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We propose a family of time-dependent orbital-free density-based theories that go beyond the usual
current-density description of electrons or other particles. The theories deal with physical quantities
that characterize the one-particle density matrix and consequently the kinetics of the particles. We
analyze the first two theories in the family. The “lowest-order” theory is quantum hydrodynamics.
The second one yields not only the longitudinal plasmon collective excitations, but also the
transverse phonon modes that are associated with elementary excitations in Fermi liquids. The
theories should make it feasible to do large orbital-free simulations of time-dependent and stationary
systems. © 2006 American Institute of Physics. �DOI: 10.1063/1.2148953�
I. INTRODUCTION

Density-based orbital-free methods1,2 have been very
successful for the past several decades in studying meso- and
macroscopic many-particle stationary quantum systems.3–6

In the time-dependent case, the only density-based orbital-
free method used is quantum hydrodynamics �QH�,7–13 in
which the hydrodynamics analogy is based on the de
Broglie–Bohm formulation of quantum mechanics.14 In QH,
the one-particle density matrix is factorized as though the
system consists of only one particle. As a result, the kinetics
of the system is described by the spatial particle and current
densities �or velocity potential�, and an analogy with hydro-
dynamics arises. In QH, a relatively small amount of infor-
mation is needed to model a system. Therefore, QH is spe-
cifically advantageous numerically, especially in
combination with recent methods for its solution.15–18

QH is a useful but restrictive approximation. In fact, the
kinetics of the particles in the system is entirely described
only by the whole one-particle density matrix. The density
and the current are just two parameters based on the density
matrix. For some problems, however, consideration only of
the density and current is not satisfactory. For example, QH
may not treat transverse modes in the system, which never-
theless exist in Fermi liquids. Therefore, topologically non-
trivial movements in the system, such as vortices, are not
treated.

In this paper, we propose a family of time-dependent
orbital-free density-based theories, which go beyond the
usual density-current description of a Fermi system. The
theories deal with tensors that characterize the one-particle
density matrix and consequently the kinetics of the particles.
We analyze the first two theories in the family. The “lowest-
order” theory appears to be quantum hydrodynamics. The
second one enables us to obtain not only the longitudinal
plasmon collective excitations, but also the transverse pho-
non modes that should be associated with elementary excita-
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tions in Fermi liquids. The resulting equations should be di-
rectly applicable to time-dependent and stationary
simulations of large electronic systems.

In this paper, we analyze the theory for a general tensor
�Sec. II�, present the limiting cases of quantum hydrodynam-
ics �Sec. III�, and then extend it to the next order, tensor-
current-density �Sec. IV�, where the general equations and
their linear response are presented. Conclusions follow in
Sec. V.

II. GENERAL FORMULATION

We start from the secondary quantized Hamiltonian of
an inhomogeneous time-dependent Fermi liquid �using m
=1, �=1, e=1�:

Ĥ = K̂ + V̂ + Û ,

K̂ =
1

2
� d3x�i���̂†�x� ���− i���̂�x� �� ,

V̂ =� d3xV�x�,t��̂�x� � ,

Û =� d3xd3x�:��̂�x�� �U��x� − x������̂�x� �: ,

where ��=� /�x�, �̂’s are the electron annihilation operators,
�̂�x� �=�†��x� � is the density operator, V�x� , t� is the external
potential, which is generally time-dependent, U��x� −x���� is
the two-body interaction potential, ��̂�x�= �̂�x��−�0�x� � with
�0�x� � being the spatial density of the positive background
charges, and the columns mean normal operator ordering.
Hereafter, a summation over repeated Greek indices in as-
sumed.

As mentioned, the quantity that completely characterizes
the kinetics of the electrons is the one-particle density ma-
trix, defined conveniently in terms of difference and average

positions:
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��1��R� ,s� � = ��̂†�R� − s�/2��̂�R� + s�/2�� . �1�

The time evolution of the one-particle density matrix is gov-
erned by the Liouville equation,

�

�t
��1� = − D��− i�����1� − i�Ṽ�R� + s�/2� − Ṽ�R� − s�/2����1�.

�2�

Here D� and �� denote the differentiation over R� and s�,

respectively; Ṽ�R� is the effective potential, which also takes
into account two-body interactions,

Ṽ�R� � =� ��R� �� − �0�R� ��

�R� − R� ��
d3R� +

�Exc

���R� �
+ V�R� � , �3�

where ��R� �=��1��R� ,0�� is the spatial electron density, the first
term is the direct interaction between the electrons and the
positive background, and Exc is the exchange-correlation en-
ergy of the system. We use the local-density approximation
�LDA� for the exchange-correlation energy, so that it is the

functional of ��R� �,

Exc =� exc���R� ��d3R ,

where exc��� is some function of the density. There are a
variety of functions exc in the literature �see, e.g., Ref. 6 and
refs. therein�. For us, however, the specific form of exc is not
relevant so we do not specify it. Further, a better choice of
the exchange-correlation functional would in principle be de-
veloped in terms of the current and the kinetic energy tensor
introduced below as would be pursued in future publications.

The one-particle density matrix can be obtained by solv-
ing Eq. �2�. Alternatively, the entire information on the den-
sity matrix is contained in the infinite number of differentials

over s� at s�=0� ,

�l1¯lN
�N� �R� � = �− i�l1

� ¯ �− i�lN
����1��R� ,s� ��s�=0� . �4�

All the �’s are functions of R� only, unlike the one-particle

density matrix, which is a function of both R� and s�. The set
of all �’s contains the same information as the entire one-
particle density matrix.

In the usual orbital-free approaches, only the first two
�zeroth- and first-order� derivatives are considered—the par-
ticle density and the current density:

��0��R� � = ��R� �, �i
�1��R� � = Ji�R� � . �5�

Here we derive equations for the time evolution of the sys-
tem that include higher-order �’s. These higher-order deriva-
tives contain more information on the electron movement
than the density and current alone. Nevertheless, for any
physical problem a few orders of �’s are needed and not the
entire infinite set of them. Therefore, the numerical solution
of the set of equations proposed in this paper could be more
economical than the solution of the Liouvillian Eq. �2�, be-
cause less information is needed �a finite number of func-

�
tions of only one 3D continuous variable R versus the den-
sity matrix, which is a function of two 3D continuous

variables, R� and s� �.
From Eq. �2� we find an infinite set of equations that

connect the quantities � ,Ji ,�
�2� ,��3� , . . .,

�

�t
� = − D�J�, �6a�

�

�t
Ji = − D��i�

�2� − �DiṼ , �6b�

�

�t
�ij

�2� = − D��ij�
�3� − JiDjṼ − JjDiṼ , �6c�

�

�t
�ijk

�3� = − D��ijk�
�4� − �ij

�2�DkṼ − �ik
�2�DjṼ − � jk

�2�DiṼ

+
1

4
�DiDjDkṼ , �6d�

¯

The generic set of equations needs to be truncated to be
useful. Usually, this is done by factorizing a function ��N+1�

at some N into functions ��k�, k�N. Then, the set of equa-
tions will close and one will end up with N equations involv-
ing N orders of functions �. Such a set of equations could
later be solved numerically. The order N at which we trun-
cate the set of equations controls the precision with which
we treat the system.

Further, so far the set of Eqs. �6� does not distinguish
between fermions and bosons. Therefore, another very im-
portant issue is that the desired factorization should reflect
the fermionic nature of the electrons.

To come up with such a factorization method, we param-
etrize the one-particle density matrix in the following way:

��1��R� ,s� � = ��R� �exp���R� ,s� ��f0��,s� � , �7a�

where

��R� ,s� � =�0�s�=0� ,

and f0 is the one-particle density matrix of a free fermion

liquid with density ��R� �,

f��,s� � = 3
sin�kFs� − �kFs�cos�kFs�

�kFs�3 ,

normalized such that

�f0��,s�� �s�=0� = 1,

where kF= �3	2��1/3 is the local Fermi wave vector.
The one-particle density matrix is Hermitian, i.e.,

��1��R� ,s�� = ��1��R� ,− s� �*.

This condition implies that the function � generally could be
�
given as a Taylor series of the complex variable �is �,
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��R� ,s� � = 	
�
1

1

�!
�i1i2¯i�

��� �R� ��isi1
��isi2

� ¯ �isi�
� �7b�

with all the ���� real.
The parametrization �7a� is not general. In the general

case, one should also include operators that move the one-
particle density matrix in s� space, so that, for example, the
nodes of f0 are also changed. Nevertheless, the proposed
parametrization of the density matrix is a reasonable starting
approximation; future papers will include more general ex-
pansions.

It is also important to stress that �’s from Eq. �7b� and
�’s from Eq. �4� are not equal. The relations between the �’s
and �’s are analogous to the coupled cluster method, where
in order to take into account an infinite series of specific
diagrams one uses the exponent function. In our case, for
example,

�ij
�2� = ��ij

�2� + ��i
�1�� j

�1� + Eij��� , �8�

where the matrix E is defined as a tensor characterizing the
spatial kinetic energy density of a homogeneous electron liq-
uid at rest,

Eij = 2
3ETF����ij . �9�

ETF is the spatial density of the Thomas-Fermi kinetic en-
ergy,

ETF��� = Ck�
5/3, Ck = �3/10��3	2�2/3.

In fact,

Eij = �pipj�FS,

where pi is the ith spatial component of a fermion momen-
tum and the subscript FS denotes averaging over the unper-
turbed Fermi sea. Note that it is the factor f0 in Eq. �7a�,
representing the Fermi distribution in momentum space, that
adds the Thomas-Fermi energy into Eq. �8�. This term would
not appear in a bosonic system, though one could param-
etrize the boson one-particle density matrix in a way similar
to Eqs. �7�.

For higher N, the higher-order averages over the Fermi
sea, e.g.,

Eijkl = �pipjpkpl�FS,

Eijklmn = �pipjpkplpmpn�FS, . . . ,

appear in the relations between �’s and �’s. We are not
going to consider these averages in the rest of this paper.

The relation between the function ��N� at some N and all
the functions ���� does not include ����’s of orders higher
than N. The same is true for the reverse relations. Therefore,
when terminating the set of Eqs. �6� at some order N, the
function � �Eq. �7b�� should also be an Nth-order polyno-
mial.

III. QUANTUM HYDRODYNAMICS

We have just described the general recipe for construct-
ing a closed system of dynamic equations. As a first ex-

ample, we consider the lowest-order �N=1� approximation,
or the usual current-density description of the system. The
“phase” function � in the definition of one-particle density
function �7a� is

��R� ,s� � = i
J�

�
s�. �10�

Only two equations remain in the whole set �6�:

�

�t
� = − D�J�, �11a�

�

�t
Ji = − D�
 JiJ�

�
+ Ei����� − �DiṼ . �11b�

The factorization of ��2� in the equation for J� comes from
Eq. �8� with ��2� equal to zero.

Now, if one assumes that the current could be given
through the so-called velocity potential �,

Ji = �Di� , �12�

then the usual continuity equation and the Euler equation of
motion of QH are obtained �see, e.g., Ref. 7�,

�

�t
� + D���D��� = 0, �13a�

�

�t
� +

1

2
�D� ��2 +

�K

��
+ Ṽ = 0, �13b�

where K=�ETF���R� ��d3R is the Thomas-Fermi kinetic en-
ergy functional. This kinetic energy functional, however,
does not include the von Weizsäcker contribution.

IV. TENSOR-CURRENT-DENSITY

A. The equations

Next we go one step further �N=2� beyond the current-
density description. We keep in the “phase” part of the den-
sity matrix the terms up to the second order in s� �compare
with Eq. �8��:

��R� ,s� � = i
J�s�

�
−

1

2�

���

�2� −
J�J�

�
− E������s�s�.

For such a “phase” function, ��3� in the equation for ��2�

factorizes as

�ijk
�3� = �ij

�2�Jk

�
+ �ik

�2�Jj

�
+ � jk

�2�Ji

�
− 2

JiJjJk

�2 , �14�

so that the whole system of equations becomes

�

�t
� = − D�J�, �15a�

�
Ji = − D��i�

�2� − �DiṼ , �15b�

�t
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�

�t
�ij

�2� = − D�
�ij
�2�J�

�
+ �i�

�2�Jj

�
+ ��j

�2�Ji

�
− 2

JiJjJ�

�2 �
− JiDjṼ − JjDiṼ . �15c�

This set of equations is ready to be numerically propagated,
as will be done in a future paper. Here, we study the system
by linear response.

B. Linear response

Using Eqs. �15�, we study the linear response of a sta-
tionary homogeneous electron liquid at rest. In this case, the
stationary values of the functions involved are

� = �0, Ji = 0, �ij
�2� = �0

1
5vF

2�ij, DiṼ = 0,

where we used 2ETF��0� / �3�0�=1/5vF
2 with vF being the

Fermi velocity. Then, we let the values vary with the infini-
tesimally small deviations from their stationary values,

� = �0 + ��,q� �e−i�t−q�R� �,

Ji = Ji�,q� �e−i�t−q�R� �,

�ij
�2� = 1

5vF
2�ij + �ij

�2��,q� �e−i�t−q�R� �,

DiṼ = iqi
U�q� +
�2exc���

��2 ��0����,q� �e−i�t−q�R� �,

where U�q� is the Fourier component of the Coulomb poten-
tial,

U�q� =
4	

q2 .

The linearization yields

��,q� � = q�J���,q�� , �16a�

Ji�,q� � = q��i�
�2��,q� �

+ �0qi
U�q� +
�2exc���

��2 ��0����,q� � , �16b�

�ij
�2��,q� � = 1

5vF
2q���ijJ��,q� � + � j�Ji�,q� �

+ �i�Jj�,q� �� . �16c�

Combining the above equations, one gets the final equation
for the three current-density components:

2Ji�,q� � =
1

5
vF

2q2Ji�,q� �

+ 2

5
vF

2 + �0
U�q� +
�2exc���

��2 ��0���
�qiq�J��,q� � . �17�

There are two types of solutions. When the current is parallel
to momentum q� �Ji= �qi /q�J��, then the combination qiq�J�

in the last term of Eq. �17� simplifies as q2Ji. As a result, one
finds the dispersion of these longitudinal excitations in the

following form:
�
2�q� = 0

2 + q2
3

5
vF

2 + �0
�2exc���

��2 ��0�� , �18�

where 0
2=4	�0 is the plasma oscillations frequency. These

excitations are the collective plasma excitations �plasmons�
in the Fermi liquid with Coulomb repulsion. Note that the
random-phase approximation result for the plasmon disper-
sion is

RPA,�
2 �q� = 0

2 + q2 3
5vF

2 .

The difference comes from contributions from the exchange-
correlation energy, for which we used the LDA; however, the
LDA is justified only in the high-density limit, where the
exchange correlation is smaller than the kinetic and direct
energies. In this sense, one might say that the theory repro-
duces the RPA result for the plasmon dispersion.

The other two solutions are the two transverse oscilla-
tions of the current. When the current is transverse �q�J�

=0�, then the last term in Eq. �17� drops out. The dispersion
of these transverse phonons is

�
2 �q� = v�

2 q2, �19�

where the sound velocity is v�=vF /51/2. These oscillations
should be associated with elementary excitations in Fermi
liquids.

Our result has a physical interpretation. The longitudinal
oscillations involve the spatial density, which feels the Cou-
lomb interaction. Therefore, the longitudinal oscillations get
renormalized and move up on the energy scale, become
gapped, and gain mass. In contrast, the transverse oscilla-
tions leave the density intact �at least at the linear-response
level�. Therefore, they do not get renormalized by the Cou-
lomb interactions. The transverse oscillations consequently
remain the elementary excitations of a noninteracting Fermi
liquid.

Surprisingly, the dispersion of the transverse mode we
got lies almost in the middle of the RPA density of states. In
our case, however, these phonons have a dispersion instead
of having the smeared density of states between 0�
�vFq as predicted by the RPA �see Fig. 1�. We expect that as

FIG. 1. The excitations of a Fermi liquid consist of the collective plasmon
mode, which corresponds to longitudinal oscillations, and of elementary
excitations, which correspond to the two transverse phononic modes found.
The plasmon mode and the center of the elementary excitation band are
reproduced by the N=2 case developed here.
one goes to higher-N theories, new phonon modes should
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arise. The phonon modes will gradually cover the entire el-
ementary excitations density of states area ���3� theory con-
firms this conjecture, as will be shown later�. Furthermore, as
one takes into account nonlinearities, the transverse modes’
dispersions should get smeared. This smearing should also
contribute to the covering of the density-of-states area. Either
way, the N=2 theory discussed is the first orbital-free
density-based method which gives the transverse excitation
mode.

V. CONCLUSIONS

In conclusion, we proposed a family of orbital-free
density-based methods that go beyond the widespread
orbital-free current-density description. We analyzed the two
first theories in the family. At the simplest N=1 level, the set
of equations reproduces the usual quantum hydrodynamics.
The N=2 theory gives not only the plasmon longitudinal
collective mode, but for the first time the transverse phonon
mode, which should be associated with the elementary exci-
tations in a Fermi liquid.

In the future, we plan to extend the theory to the cases in
which spin polarization may occur; exploit the proposed ap-
proach to numerical studies of realistic finite systems, spe-
cifically concentrating on the problem of topologically non-
trivial excitations; and study large molecular aggregates and
clusters, and their interaction with light and magnetic fields.
We also plan to study the stationary states and the time-
dependent response for conducting systems, where the sta-
tionary state has nonzero current �and possibly vortices�. The
study would be done by imposing boundary conditions on
the set of Eqs. �15�, solving that in the stationary case �where
all the time derivatives are zero�, and then studying linear
response. There are also methodological improvements
needed. The theory shall be extended to the cases in which
the system is exposed to an external magnetic field, and the
exchange-correlation contribution exc shall be described in

terms of �, J�, and kinetic energy tensor ��2�.
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