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A Liouville equation for systems which exchange particles
with reservoirs: Transport through a nanodevice

Igor V. Ovchinnikov and Daniel Neuhauser
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
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A Redfield-like Liouville equation for an open system that couples to one or more leads and
exchanges particles with them is derived. The equation is presented for a general case. A case study
of time-dependent transport through a single quantum level for varying electrostatic and chemical
potentials in the leads is presented. For the case of varying electrostatic potentials the proposed
equation yields, for the model study, the results of an exact solution. ©2005 American Institute of
Physics. @DOI: 10.1063/1.1828037#
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I. INTRODUCTION

The problem of transport through mesoscopic or nano
vices has attracted much attention lately.1–15 Fundamentally,
it is quite similar to the problem of an interaction of a syste
with a bath of ‘‘other’’ particles, whether harmonic or no
One of the simplest and most general approaches for sys
bath interactions is the Redfield–Davies approach,16,17 more
generally known as the master-equation technique,10,13,18–24

which is suitable for particles which interact with wea
baths. The greatest strength of the Redfield–Davies appr
is that it allows the solution of complicated systems, w
large baths.

Transport, however, is special. Particle transport inh
ently is associated with open baths~i.e., with the transport of
particles from one bath to the other!. In this work we there-
fore consider the equivalent of Redfield’s equation for
open system which exchanges particles with reservoirs: e
tronic transport through a nanodevice~for an alternate,
partial-trace-free approach, see Ref. 15!. We derive an equa
tion for the one-particle density matrix which has an add
source term. We label this equation source-Redfield.

The source-Redfield equation is suitable both for tim
independent transport and for time-dependent studies; m
over, it can be extended to include other effects, such
temperature, pressure, or other dissipative mechanisms
can be combined with the original Redfield–Davies theory
order to take into account interaction with bosonic ‘‘hea
baths. A feature which is not used here but would be stud
in further work is the extension of the method to deal w
the time-evolution of the two-body density matrix, whic
would allow the studies of more complicated systems~where
‘‘system’’ is used generally to refer to the subsystem, i.e.,
device between the leads!. Obviously, the formalism is also
valid for other cases, such as the interaction of a small
sorbate with a single lead~e.g., with a surface of a crystal o
a metal!.

In Sec. II we derive the theory for a general case of le
with varying chemical potentials and/or varying electrosta
potentials ~i.e., varying leads’ populations and/or varyin
leads’ energies!. Section III considers the kinetic limit o
diagonal density matrix for the system, and compares, for
122, 0240021-9606/2005/122(2)/024707/8/$22.50
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case of a system with a single quantum level, the result
that of a previous exact treatment. Discussion follows
Section IV.

II. DERIVATION

The Hamiltonian governing the total system~system
1leads! is a combination of noninteracting lead and syste
Hamiltonians together with a coupling partT̂:

Ĥ5(
a

Ĥa1ĤM1T̂, ~1!

wherea is an index over the leads. Typically, only two lea
would be used, denoted here as L and R, but the theor
valid for any number of leads, including a single one for
adsorbate-surface study. The central mesosystem or nan
tem can be a single molecule or a more complicated ent

The Hamiltonian of the system is the sum of a one-bo
and two-body terms,

ĤM5Ĥ0M1Û, ~2!

where

Ĥ0M5(
n

Enĉn
†ĉn ~3!

and ĉn is the electron destruction operator in staten of the
system;En is the ‘‘bare’’ energy of staten. There could be
various choices for how the two-body interactionÛ is de-
fined which would be explored in future work.

The reservoir Hamiltonian has the form

(
a

Ĥa5(
a

Ĥ0a1(
a

Va~ t !N̂a ,

~4!

Ĥ0a5 (
A,a

EAr̂ A
† r̂ A ,

where we introduced the reservoir operatorsr̂ A the particle
number operator for each lead

N̂a5 (
A,a

r̂ A
† r̂ A , ~5!
707-1 © 2005 American Institute of Physics

http://dx.doi.org/10.1063/1.1828037
http://dx.doi.org/10.1063/1.1828037


th

n
e.
u

i

se
he

io
m
-

s
s
in
a

g

of

irs
all

-
nd

ar-

the
si-
er,
eo-
of
irs.
uc-

oirs

nge,
cu-

ssar-

024707-2 I. V. Ovchinnikov and D. Neuhauser J. Chem. Phys. 122, 024707 (2005)
and the leads’ electrostatic potentialsVa(t) ~since only the
energy difference matters, the electrostatic potential of
system can always be set at zero25!; A is an index running
over all the quantum states in all the reservoirs~i.e., leads!;
EA is the energy of state A. The quantum numbers A are
necessarily indices of plane waves, and they could be,
indices of Bloch states for periodic but nonhomogeno
leads.

Finally, the coupling between the leads and the Ham
tonian in the Schro¨dinger picture is

T̂5(
n,A

~gn,Aĉn
†r̂ A1H.c.!, ~6!

wheregn,A’s are coupling constants. Henceforth, we will u
an interaction picture, with the leads’ Hamiltonian plus t
one-body part of the system Hamiltonian

Ĥ05(
a

Ĥ0a1Ĥ0M ~7!

as the underlying zeroth order Hamiltonian. In the interact
representation the two-body interaction operator beco
time dependentÛ→Û(t) and the tunneling operator be
comes

T̂~ t !5(
n,A

@gn,Aĉn
†~ t ! r̂ A~ t !1H.c.#, ~8!

where

ĉn~ t !5ĉne2 iEnt,
~9!

r̂ A~ t !5 r̂ Ae2 iEAt2 iE
2`

t

Va(t9)dt9.

The equation governing the~reduced! density matrix of
the systemr̂ is derived similarly to the Redfield–Davie
equation, but interaction of the system with bosonic bath
replaced by the termT̂ describing the tunneling processes
and out of the reservoirs. The solution of the Liouville equ
tion

i
dr̂T~ t !

dt
5@ T̂~ t !1Û~ t !,r̂T~ t !# ~10!

~using \51) for the full density matrix of the total system
r̂T obeys the relation

r̂T~ t !5 r̂T
02 i E

2`

t

dt8@ T̂~ t8!1Û~ t8!,r̂T~ t8!#, ~11!

wherer̂T
0[r̂T(2`). The relation can be recast by iteratin

it as

r̂T~ t !5 r̂T
02 i E

2`

t

dt8X@Û~ t8!,r̂T~ t8!#1@ T̂~ t8!,r̂T
0#

2 i E
2`

t8
dt9~@ T̂~ t8!,@Û~ t9!,r̂T~ t9!##

1@ T̂~ t8!,@ T̂~ t9!,r̂T~ t9!## ! C. ~12!

Taking the time derivative of Eq.~12! and tracing out the
reservoirs’ degrees of freedom lead to
e

ot
g.,
s

l-

n
es

is

-

dr̂~ t !

dt
52 i @Û~ t !,r̂~ t !#

2 i E
2`

t

dt8(
mn

$Snm
. ~ t,t8!@cn

†~ t !,ĉm~ t8!r̂~ t8!#

1Snm
, ~ t,t8!@ r̂~ t8!ĉm~ t8!,ĉn

†~ t !#

1@ĉm~ t !,r̂~ t8!ĉn
†~ t8!#S̄nm

. ~ t8,t !

1@ĉn
†~ t8!r̂~ t8!,ĉm~ t !#S̄nm

, ~ t8,t !%. ~13!

Here the tunneling self-energies are the A sums
single-reservoir-state self-energies, e.g.,Snm

. 5(A(Snm
.,A).

The latter are defined as

Snm
.,A~ t,t8!5Snm

r ,A~ t,t8!@12nA~ t8!#,

Snm
,,A~ t,t8!5Snm

r ,A~ t,t8!nA~ t8!,

S̄nm
.,A~ t,t8!5@12nA~ t8!#Snm

a,A~ t8,t !,

S̄nm
,,A~ t,t8!5nA~ t8!Snm

a,A~ t8,t !,

where

Snm
r (a),A~ t,t8!5gn,AGA

r (a)~ t,t8!gA,m

andGA
r (a)(t,t8) is the retarded~advanced! Green function of

reservoir level A

GA
r ~ t,t8!52 iu~ t2t8!e2 iEA(t2t8)2 iE

t8

t

dt9Va(t9),

GA
a~ t8,t !5@GA

r ~ t,t8!#* .

For later use we also define

Snm
r (a)~ t,t8!5(

A
Snm

r (a),A~ t,t8!.

Equation~13! relies on the assumption that the reservo
are big enough to neglect the feedback action of the sm
system on them.

Note that Eq. ~13! has terms likecn
†(t) r̂(t8)ĉm(t8)

which reduces the number of particles~it is analogous to a
term ĉm(t8)uwave function& in a wave function representa
tion! while other terms increase the number of particles a
still others, such ascn

†(t)ĉm(t8) r̂(t8), do not change the
number of particles. Therefore, the average number of p
ticles in the system can change with time.

Time dependence enters the problem only through
time variation of reservoirs. This time variation can be phy
cally produced, e.g., by coupling of the reservoirs to oth
bigger, external systems, or bath fields. In the present th
retical model the reservoirs vary in time through variation
phenomenological parameters describing the reservo
Only one set of such parameters is usually used in cond
tance problems—electrostatic potentials in the reserv
Va(t). We already deal withVa(t) in the formulation. How-
ever, there are other possibilities, such as pressure cha
charging the reservoirs, or in general a change in the oc
pation numbers. Even though the reservoirs are not nece
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ily in chemical ~and thermal! equilibrium, for brevity we
refer to variation ofnA(t) as being due to a variation of th
reservoirs’ chemical potentialsma(t).

In deriving Eq.~13!, the two-operator reservoirs’ quan
tum averages appear. The way in which the reservoirs’ qu
tum averages~defined by anR subscript! are simplified can
be seen in the following example:

Tr@ r̂ A~ t ! r̂ A8
†

~ t8!#R5dAA8Tr@ r̂ A~ t ! r̂ A
†~ t8!#R

5dAA8@ iGA
r ~ t,t8!#Tr@ r̂ A~ t8! r̂ A

†~ t8!#R

5dAA8@ iGA
r ~ t,t8!#12nA~ t8!].

Here we assume that the reservoir states are unco
lated; the role of the retarded Green function is to relate
operator at time instantt to the operator at time instantt8,

r̂ A~ t !5@ iGA
r ~ t,t8!# r̂ A~ t8!;

the occupation numbernA(t8) must be taken at time instan
t8 because the trace in the integral part of Eq.~13! is made at
this moment.

The time evolution of the expectation valueA(t) of any
operatorÂ(t) acting in the system’s Hilbert space is given

Ȧ~ t !52 i ^A8 ~ t !&2 i ^@Â~ t !,Û~ t !#&

2 i E
2`

t

dt8(
mn

~Snm
. ~ t,t8!^@A~ t !,ĉn

†~ t !#ĉm~ t8!&

1Snm
, ~ t,t8!^ĉm~ t8!@ĉn

†~ t !,A~ t !#&1^ĉn
†~ t8!

3@A~ t !,ĉm~ t !#&S̄nm
. ~ t8,t !

1^@ĉm~ t !,A~ t !#ĉn
†~ t8!&S̄nm

, ~ t8,t !!, ~14!

where the inner traces are taken at timet8. In this work we
are interested in the one-particle density matrix for the in
system,

r~ t ![rxy~ t !5^ĉy
†~ t !ĉx~ t !&. ~15!

~As mentioned, the formalism would be applied in latt
work for the evolution of the two-body density matrix!. The
Liouville-type equation which results is

ṙ52 i @hr2rh#1D, ~16!

where

~hr!xy~ t !5Exrxy~ t !1(
m

Jxm
r ~ t !rmy~ t !

1(
mn

E dt8Sxm
r ~ t,t8!rmn~ t8!@2 iGny

a ~ t8,t !#,

~rh!xy~ t !5rxy~ t !Ey1(
m

rxm~ t !Jmy
a ~ t !

1(
mn

E dt8@ iGxm
r ~ t,t8!#rmn~ t8!Sny

a ~ t8,t !, ~17!
n-

re-
n

r

r

Dxy~ t !5 i(
mA

E dt8$Sxm
r ,A~ t,t8!@2 iGmy

a ~ t8,t !#

1@ iGxm
r ~ t,t8!#Smy

a,A~ t8,t !%nA~ t8!.

Here Jxy
r (a)(t) is a retarded~advanced! two-body self-

energy due to the two-body interactionÛ which will be stud-
ied in a future paper;Gxm

r (a)(t,t8) is a dressed, i.e., exac
retarded~advanced! Green function of the mesoscopic sy
tem, which obeys the equation

S i
]

]t
2ExDGxy

r ~ t,t8!2(
m

Jxm
r ~ t !Gmy

r ~ t,t8!

2E dt9(
m

Sxm
r ~ t,t9!Gmy

r ~ t9,t8!5dxyd~ t2t8!. ~18!

Formally, in Eq.~14! one should use Eq.~9! in order to
relate the interaction representation operatorsĉx(t) and
ĉx

†(t) to ĉx(t8) and ĉx
†(t8) in averages such as

^ĉy
†~ t !ĉx~ t8!&5^ĉy

†~ t8!ĉx~ t8!&e2 iEy(t82t)

5(
m

rxm~ t8!@2 iGmy
a,0~ t8,t !#,

~19!
^ĉy

†~ t8!ĉx~ t !&5e2 iEx(t2t8)^ĉy
†~ t8!ĉx~ t8!&

5(
m

@ iGxm
r ,0~ t,t8!#rmy~ t8!.

In other words, one should formally use the bare
tarded~advanced! Green function

Gxy
r ,0~ t,t8!52 iu~ t2t8!dxye

2 iEx(t2t8).

However, relations~19! are correct only for ‘‘bare’’ operators
in the interaction representation and do not take into acco
two-body interactions and interactions with reservoirs, i
such effects as level mixing and phase decay. These eff
can be taken into account by including them into the qu
tum phase evolution, i.e., by using, in the spirit of th
Keldysh diagrammatic technique,26 the exact~or ‘‘dressed’’!
retarded and advanced Green functionsGxy

r (a) instead of bare
ones:

^ĉy
†~ t !ĉx~ t8!&5(

m
rxm~ t8!@2 iGmy

a ~ t8,t !#,

~20!

^ĉy
†~ t8!ĉx~ t !&5(

m
@ iGxm

r ~ t,t8!#rmy~ t8!.

Of course, in most problems the exact retarded and
vance Green functions would not be known and then an
proximation would be used for them.

Equations~16! and ~17! have the form of a Liouville
von-Neumann equation for the one-particle density mat
with a complex Hamiltonian@due to the complexity of theS
terms in the definition ofhr and rh in Eqs. ~17!# and an
additional driving~or pumping! source termD. The com-
plexity of the Hamiltonian results in attenuation of the on
particle density matrix components since particles leave
system to the reservoirs. The driving termD accounts for the
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absorption of particles from the reservoirs. The only term
Eq. ~16! depending on leads’ populationsnA is the driving
term D. The driving term vanishes when the leads are
populated (nA50), i.e., the leads pump the system with pa
ticles only when they possess particles themselves.

The current between leada and the system can be de
rived as10,13

Ja52e
]

]t
Tr@N̂ar̂T~ t !#5 ieTr$@N̂a ,T̂~ t !#r̂T~ t !%. ~21!

Taking r̂T(t) from Eq. ~11! and assuming that in th
infinite past the contacts were not correlated one arrive
the following expression:

Ja52e (
l ,m,n
A,a

E dt83Im$S lm
r ,A~ t,t8!

3@dmnnA~ t8!2rmn~ t8!#@2 iGnl
a ~ t8,t !#%.

III. KINETIC LIMIT

A. Derivation

The Liouville equation with the source term combin
with the equation for the retarded Green function@Eqs.~16!–
~18!# is the main result of the paper. As soon as an appro
mate form of the dependence of the two-body self-energJ
on the one-particle density matrixr is chosen, i.e.,J
[J(r), the equations become self-contained and can
propagated numerically. It is interesting, however, to pur
a further approximation for these equations, in order to
tain an analytical expression. For that, we first ignore tw
body interactions, and then apply the somewhat drastic
netic assumption, i.e., assume that the coupling rate~defined
later! is much smaller than the characteristic energy diff
ence within the system. This means that theEx’s determine
the largest energy scale in the problem and it is convenien
incorporate the phase evolution associated with them inr
by considering

r̃xy~ t !5e2 iExtrxy~ t !eiEyt

so that

r852 i @ h̃r̃2 r̃h̃#1D̃, ~22!

where

~ h̃r̃ !xy~ t !5(
mn

E dt8S̃xm
r ~ t,t8!r̃mn~ t8!@2 iG̃ny

a ~ t8,t !#,

~ r̃h̃!xy~ t !5(
mn

E dt8@ iG̃xm
r ~ t,t8!#r̃mn~ t8!S̃ny

a ~ t8,t !,

~23!

D̃xy~ t !5 i(
mA

E dt8$S̃xm
r ,A~ t,t8!@2 iG̃my

a ~ t8,t !#

1@ iG̃xm
r ~ t,t8!#S̃my

a,A~ t8,t !%nA~ t8!,

and
n

-
-

at

i-

e
e
-
-
i-

-

to

i
]

]t
G̃xy

r ~ t,t8!2E dt9(
m

S̃xm
r ~ t,t9!G̃my

r ~ t9,t8!

5dxyd~ t2t8! ~24!

with

S̃xy
r (a)~ t,t8!5eiExtSxy

r (a)~ t,t8!e2 iEyt8,

S̃xy
r (a),A~ t,t8!5eiExtSxy

r (a),A~ t,t8!e2 iEyt8,

G̃xy
r (a)~ t,t8!5eiExtGxy

r (a)~ t,t8!e2 iEyt8.

The kinetic or weak coupling limit is related to the sma
magnitude of the parameterk5S/DE!1, whereDE is a
characteristic spacing between the system levels andS is a
characteristic self-energy due to interaction with reservo
The self-energiesS’s act as a perturbation potential for th
one-particle eigenstates. As usual, in the perturbation the
for one-particle problem the diagonal self-energies wo
give first-order correctionsS while the off-diagonal self-
energies give second-order corrections,S2/DE5Sk!S.
Therefore, we can neglect off-diagonal terms in the tunnel
self-energy which drive the system and simultaneously
glect off-diagonal terms in the one-particle density mat
because there would be no off-diagonal pumping terms.
remaining diagonal terms in the density matrix, i.e., t
populations, are defined asNx[r̃xx . Now the system con-
sists of non-interacting levels, each described totally by
population. Substituting the sums over the leads’ quant
states by an integration:(A,a→*sa(E)dE, wheresa(E)
is the density of states of leada at energyE, we represent
the diagonal self-energies as

S̃xx
r ~ t,t8!5(

a
E dEsa~E!ugx,aEu2

3~2 i !e2 i (E2Ex)(t2t8)2 iE
t8

t

Va(t9)dt9.

It is easy to show that ifsa(E)ugx,aEu2 is a slowly varying
function aroundEx , then the integration overE gives

S̃xx
r ~ t,t8!'~dEx2 iGx/2!d~ t2t8201!,

whereDEx is the shift of thex-level energy andGx is the
coupling rate to all the reservoirs

Gx5(
a

Gx
a , Gx

a52psa~Ex!ugx,aEx
u2.

Now the retarded Green function of the system is

G̃xx
r ~ t,t8!52 iu~ t2t8!e2 i (DEx2 iGx/2)(t2t8)

and Eq.~22! finally takes the form

Ṅx~ t !52GxNx~ t !

1E dt8dE(
a

Gx
aFx,aE~ t,t8!na,E~ t8!,
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FIG. 1. The currentJrp(t) through the
model single-level system~see text! as
a function of time when a rectangula
pulse of durationt53G21 is applied.
Time and current are given in units o
G21 and J05eG/2, respectively. The
current is given for four different am-
plitudes of the pulseD: ~a! 5G, ~b!
10G, ~c! 20G, and ~d! 40G. Solid and
dashed lines represent the current o
tained for varying chemical and elec
trostatic potentials, respectively, an
the dotted line is the bias in arbitrary
units.
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g

Fx,aE~ t,t8!5
u~ t2t8!

p
Re~e2 i (E2Ẽx2 iGx/2)(t2t8)2 i

3E
t8

t

Va(t9)dt9!, ~25!

where Ẽx5Ex1dEx are the levels’ energies renormalize
with respect to the interaction with the reservoirs.

The current between leada and levelx is given as

Jx
a~ t !52eGx

aS Nx~ t !2E
2`

t

dt8dEFx,aE~ t,t8!na,E~ t8! D .

~26!

The solution of Eq.~25! is

Nx~ t !5E
2`

t

dt8e2Gx(t2t8)E
2`

t8
dt9dE

3(
a

Gx
aFx,aE~ t8,t9!na,E~ t9!. ~27!

It is easy to show that in the case of a time-independ
reservoir populations,na,E(t)[na,E , formulas~27! and~26!
are exactly the result by Wingreen, Jauho, and Meir@Eqs.
~10! and ~11! of Ref. 11# obtained within the Keldysh dia
grammatic approach.

In the stationary case, the electrostatic and chemical
tentials are time-independent and one obtains the usual r
for a resonant-tunneling current:

J5(
x
E dE

e

2p
~nE

L2nE
R!

Gx
LGx

R

~E2Ex!
21~Gx/2!2 .

At equilibrium whennE
L5nE

R5u(m2E) the populations
of the levels are
nt

o-
ult

Nx5E
2`

m

dE
1

2p

Gx

~E2Ex!
21~Gx/2!2 .

If the chemical potential in the leads is sufficient
‘‘separated’’ from the levels, i.e.,uEx2mu@Gx ,;x, the level
populations areNx5u(m2Ex), i.e., only levels under the
chemical potential are populated, as should be.

B. Two different ways to picture time-dependent
reservoirs

We can study the conductance either under the us
case of a variation of the electrostatic potential in a giv
lead, or, alternately, under a change of the population i
lead, either through a time-dependent change of the elec
static potential, or in a change which is completely off eq
librium in which a specific set of levels is charged. Note th
for a slow variation, the change in the lead’s electrostatic
chemical potential would be equivalent, since the stea
state is determined by the difference between the chem
potential and the electrostatic potential. However, a tim
dependent perturbation of the chemical potential is
equivalent to a similar variation of the electrostatic potent
For a chemical potential variation, for example, the lea
would be temporarily charged, while a change in the elec
static potential would not necessarily be accompanied~for a
short time variation! by charging. In brief, the difference i
between changing the population of the levels~when the
chemical potential is changed! to changing the position o
the levels. But first consider the limit of slowly varyin
chemical or/and electrostatic potentials~slowly with respect
to the rateG!. The functionFx,aE(t,t8), defined in Eq.~25!,
is non-negligible only if (t2t8)Gx1. If the electrostatic po-
tential varies slowly on the 1/Gx scale thenFx,aE(t,t8) can
approximately be rewritten as
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FIG. 2. Similar to Fig. 1 for the case
of an ac bias with frequencyv0
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s

e
ow
se-
le-
Fx,aE~ t,t8!5
u~ t2t8!

p
Re~e2 i (E1Va(t8)2Ẽx2Gx/2)(t2t8)!.

Then, assuming that the occupation numbers of the
ervoir levels na,E(t9) are functions ofE2ma , na,E(t9)
[ f a(E2ma ,t9) ~e.g., the case of local thermal and chem
cal equilibrium!, Eq. ~25! takes the form

Ṅx~ t !52GxNx~ t !1E dt8dE

3(
a

Gx
aFx,aE

St ~ t,t8!na,E2[ma1Va(t8)]~ t8!, ~28!

where Fx,aE
St (t,t8)5Fx,aE(t,t8)uVa(t)50 , i.e., evaluated for

the case of stationary reservoir level energies:

Fx,aE
St ~ t,t8!5

u~ t2t8!

p
Re~e2 i (E2Ẽx2Gx/2)(t2t8)!. ~29!

We see that Eq.~28! corresponds to the case of statio
ary reservoir levels but varying chemical potentialsma(t)
5ma1Va(t). Therefore, the two approaches can differ on
in the case of rather rapidly varying reservoirs.

C. Nonstationary conductance
of a single-level system

To compare the two ways of picturing reservoirs we a
ply the source-Redfield equation to a single level system.
take the same parameters of the system as those consi
by Wingreen, Jauho, and Meir.17 The two cases considere
are the response of the single-level system to a rectang
pulse and an ac bias. The coupling rates to the L an
reservoirs are the same,GL5GR5G/2. Both the case of
varying chemical potentials and varying electrostatic pot
tials will be presented.
s-

-

-
e
red

lar
R

-

For a varying chemical potentials the level energies
the leads are constant in time. The energy of the only s
tem’s level is set at zero. The formulas for the level popu
tion and the currents between the system and the leads
the form

Ṅ~ t !52GN~ t !1
G

2 E dt8dEFE~ t2t8!(
a

na,E~ t8!,

~30!

Ja~ t !52J0S N~ t !2E
2`

t

dt9dEFE~ t2t8!na,E~ t8! D ,

~31!

where the constantJ05eG/2 andFE(t2t8) is given in Eq.
~29! with Gx5G,Ẽx50. We assume that the chemical pote
tials are antisymmetric with respect to level position, i.
mL(t)52mR(t). The populations in the leads are given a

nE
L,R~ t !5u~2E!1dnE

L,R~ t !,

dnE
L,R~ t !5@u~mL,R~ t !2E!2u~2E!#.

Since @dnE
L(t8)1dnE

R(t8)# and FE(t2t8) are, respec-
tively, antisymmetric and symmetric functions ofE, the in-
tegral in ther.h.s.of Eq. ~30! is time independent, so that th
level population does not vary in time. It is also easy to sh
that the average population of the level equals 1/2. Con
quently, the currents through both boundaries of the sing
level system are always the same,JL(t)52JR(t)5J(t).
The current can be rewritten as

J~ t !5J0E dv

2p
e2 ivtFE~v!dnE

L~v!,

FE~v!5
i

2p S 1

v1E1 iG/2
1

1

v2E1 iG/2D .
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For a rectangular pulse, the left chemical potential
m rp

L (t)5D@u(t)2u(t2t)#, where D and t are the pulse
magnitude and length respectively. The occupation numb
in the left lead are

dnE
L~ t !5 i E dv

2p
e2 ivt

12eivt

v1 i01 @u~E!2u~E2D!#,

and the current is

Jrp~ t !5J0@u~ t !x~ t !2u~ t2t!x~ t2t!#,

x~ t !5
G

2p E
0

D

dE
12e2G/2t@cos~Et!22~E/D!sin~Et!#

E21~G/2!2 .

In an ac bias case, the left chemical potential ismac
L (t)

5D(12cos(v0t)), whereD and v0 are the magnitude an
frequency of the bias, respectively. The populations in
left lead are given as (2D.E.0):
c
a

nt
ec
r
o

en
gu

y
h
tio
in
er
la
he

n
e
r

io

f

s

rs

e

dnE
L~ t !5 (

k52`

`
~21!ksin~aEk!

pk
exp~2 ikv0t !,

whereaE5cos21@(E2D)/D#. The current has the following
form:

Jac~ t !5J0E
0

2D

dE (
k52`

`

2
~21!ksin~aEk!

pk
FE~kv0!e2 ikv0t.

For varying electrostatic potentials the currents for
rectangular pulse and an ac bias are the same as obtain
Ref. 11 and are given as
Jrp~ t !5
J0

p E
2`

0

dE ImS De(2 iE2G/2)(t2t)u(t2t)~12e[ 2 i (E1D)2G/2]min(t,t)!

~E1D2 iG/2!~E2 iG/2! D ,

Jac~ t !52
J0

p
ImS eiD/v0 sin(v0t) (

k52`

`

JkS D

v0
De2 ikv0t lnS 11 i

D2kv0

G/2 D D ,
s.

sor
by

r,
whereJk is a first-typekth-order Bessel function.
The currentsJrp ,Jac for both rectangular pulse and a

bias are given in Figs. 1 and 2, respectively. The currents
given for four different amplitudesD55G, 10G, 20G, and
40G, and for ac biasv052G.

Interestingly, the difference between the two curre
~due to varying chemical potentials and due to varying el
trostatic potentials in the leads! is much more pronounced fo
a rectangular pulse, while the ac response is similar for b
cases. Apparently, this is due to high frequency compon
associated with instant switching on and off in the rectan
lar pulse.

Note that the approach is concentrating on the inner s
tem and does not account for any changes in the leads, w
are assumed to be large. Therefore, any practical applica
of this model to specific pulses need also to explicitly
clude any effects such as relaxation of the reservoirs aft
pulse. Such relaxation would affect the form of the popu
tion of as a function of the time, and therefore affect t
current as a function of time.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we present a Redfield approach with
source term which is suitable to numerically propagate tra
port problem under different bias situation, such as tim
dependent electrostatic bias, time-dependent charging, o
general time-dependent level energies and level populat
in the leads.

The resulting equations are simple to propagate even
complicated systems. They involve a two-time kernel@i.e.,
re

s
-

th
ts
-

s-
ich
ns
-
a

-

a
s-
-
in
ns

or

dr(t)/dt depends onr(t8) at earlier times#, but this can be
tracked either by using the slowly varyingr(t) assumption
@i.e., first Markov approximation,r(t)'r(t8)], or by using
more sophisticated approaches~see, e.g., Ref. 24!. Studies
using this equation will be presented in future publication
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