
theory at present we will be using the constant c approach
of Section 2.2 in the application part of the paper.

3. Results

In this section we give several applications the func-
tional. Since the functional includes an explicit exchange
term it uses the total one-body density matrix rather than
the local density alone, so it needs to be applied and
checked carefully. The simplest approach is to minimize
the total energy as a functional of the occupied orbitals,
similar to the Hartree–Fock theory. This minimizing proce-
dure gives the following orbital equations:
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� 1

2
r2wi þ ½vextðrÞ þ vHðrÞ þ vlocal

XC ðrÞ þ K̂�wi ¼ eiwi; ð3:1Þ

where wi(r) are the Kohn–Sham orbitals, ei the orbital ener-
gies and vext the external potential on the electrons. This
potential also includes in some of the calculations below
a non-local pseudopotential. vHðrÞ ¼

R
nðr0Þd3r0=jr� r0j is

the Hartree potential and

vlocal
XC ðrÞ ¼ ec

XCðnðrÞÞ þ nðrÞec0
XCðnðrÞÞ: ð3:2Þ

The operator K̂ in Eq. (3.1) is the explicit exchange opera-
tor, dependent on the Kohn–Sham orbitals, in an identical
way the Hartree–Fock exchange depends on the Hartree–
Fock orbitals.

Since in our application the potential is non-local, we
need to get a local form. This is done by constructing the
effective potential, defined as

veffðrÞ ¼
PN e

i¼1 w�i ðrÞðei þ 1
2
r2ÞwiðrÞ

nðrÞ : ð3:3Þ

For a regular local Kohn–Sham potential, the effective po-
tential equals the local potential as is evident from Eqs.
(3.1)–(3.3).
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Fig. 4. The effective potential according to the ‘‘c = 1’’ theory, the LSDA
and the �1/r potential. Top: in fluorine atom; bottom: spherical jellium
model at densities of aluminum.
3.1. Effective potential and polarizability

Fig. 4 shows the effective potential of two neutral sys-
tem, an fluorine atom and a spherical metallic cluster
(modeled by as a jellium sphere with density parameters
rs = 2.1). The exact DFT effective potential of a neutral
system should asymptotically be [42]

lim
r!1

veffðrÞ ¼
�1

r
: ð3:4Þ

Physically, this is due to the fact that when an electron is
pulled away from a neutral system it ‘‘leaves behind’’ a pos-
itively charged ion q = +1 to which it is then attracted. It is
well known that the effective potentials of the LSDA do
not exhibit this feature, as verified in Fig. 4. This fact
causes some problems with the general applicability of
LSDA. For example, the Rydberg series is not correctly
reproduced by the virtual energies. This has also ramifica-
tions in the use of ALSDA. On the other hand, the effective
potential arising from the new functional exhibits this
desirable property.

A correct effective potential leads to qualitatively cor-
rect polarizability. In Ref. [9] we showed that the func-
tional leads to the improved prediction of polarizability
for a chain of H2 molecules as a function of it length.
While LSDA overestimates the polarizability as being
nearly linear with the length of the chain, the c = 1 theory
shows, in accordance with Hartree–Fock and MP2 calcu-
lations that the polarizability levels off beyond about 5
oligomers.
3.2. Systems under bias: two metallic clusters

Next we finally come back to the issues posed in the
beginning of the paper, namely charge quantization for
two separate systems under bias.

The problem with LSDA, explained earlier for H2

appears for other systems too. Whenever a system is made
of two or more weakly coupled subparts then, at a large
distance, the ground-state should have an integer number
of electrons, but LSDA (as well as other local functionals)
optimizes the Coulomb energy by having non-physical par-
tial charges on the weakly coupled subparts.

The same features are qualitatively important even in
larger system. Specifically, we simulate two nanometer
sized gold or silver clusters, using a spherical jellium model
(Fig. 5). Two spheres are set a distance of R = 28a0. The
positive charge density in each ball is of a smoothed
Fermi–Dirac form, i.e.,

nðrÞ ¼ n0

1þ eðr�r0Þ=r0
: ð3:5Þ

The jellium bulk density n0 corresponds to a Seitz parame-
ter of rs = 3a0, similar to the positive charge density of gold
or silver. The radius of each ball is r0 = 6a0 and the width
of the jellium edge is r = 0.4a0. With this density the sys-
tem is a rough model for small gold or silver clusters.
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Table 2
c = 1 Estimates of the critical bias (all quantities in volts)

DSCF HOMO

IP EA /c IP EA /c

5.6 0.5 3.5 6.2 0.8 3.7

Shown, estimates of IP, EA and /c (Eq. (3.7)) computed using the DSCF
and DeH methods of Eq. (3.8).
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The overall positive charge on each sphere is 20e, so we
have used 40 electrons in this neutral system.

To the pair of spheres we add an external electric
potential

/ðzÞ ¼ 1

2
/0 sin

2pz
L
; ð3:6Þ

which biases one sphere with respect to the other. For tech-
nical reasons (preserving periodic boundary conditions) we
use a periodic bias, with L the simulation box length and
the parameter /0 represents the bias (Fig. 5). The external
potential /(z) which is positive in the right ball, decreases
within a transition region between the balls, and is a nega-
tive within the left ball. The potential energy due to the bias
voltage is �e/(z). Thus, electrons are attracted to the left
well.

Since the spheres are so well separated, the qualitative
features of this charge system will be identical to that of
the stretched H2 double-well system: at small bias there
should be no charge transfer and once the bias exceeds a
threshold, there is a full transfer of an electron. The critical
bias voltage equals:

/c � IP� EA� 1

R� 2r0

; ð3:7Þ

where IP is the ionization potential and EA the electron
affinity of a single sphere. R � 2r0 is the distance between
the surfaces of the spheres and is approximately the dis-
tance between the electron and the hole it leaves behind.
Fig. 5 shows that LSDA misses this qualitative feature,
while the new functional obtains it. Note that the step-
function behavior occurs at the bias /c = 3.7 V. This num-
ber should compared with the estimate of Eq. (3.7). This
can be done by two independent ways of estimating
IP � EA of a single sphere:

DSCF : IP ¼ EN � EN�1 EA ¼ ENþ1 � EN ;

HOMO : IP ¼ �eN EA ¼ �eNþ1:
ð3:8Þ

In the first method we use the ground-state total energies of
the neutral (EN), the cation (EN�1) and the anion (EN+1)
clusters while in the second method we use the HOMO
energies of the neutral eNand the anion eN+1, based on
the theorem in (exact) DFT that the HOMO energy is
equal to the electron removal energy [4,42]. The results
for the c = 1 functional are shown in Table 2, where the
estimated critical bias is compatible with the value found
for the two sphere system (3.7 V).

Note that due to the small size of the sphere, LSDA pre-
dicts that an anion is unbound. This leads to unreliable cal-
culations of the electron affinity and /c is difficult to
estimate. If one takes EA = 0 for the LSDA, one obtains
/c = 3.5 V in the DSCF method and /c = 4.1 V in the
HOMO method.

3.3. Model for a molecular-scale junction under bias

We now turn to consider the biased molecular-scale
junction. Our model junction is composed of two spherical
jellium clusters with the density of gold and diameter of
12a0, serving the role of leads, and a sphere of smaller size,
playing the role of a bridge situated in between the leads.
The centers of the two spherical leads are 28a0 apart so that
their average edges are at a minimal distance of 16a0. The
small spherical conductor contains only 2 electrons, and is
situated in the middle.

On this junction we applied an external potential using a
sin-type bias Eq. (3.6) (the form of this potential is shown
in Fig. 8) . The calculated charge transfer vs. bias voltage is
shown in Fig. 6. Because of the presence of the bridge, it is
not a step function but still shows a sharp transition: a
weak slope dQ/d/0 is maintained up to a critical voltage
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Fig. 7. The effective potential for the biased junction: results for an LSDA and a c = 1 density functional calculations are shown, for various external bias
potential. Fermi level is also shown for both cases.
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of about 5.6 V, followed by a sharp linear increase thereaf-
ter. The reason for this more continuous behavior is that
the lead-bridge coupling is not very weak, so charge can
delocalize over the bridge. It is evident that he LSDA
and c = 1 functionals have vastly different predictions at
intermediate biases of several volts.
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give different electrostatic potentials.
Next, the effective potential, defined in (3.3), was studied,
shown in Fig. 7 as a function of the external bias. At zero
bias and also for a low (< 2.2 V) and large (>5.5 V) biases
the qualitative features of the potentials are similar for the
two functionals – minima for the leads (i.e., the large balls)
and at the middle ball, and the value of the minima decrease
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y strong) and the two theories agree. At intermediate bias the two theories
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approximately linearly from left to right, with similar slope,
i.e., similar electric field. However, for a large (but not too
large) bias, at 5.5 eV, a new behavior occurs. The slope is
now much larger; the reason is that there is charge transfer
between the two spheres in the LSDA approach, which
masks the external field, but in the new functional, the elec-
tron is not yet transferred, as Fig. 6 shows.

Finally, an important quantity for conductance calcula-
tions is the total electrostatic potential:

vesðrÞ ¼ vHðrÞ þ vextðrÞ: ð3:9Þ
Note that this potential is formally different from the effec-
tive potential, although it refers to a qualitatively similar
aspect.

Fig. 8 shows the electrostatic potential for the junction
system. At the lower voltage (2.2 V) the external poten-
tial is not screened much, while the very high voltage
(8.9 V) there is very strong screening due to charge trans-
fer seen in Fig. 6. The electrostatic potential across the
bridge is thus quite flat. The most interesting result is
for the high (but not very high) voltage, 5.5 V, where
the two theories differ considerably in the prediction: in
LSDA considerable charge transfer occurs at 5.5 V, so
there is strong screening, while in c = 1 theory, the
screening is much less.
4. Summary

We have presented approaches to a DFT that avoids
long-range self-repulsion. Our method is dependent on a
functional c[n] and a correlation energy functional ec

C. We
have examined approximations for both these functionals,
based on the HEG. One approximation took c[n] to be a
constant independent of n. A correlation energy functional
was developed based on the exact theory. Another approx-
imation was to take the correlation energy of the HEG as
in usual LSDA or GGA but base the c functional on the
HEG. Here we pointed out difficulties in mapping the
non-homogeneous system with the homogeneous one.
Our conclusion is that at present there is not enough phys-
ical insight on which to base the second approach and more
work is needed in that direction.

Using the first approximation, where c is taken as con-
stant, we studied the charge distribution and effective
(Kohn–Sham) potentials in biased molecular-scale junc-
tions. We find that in intermediate biases (of a few volts)
the charge distribution predicted by LSDA may be incor-
rect due to the self-repulsion effect.

The next steps for potential applications include study-
ing conductance using the new theory in a time-dependent
DFT framework [26,28,43]. An incorrect description of the
charge distribution will necessarily lead to errors in con-
ductance calculations, an issue discussed recently [9,14].
The application of a similar theory to compute excitation
energies [44] has shown promising results to systems where
long-range charge transfer is important.
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