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A Liouville equation for systems which exchange particles
with reservoirs: Transport through a nanodevice
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A Redfield-like Liouville equation for an open system that couples to one or more leads and
exchanges particles with them is derived. The equation is presented for a general case. A case study
of time-dependent transport through a single quantum level for varying electrostatic and chemical
potentials in the leads is presented. For the case of varying electrostatic potentials the proposed
equation yields, for the model study, the results of an exact solutior20@ American Institute of
Physics. [DOI: 10.1063/1.1828037

I. INTRODUCTION case of a system with a single quantum level, the results to

. that of a previous exact treatment. Discussion follows in
The problem of transport through mesoscopic or nanodesection 1V.

vices has attracted much attention lafell? Fundamentally,
it is quite similar to the problem of an interaction of a system
with a bath of “other” particles, whether harmonic or not. Il. DERIVATION

One of the simplest and most general approaches for system- The Hamiltonian governing the total systeaystem
bath interactions is the Redfield—Davies approdcfimore 4 |eads is a combination of noninteracting lead and system

: : 18-24 2
generally known as the master-equation technifué; Hamiltonians together with a coupling pait
which is suitable for particles which interact with weak

baths. The greatest strength of the Redfield—Davies approach
is that it allows the solution of complicated systems, with

large baths. h is an ind the leads. Typically, only two lead
Transport, however, is special. Particle transport inheryv erea s an index over the ‘eads. 1ypically, only two eads

ently is associated with open batfi®., with the transport of would be used, denoted here as L and R, but the theory is

particles from one bath to the othem this work we there- valid for any number of leads, including a single one for an
fore consider the equivalent of Redfield’s equation for anadsorbate-surfa_ce study. The ceniral mesosyste_m or Nanosys-
open system which exchanges particles with reservoirs: eIe(E(-em can be a smgle molecule or a more complicated enity.
tronic transport through a nanodevidéor an alternate, The Hamiltonian of the system is the sum of a one-body
partial-trace-free approach, see Ref). Me derive an equa- and two-body terms,
tion for the one-particle density matrix which has an added =, + 0, 2)
source term. We label this equation source-Redfield.

The source-Redfield equation is suitable both for time-Where
independent transport and for time-dependent studies; more- o
over, it can be extended to include other effects, such as How=> Enthhin 3
temperature, pressure, or other dissipative mechanisms as it "
can be combined with the original Redfield—Davies theory inand #,, is the electron destruction operator in statef the
order to take into account interaction with bosonic “heat” system;E,, is the “bare” energy of state. There could be
baths. A feature which is not used here but would be StUdiEQarious choices for how the tWO-bOdy interactiﬁh is de-
in further work is the extension of the method to deal withfined which would be explored in future work.
the time-evolution of the tWO'bOdy density matrix, which The reservoir Hamiltonian has the form
would allow the studies of more complicated systdmbere
“sys_tem” is used generally to refer to the subsy_stem_, i.e., the 2 ga:z |:|0a+2 Va(t)Nai
device between the leadbviously, the formalism is also a a @

A=> A,+HAy+T, ()

valid for other cases, such as the interaction of a small ad- (4)
sorbate with a single lea@.g., with a surface of a crystal or |:|oa: E EAfI\fA,
a metal. ACa

In Sec. Il we derive the theory for a general case of leadgyhere we introduced the reservoir operatbgsthe particle
with varying chemical potentials and/or varying electrostaticyymper operator for each lead
potentials (i.e., varying leads’ populations and/or varying
leads’ energies Section Il considers the kinetic limit of N = 2 pte (5)
diagonal density matrix for the system, and compares, for the Y v A
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and the leads’ electrostatic potentidls(t) (since only the dp(t) . .
energy difference matters, the electrostatic potential of the —g5;— = ~1[U(1),p(1)]
system can always be set at Z&pA is an index running
over all the quantum states in all the reservdirs., leads, t
E, is the energy of state A. The quantum numbers A are not - f_ dt’ E {Zam(tt! )w“(t) Ut )p(t)]
necessarily indices of plane waves, and they could be, e.g.,
indices of Bloch states for periodic but nonhomogenous +3 - (LA Pt B (1)]
leads.
Finally, the coupling between the leads and the Hamil- +[Pm(D), P ) PR IS (1)

tonian in the Schrdinger picture is

T=2 (gnadhfatHe, ()
whereg,, A’s are coupling constants. Henceforth, we will use

an interaction picture, with the leads’ Hamiltonian plus the
one-body part of the system Hamiltonian

Ho=2 Fo,+Hom (7)

as the underlying zeroth order Hamiltonian. In the interaction

LGB, Pm(DIZ (T} (13

Here the tunneling self-energies are the A sums of
single-reservoir-state self-energies, e.@.rfm:EA(E,?ﬁf.
The latter are defined as

S oA )=S0 [1-na(t)],
St t) =St )na(t),

S =[1—na(t)ISEA ),

representation the two-body interaction operator becomes 2< A(t ) =nA(t)SEAL 1)
’ nm 1

time dependenty—U(t) and the tunneling operator be-

comes
?<t>=§ [Gn Al (DF A1) +H.Cl, (8)
where

’Aﬂn(t) = ’Aﬁne_iEnt:
t 9

The equation governing thgeduced density matrix of
the systemp is derived similarly to the Redfield—Davies

where
SH@Ag )= gn,AGrA(a)(t,t')gA,m

andGL(t,t’) is the retardedadvanceyi Green function of
reservoir level A
t

Gk(t,t’): —j 0(t_t!)e*iEA(t*t’)*iJ‘ dI"Va(I”),

GA(t', ) =[Ga(t,t")]*.

For later use we also define

equation, but interaction of the system with bosonic baths is E’(a)(t )= 2 Er(a) A(t t)

replaced by the terr describing the tunneling processes in

and out of the reservoirs. The solution of the Liouville equa-

tion

.d
P 30+ 000, pr(0)] (10

(usingf=1) for the full density matrix of the total system
pt obeys the relation

t ~ ~
priv=p%=1 [ T+ 0@r ), @

whereb?E pr(—=). The relation can be recast by iterating
it as

t ~ ~
bT<t>=ﬁ$—if_wdt'([uw),m(t'm[T(t'm?]
[t A A
~i f_mdt%[T(t’>,[U<t">,ﬁT<t">]J

+[?<t'>,[?<t">,faT<t">]]>). (12)

Taking the time derivative of Eq12) and tracing out the
reservoirs’ degrees of freedom lead to

Equation(13) relies on the assumption that the reservoirs
are big enough to neglect the feedback action of the small
system on them.

Note that Eq.(13) has terms likey!()p(t') dm(t")
which reduces the number of particlésis analogous to a
term fﬁm(t’)lwave function in a wave function representa-
tion) while other terms increase the number of particles and
still others, such asj(t)m(t’)p(t’), do not change the
number of particles. Therefore, the average number of par-
ticles in the system can change with time.

Time dependence enters the problem only through the
time variation of reservoirs. This time variation can be physi-
cally produced, e.g., by coupling of the reservoirs to other,
bigger, external systems, or bath fields. In the present theo-
retical model the reservoirs vary in time through variation of
phenomenological parameters describing the reservoirs.
Only one set of such parameters is usually used in conduc-
tance problems—electrostatic potentials in the reservoirs
V,(t). We already deal witlv ,(t) in the formulation. How-
ever, there are other possibilities, such as pressure change,
charging the reservoirs, or in general a change in the occu-
pation numbers. Even though the reservoirs are not necessar-
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ily in chemical (and thermal equilibrium, for brevity we
refer to variation of,(t) as being due to a variation of the ny(t)ZiEA f dt {SLm(tt)[—iGRy(t1)]
reservoirs’ chemical potentiajs ,(t). "

In deriving Eq.(13), the two-operator reservoirs’ quan- +[iG;m(t,t’)]Eﬁ;’y*(t’,t)}nA(t’).
tum averages appear. The way in which the reservoirs’ quan-

=r(a) i - _
tum averagesdefined by arR subscript are simplified can Here =,5°(t) is a retardedadvancel two-body self

be seen in the following example: energy due to the two-body interactibhwhich will be stud-
ied in a future paperGr(a)(t,t’) is a dressed, i.e., exact,
Tr[fA(t)fI\/(t’)]R: 5AA,Tr[fA(t)f/’&(tf)]R retarded(advancegl Green function of the mesoscopic sys-

_ : tem, which obeys the equation
= San [IGA(LE)ITI[F At )PA(L) IR

— San[IGA(L) 1= na(t)]. (iE‘Ex)Giv“"')‘§ =l UCmy( L)

Here we assume that the reservoir states are uncorre-
lated; the role of the retarded Green function is to relate an f dt"E L) Gyt ) = 8y d(t—t').  (18)
operator at time instaritto the operator at time instait,
Formally, in Eq.(14) one should use Eq9) in order to
PA()=[iGA(t,t")IFA(t"); relate the interaction representation operatgkgt) and

ot 5 (1 ey
the occupation numbeat,(t’) must be taken at time instant Ux(1) 10 ¢(t') andy(t’) in averages such as
t’ .because the trace in the integral part of Bcg) is made at (z,/;j,(t)z,lfx(t’))=<</;§(t’)z/;x(t’))e*'Ey(‘ )
this moment.

The time evolution of the expectation val@ét) of any
operatorA(t) acting in the system’s Hilbert space is given as

=2 pntIL=IGRYY D],

. . . "on - (19
A(D)=—i(A))—i([A1),0(D)]) () )y =€ BTG ) (1))

—ift dt’ Z (S (LU WAR), P (D)1 dm(t)) =§n: [iGhn(t,t) Ipmy(t’)

< In other words, one should formally use the bare re-
oot )wm(t )[‘/’”(t) A(t)]Hw”(t ) tarded(advancel Green function

X[A(t), ‘ﬂm(t)DE m(t’,t) Gro(tt )=—i6(t—t’ )5 e IEx(t-t")

H{[ PO AD TP 1), (14  However, relation$19) are correct only for “bare” operators

_ _ ) in the interaction representation and do not take into account
where the inner traces are taken at titheIn this work we  two-body interactions and interactions with reservoirs, i.e.,
are interested in the one-particle density matrix for the innegch effects as level mixing and phase decay. These effects

system, can be taken into account by including them into the quan-
fton tum phase evolution, i.e., by using, in the spirit of the
()= pxy(1) =y (1) (1)) (19  Keldysh diagrammatic techniq@&the exactior “dressed”
retarded and advanced Green functidﬁ%"*) instead of bare

(As mentioned, the formalism would be applied in latter
work for the evolution of the two-body density matrixhe
Liouville-type equation which results is

ones:

<&z§<t)fpx<t’>>:§ Pxm(t [ —IGE (1", D)],

p=—i[hp—ph]+D, (16) (20)

where (Iy(1) ()= 25 [IGr( L) Ipmylt)-

(hp) (1) =Eyp (t)+z () pmy(t) Of course, in most problems the exact retarded and ad-
Xy XXy ‘-‘xm m

vance Green functions would not be known and then an ap-

proximation would be used for them.
+2 AU (6t pmn(t)[ = |Gay(t D1, Equations(16) an_d (17) have the form of a Li_ouville _

von-Neumann equation for the one-particle density matrix,
with a complex Hamiltoniafdue to the complexity of th&
terms in the definition ohp and ph in Egs. (17)] and an
additional driving(or pumping source termD. The com-
plexity of the Hamiltonian results in attenuation of the one-
I dt'TiG" (t.t' tSa (t' ). (1 particle density matr|>§ compone'n'ts since patrticles leave the

%:’1 (Gt pme(t) 2y, 1), (17) system to the reservoirs. The driving teBnaccounts for the

(ph) (1) = pyy(DE, +2 () E5(1)



024707-4 I. V. Ovchinnikov and D. Neuhauser

J. Chem. Phys. 122, 024707 (2005)

absorption of particles from the reservoirs. The only termin 5 _

Eq. (16) depending on leads’ populatioms, is the driving

|ﬁe;y(t,t’)—J dt”% St )Gt

term D. The driving term vanishes when the leads are un-

populated i4,=0), i.e., the leads pump the system with par-

ticles only when they possess particles themselves.

= 5 S(t—t") (24)

The current between lead and the system can be de- with

rived ag®13

J N A~ A
Jo=—e s TN pr(0]=ieTr[N, FO1pr(0}. (2D

Taking p1(t) from Eq. (11) and assuming that in the
infinite past the contacts were not correlated one arrives at

the following expression:

Jr=—e >

I,m,n
ACa

X[ Smana(t’) = pma(t) [ =GR (', 1)1}

dt’ X Im{3[A(t,t")

lIl. KINETIC LIMIT

A. Derivation

SOt t) =By @t t)e 1B,

il)’((ya),A(t,tr):eiEXtE;(ya),A(t,tr)e—iEyt',
Gri(t,t") =BG (t,t)e BN

The kinetic or weak coupling limit is related to the small
magnitude of the parameter=3X/AE<1, whereAE is a
characteristic spacing between the system levels3aigla
characteristic self-energy due to interaction with reservoirs.
The self-energieX’s act as a perturbation potential for the
one-particle eigenstates. As usual, in the perturbation theory
for one-particle problem the diagonal self-energies would
give first-order correction& while the off-diagonal self-
energies give second-order correctios2/AE=3k<3..
Therefore, we can neglect off-diagonal terms in the tunneling

The Liouville equation with the source term combined self-energy which drive the system and simultaneously ne-

with the equation for the retarded Green functji&us.(16)—

glect off-diagonal terms in the one-particle density matrix

(18)] is the main result of the paper. As soon as an approxibecause there would be no off-diagonal pumping terms. The
mate form of the dependence of the two-body self-en&gy remaining diagonal terms in the density matrix, i.e., the

on the one-particle density matrig is chosen, i.e.,2

populations, are defined & =7%,,. Now the system con-

=E(p), the equations become self-contained and can beists of non-interacting levels, each described totally by its
propagated numerically. It is interesting, however, to pursugopulation. Substituting the sums over the leads’ quantum

a further approximation for these equations, in order to obstates by an integratior® s ,— [ o“(E)dE, whereo“(E)
tain an analytical expression. For that, we first ignore two-is the density of states of lead at energyE, we represent

body interactions, and then apply the somewhat drastic kithe diagonal self-energies as
netic assumption, i.e., assume that the coupling (@¢éned
later) is much smaller than the characteristic energy differ-
ence within the system. This means that Ejés determine

the largest energy scale in the problem and it is convenient to

S-S [ dEo(E)lgy el

t

incorporate the phase evolution associated with them gnto

by considering
ﬁxy(t) = e_iExthy(t)eiEyt

so that
p=—i[hp—ph]+D, (22)

where
<Eﬁ>xy<t>=§n f dt' S5 (6t ) Bma(t [ =GR, )],
@any(t):% f dt'[iG (1) [Pmn(t ) S5yt 1),
(239
Bo(0=13, [ dv{Siacer-iBs, 0]

G (L) ISEA DA,

and

X (—i)e HE-EI(t-t)-i j Vo (tdt"

t

It is easy to show that ir*(E)|g, .| is a slowly varying
function aroundg,, then the integration ovef gives

S (L) =(8E,—iT,/2)8(t—t'—0"),

where AE, is the shift of thex-level energy and’, is the
coupling rate to all the reservoirs

szz Ff(y! Fg:ZWUa(ExNgx,aEJZ-

Now the retarded Green function of the system is
é;’(x(t't/): —j a(t_t!)e—i(AEX—iFX/Z)(t—t')
and Eq.(22) finally takes the form

Ny (1) = =T Ny(t)

+ f AUAED T2F, pe(tt/ )N, e(t),



024707-5

1.6
1.4
1.2+
1.0
0.8
0.6
0.4

0.2

Transport through a nanodevice

0.8+
0.6
0.4
0.2

0.0

»

e el R

J. Chem. Phys. 122, 024707 (2005)

b)

FIG. 1. The currend,,(t) through the
model single-level systertsee text as
a function of time when a rectangular
pulse of durationr=3I""! is applied.
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Time and current are given in units of
I'"! and Jy=el'/2, respectively. The
current is given for four different am-
plitudes of the pulseA: (a) 5I', (b)
10I°, (c) 20I', and(d) 40I'. Solid and
dashed lines represent the current ob-
tained for varying chemical and elec-
trostatic potentials, respectively, and
the dotted line is the bias in arbitrary

J— ! ~
Fx aE(titl): 0(t t )Rqe—i(E—Ex—iFX/Z)(t—t')—i
’ a

t
X f Va(t")dt”)
t/ !

-0.2

(29)

units.
4 5 6
N —J dEo— ! Ix
L m (E—Ey)2+(T,/2)%

If the chemical potential in the leads is sufficiently
“separated” from the levels, i.e|E,— u|>T,VX, the level
populations areN,= 6(u—E,), i.e., only levels under the

where E E.+ 0E, are the levels’ energies renormalized chemical potent|a| are popu|ated as should be.
with respect to the interaction with the reservoirs.
The current between lead and levelx is given as

t
Jf(t)=—6T3<Nx(t)—f dt'dEF, ,e(t,t")n, e(t') .

The solution of Eq(25) is

t , ’
Nx(t)zﬁ dt’e Ix(t=t >ﬁ dt"dE

X > TEF, Le(t/ 1), g(t").

(26)

(27)

B. Two different ways to picture time-dependent
reservoirs

We can study the conductance either under the usual
case of a variation of the electrostatic potential in a given
lead, or, alternately, under a change of the population in a
lead, either through a time-dependent change of the electro-
static potential, or in a change which is completely off equi-
librium in which a specific set of levels is charged. Note that
for a slow variation, the change in the lead’s electrostatic vs.
chemical potential would be equivalent, since the steady
state is determined by the difference between the chemical
potential and the electrostatic potential. However, a time-

It is easy to show that in the case of a time-independenflependent perturbation of the chemical potential is not

reservoir populations), g(t)=n, g, formulas(27) and(26)
are exactly the result by Wingreen, Jauho, and MEigs. ) _ )
(10) and (11) of Ref. 11] obtained within the Keldysh dia- would be temporarily charged, while a change in the electro-

grammatic approach.

equivalent to a similar variation of the electrostatic potential.
For a chemical potential variation, for example, the leads

static potential would not necessarily be accomparieda

In the stationary case, the electrostatic and chemical pgshort time variation by charging. In brief, the difference is
tentials are time-independent and one obtains the usual resiiétween changing the population of the levélehen the

for a resonant-tunneling current:

rrR

J= Ede— (ng— nE)(E

At equilibrium whennE=nfR=

of the levels are

Ey

0(u—E) the populations

2+ (Ty/2)%

chemical potential is changedo changing the position of
the levels. But first consider the limit of slowly varying
chemical or/and electrostatic potentigsowly with respect
to the ratel’). The functionF, ,g(t,t"), defined in Eq(25),

is non-negligible only if {—t")I",1. If the electrostatic po-
tential varies slowly on the I, scale therF, .g(t,t") can
approximately be rewritten as
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0.0 - - — T ; = : T r 0.0
i FIG. 2. Similar to Fig. 1 for the case
of an ac bias with frequencyw,
=2I".

0.0 T e T T . T T 0.0

For a varying chemical potentials the level energies in
the leads are constant in time. The energy of the only sys-
tem’s level is set at zero. The formulas for the level popula-

Then, assuming that the occupation numbers of the resjon and the currents between the system and the leads take
ervoir levels n, g(t”) are functions ofE—pu,, n,g(t") the form

=f (E—u,,t") (e.g., the case of local thermal and chemi-
cal equilibrium, Eq. (25) takes the form

J— ! ~
FX aE(tit’): 0(t t ) Rqe—i(E+Va(t/)—EX—FX/Z)(I—I'))_
’ a

N(t)=—FN(t)+£f dt'dEFg(t—t') >, n,g(t)),

Nx(t):—rxNx(tHf dt’'dE (30)
t
N , , J¥t)=-1J (N(t)—f dt"dEFg(t—t")n, g(t") |,
x 2 TyFSLe(tt N e, +V, (1), (28) 0 e E E
’ (31

S " — ’ R
where FLe(t.t .)_FX’aE(t't )|\_/a(t)=0- 1€, gvaluated for - where the constant,=el'/2 andFg(t—t') is given in Eq.
the case of stationary reservoir level energies: (29) with I',=T',E, = 0. We assume that the chemical poten-

o tials are antisymmetric with respect to level position, i.e.,
F

o(t—t") = .
xoe(Lt)=———Ree WEZECLAME)) - (29)  4b(t)=— wR(t). The populations in the leads are given as

L,R _ L,R
We see that Eq(28) corresponds to the case of station- ng™(t)=06(—E)+ng(1),
ary reservoir levels but varying chemical potentialg(t) LRty _ LR+ =N
=u,+V,(t). Therefore, the two approaches can differ only ong (O =L6(p""(O=B)=0(=B)]

in the case of rather rapidly varying reservoirs. Since [5nE(t’)+ 5nE(t’)] and Fg(t—t’) are, respec-
tively, antisymmetric and symmetric functions Bf the in-

C. Nonstationary conductance tegral in ther.h.s.of Eq. (30) is time independent, so that the

of a single-level system level population does not vary in time. It is also easy to show

S . that the average population of the level equals 1/2. Conse-
To compare the two ways of picturing reservoirs we ap-

. . . quently, the currents through both boundaries of the single-
ply the source-Redfield equation to a single level system. W?evel system are always the sami(t)=—JR(t)=J(t).
take the same parameters of the system as those considen:ﬁqe current can be rewritten as ’
by Wingreen, Jauho, and Méif.The two cases considered
are the response of the single-level system to a rectangular _ do _, . L
pulse and an ac bias. The coupling rates to the L and R ‘J(t)_‘JOJ 7.8 Fe(w)dng(w),
reservoirs are the samé&'=I'R=T/2. Both the case of
varying chemical potentials and varying electrostatic poten- 1 1

|
tials will be presented. Fe(w)= ﬂ( W ETIT2 T o—EtiTR2)"
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For a rectangular pulse, the left chemical potential is * (— 1) sin(agk)
M';p(t)=A[0(t)—0(t—T)], where A and 7 are the pulse 5nE(t)= > Texq—ikwot),
magnitude and length respectively. The occupation numbers
in the left lead are

dw . —glor —1 .
Lipv—: | 2 it _ _ whereag=cos {(E—A)/A]. The current has the following
and the current is
Jrp(1)=Jo[ 6(t) x(1) — 6(t— ) x(t—=7)], w
A 2 (—1)fsin(ack) ot

T IAdEl—e‘m‘[cos(Et)—2(E/A)sin(Et)] Jac(t)=Jof0 dEkZm 2———— Felkoge 0.
XO=521, EZ+ (1722 '

In an ac bias case, the left chemical potentia,u§(t)
=A(1-cos(gt)), where A and wy are the magnitude and For varying electrostatic potentials the currents for a
frequency of the bias, respectively. The populations in theectangular pulse and an ac bias are the same as obtained in
left lead are given as (>E>0): Ref. 11 and are given as

Ael~IE-TR2)a=7)0(t=7)( 1 _ gl ~i(E+A)~T/2Jmin(t, )y
(E+A—iT/2)(E-il/2) )

Jo (O
er(t)zgﬁ dEIm

‘]0 iA/ - ” A . i A— ka)o
—_ _Z g sin(wot) | a—ikogt
Jac(t) - Im( e k;w Ji o0 e In| 1+i T2 ,
|
whereJ, is a first-typekth-order Bessel function. dp(t)/dt depends omp(t') at earlier time§ but this can be

The currents],, ,J,¢ for both rectangular pulse and ac tracked either by using the slowly varyingt) assumption
bias are given in Figs. 1 and 2, respectively. The currents arg.e., first Markov approximationg(t)~p(t’)], or by using
given for four different amplituded =5I", 10, 20, and  more sophisticated approachese, e.g., Ref. 24 Studies
40I", and for ac biasvy=2I". using this equation will be presented in future publications.

Interestingly, the difference between the two currents
(due to varying chemical potentials and due to varying eleCaAckNOWLEDGMENTS
trostatic potentials in the leadis much more pronounced for _ ) )

a rectangular pulse, while the ac response is similar for both ~ The authors are grateful for discussions with Professor
cases. Apparently, this is due to high frequency component@o' Baer and Ronnie Kossloff. This work was supported by
associated with instant switching on and off in the rectanguth® NSF and the PRF.
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