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Density Functional Theory with Correct Long-Range Asymptotic Behavior
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We derive an exact representation of the exchange-correlation energy within density functional theory
(DFT) which spawns a class of approximations leading to correct long-range asymptotic behavior. Using a
simple approximation, we develop an electronic structure theory that combines a new local correlation
energy (based on Monte Carlo calculations applied to the homogeneous electron gas) and a combination
of local and explicit long-ranged exchange. The theory is applied to several first-row atoms and diatomic
molecules where encouraging results are obtained: good description of the chemical bond at the same time
allowing for bound anions, reasonably accurate affinity energies, and correct polarizability of an elongated
hydrogen chain. Further stringent tests of DFT are passed, concerning ionization potential and charge
distribution under large bias.
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Density functional theory (DFT) [1,2] is an in-principle
exact approach to molecular electronic structure furnish-
ing a starting point for useful approximations. The local
density (LDA) [2] and local spin-density (LSDA) approxi-
mations form surprisingly well-balanced, robust, and rea-
sonably accurate theories for ground-state properties of
molecules, solids, and even metals [3–5]. The generalized
gradient approximation (GGA) [6,7] improves accuracy
further and in finite systems hybrid functional approxima-
tions (HFA) [8,9] are often even more powerful. Despite
their great success, present functionals often fail to account
for anions and processes involving long-range charge
transfer. For example, the polarizability of elongated mole-
cules is strongly exaggerated [10]. These problems are
associated with the existence of self-interaction in the local
functionals [11–15], leading to spurious asymptotic form
of the exchange-correlation (XC) potentials derived from
them [13,16].

A particularly useful method for self-interaction correc-
tion (SIC) was suggested by Perdew and Zunger [13] (PZ),
and has been successfully applied to anions and computa-
tion of electron affinities [17]. Recently, a systematic study
of this method was performed [18]. The theoretical diffi-
culties were overcome by the optimized effective potential
(OEP) [19], further developed in a form that can be applied
to systems beyond atoms [20,21]. SIC and OEP predict
correct polarizability and electron affinity where LSDA/
GGA fail [21].

One well-known ‘‘type’’ of electronic-structure theory
not having the problem of self-interaction is the Hartree-
Fock theory (HFT). In HFT, the interplay between ex-
change and Hartree terms results in exact self-interaction
removal. HFT, however, is not sufficiently accurate be-
cause it neglects the correlation energy. The simple ap-
proach, adding an LSDA correlation energy functional to
the explicit orbital exchange of HFT, is unsatisfactory
05=94(4)=043002(4)$23.00 04300
because the exact exchange disrupts a delicate cancellation
of errors existing in LSDA [3].

This Letter describes a new approach to self-interaction
correction and long-range behavior of DFT approxima-
tions. We derive a new exact representation of the correla-
tion energy that endorses approximations with correct
asymptotic behavior. A simple approximation using this
theory is then shown to yield a new useful functional,
exhibiting good description of chemical bonds while al-
lowing for stable anions and correct polarizability of elon-
gated molecules. The new functional is better suited for use
in confined systems, where the homogeneous electron gas
(HEG) correlation energy is usually too large by about
100%. An account of the theory, followed by a demonstra-
tion on a few representative systems, is given below.

We consider a system of N electrons, with the Hamil-
tonian Ĥ � T̂ � V̂ � Û where T̂ �

PN
i�1��

1
2r

2
i � is the ki-

netic energy (we use atomic units, e2=4	"o� �h�e�1)
V̂ �

PN
i�1 v�r̂i� the external potential, and Û� 1

2�PN
i�j�1u�r̂ij� (where r̂ij � jri � rjj) is the interaction,

with u�r�:

u�r� �
1

r
: (1)

In DFT, all expectation values are functionals of the
ground-state density n�r�. The energy functional [2]

Ev;N	n
 � Ts	n
 � V	n
 � EH	n
 � EXC	n
 (2)

is the basic functional since by minimizing it one maps the
interacting electrons onto noninteracting fermions obtain-
ing the ground-state density and energy. In Eq. (2), Ts	n
 is
the noninteracting kinetic energy, V	n
 �

R
v�r�n�r�d3r,

EH	n
 �
1

2

Z
n�r�n�r0�u�jr� r0j�d3rd3r0 (3)

is the Hartree energy, and
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EXC	n
 � T	n
 � Ts	n
 �U	n
 � EH	n
 (4)

is the exchange-correlation energy (XCE), where T	n
 is
the kinetic energy and U	n
 the electron-electron repulsion
energy functionals.

The XCE is of course practically impossible to deter-
mine exactly. Yet we can express it using a straightforward
extension of the adiabatic-connection theorem [22–24].
For this, we consider a family of N particle systems con-
tinuously parameterized by 0 � � <1, all having the
same ground-state density n but in each the particles
interact via a different descreened two-body interaction:

u��r� �
1� e��r

r
: (5)

For large interparticle distances �r� 1, the particles of
system � repel just like electrons, but at short distances the
repulsion is moderated and nonsingular. Each system � has
a unique ground-state wave function 
� (assuming v
representability). The system with � � 1 is the original
Coulomb interacting system, having the wave function

1. The system with � � 0 corresponds to noninteracting
particles with 
0 a Slater determinant of N spin orbitals.
The adiabatic-connection theorem states

EXC	n
 �
Z 1

0
h
�0 jŴ�0 j
�0 id�0 � EH	n
; (6)

where Ŵ� � 1
2

P
i�jw��r̂ij�; w��r� � e��r.

Evaluating the XCE, Eq. (6) is again impossible. Yet, a
simple approximation already leads to a meaningful the-
ory: assume that, in Eq. (6), 
� is replaced by 
0. Under
this approximation, the integral can be performed and
yields the HFT exchange energy. The next simple approxi-
mation is to assume 
�0 � 
0 for �0 < � and 
�0 � 
1

for �0 >�, for some 0< �<1, giving
Z 1

0
h
�0 jŴ�0 j
�0 id�0 � h
0jÛ�j
0i � h
1jŶ�j
1i;

(7)

where Û� � 1
2

P
i�ju��r̂ij� and Ŷ� � 1

2

P
i�jy��r̂ij�, with

y��r� � e��r=r the Yukawa potential. The first term on
the right in Eq. (7) is simply a HFT potential energy
h
0jÛ�j
0i � E�H	n
 � K�

X	n
 for the interaction u��r�,
where E�H	n
 is defined by Eq. (3) with the Coulomb
potential u�r� replaced by the descreened potential u��r�
and

E�X	n
 �
1

2

Z
jP	n
�r; r0�j2u��jr� r0j�d3rd3r0 (8)

is the corresponding exchange energy. In Eq. (8) P	n
�rr0�
is the density matrix of noninteracting electrons having
density n. From Eqs. (4), (6), and (7), the error, i.e., the
difference between the exact and approximate XCE, is

�E�XC � 	T�n� � h
1jÛ�j
1i


� 	Ts�n� � h
0jÛ�j
0i
: (9)
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We now study two limits of this approximation. For ��
0, U� � 0 so the error is �E��0

XC � T	n
 � Ts	n
, a mani-
festly non-negative quantity [4], while, for �!1,U�!U
and so �E�XC ! EC, where EC is the correlation energy, a
manifestly nonpositive quantity. Thus, assuming continu-
ity, we conclude that there must always exist 0<�<1
(in general depending on the density) for which �E�XC � 0,
i.e., the approximation (7) is exact. This allows us to assert
that the energy functional can be accurately written as

Ev;N	n
 � Ts	n
 � V	n
 � EH	n
 � E�X	n
 � E�XC	n
;

(10)

where

E�XC	n
 � h
1jŶ�j
1i

�
1

2

Z
n�r�n�r0�y��jr� r0j�d3rd3r0: (11)

The sum of the last two terms in Eq. (10) is an exact
representation of the XC energy and constitutes a starting
point for approximations, concentrating on simplified
forms for the functionals �	n
 and E�XC	n
. The important
feature is that this approach allows to naturally introduce
the explicit exchange functional E�X	n
. This functional
produces a potential which at large distances �r�� 1�
corrects the spurious self-interaction in the Hartree-
potential derived from EH	n
. Thus, E�X	n
 heals the ail-
ments of local and generalized gradient density approxi-
mations associated with the spurious long-range self-
interaction.

Let us now make the simplest and perhaps crudest
approximation: assume � is completely independent of n.
We show that this leads to a useful molecular electronic-
structure theory. For definiteness, we further assume � �
1a�1

0 (future optimization of this value is likely to improve
results). Additionally, the energy of Eq. (11) is approxi-
mated as a local-density functional:

E�XC	n
 �
Z
"�XC�n�r��n�r�d

3r; (12)

where "�XC�n� is the XCE per particle of Eq. (11) for a
HEG. For convenience, we write this function as

"�XC�n� � "�X�n� � "�C�n�; (13)

where "�X�n� is the analytical local screened exchange in a
HEG given in [25]. The function "�C�n� was evaluated nu-
merically for the HEG using the shifted-contour auxiliary
field Monte Carlo (SCAFMC) method [26,27], performed
with plane waves. In this preliminary account we made no
attempt to fully converge to the infinite cell size limit and
the statistical error is estimated to be �10%. A more rigor-
ous calculation and a full account of the details will be
published elsewhere. We calculated "�C�n� (with ��1a�1

0 )
at several densities given by rs�1;2;3;5;10;20. For con-
venience of application, the results are expressed in terms
of the ratio $ � "�C="

LDA
C where "LDA

C is the (usual) full
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correlation energy for the HEG (parametrized in any DFT
code).

We use a simple form to fit the SCAFMC results:

$�rs� �
"��1
C �n�

"LDA
C �n�

�
A

C0 � C1rs � r2s
; (14)

finding A � 3:4602, C0 � 3:2, C1 � �0:9, as shown in
Fig. 1. For almost all densities, except the very high density
regime, $ is smaller than 1, decaying to zero as rs ! 1.
Thus, "�C is smaller than "LDA

C as we know it should be for
confined systems. It is interesting that SCAFMC results
show that $ is somewhat greater than 1 in the high-density
limit. This has to be further checked by increasing the
accuracy of the SCAFMC calculation, a feat left for future
investigations. For the purpose of demonstration, we used
the ratio $ also for the spin-polarized correlation energy.

The functional of Eq. (10) contains a long-range portion
of explicit exchange E�X	n
, and a complementary local-
density exchange and correlation functionals based on
"�X�n� and "�C�n�. In principle, a KS application of the
functional requires an OEP approach [19]. To circumvent
this complication, we minimized the energy Ev as a func-
tional of orbitals instead of the density. Since both ap-
proaches are variational they are known to yield very
similar occupied orbitals and energies [19]. We now
show this functional furnishes balanced molecular elec-
tronic structure: it has built-in correct long-range behavior
and good description of the chemical bond. We performed
several calculations done with a plane-wave code, using
norm-conserving pseudopotentials [28] and a LSDA pa-
rametrization of the HEG correlation energy [29]. All
results are fully self-consistent and converged with respect
to cell size and grid spacing.

We first discuss the computed polarizability of linear
chains of hydrogen atoms [10], shown in Fig. 2, using
LDA, HFT, and the new functional. The HFT results are
known to be similar to accurate wave function methods
rs
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FIG. 1 (color online). The ratio $ � "�C="
LDA
C as a function of

rs for � � 1a�1
0 . Shown are the AFMC results (filled dots) and

the analytical fit (dotted curve and empty circles).
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[21], and the new functional gives essentially identical
results to HFT, in contrast to LSDA which greatly over-
estimates polarizability. Chemical bonds and atomic elec-
tron affinities are reasonably well described by the new
functional as shown for several examples in Table I, com-
pared with experiments. Comparing to LSDA, it is seen
that atomization energies are greatly improved; vibrational
frequencies have comparable errors but bond lengths are
worse. Atomic electron affinities are reproduced well with
the maximal error of 0.34 eV for F. An additional test is in
the equality of "H and IP; the former is the energy of the
highest occupies level and IP is the ionization potential
[16]. For the atoms considered in Table I, LSDA yields a
poor result �IP="H�LDA � 1:8, while the new functional
yields a good value, �IP="H���1 � 1:05. Another stringent
test for DFT is the ‘‘derivative discontinuity’’ property: a
weakly coupled molecule or atom must have an integer
number of electrons [12]. We checked this by considering
two distant hydrogen atoms under a bias vbias. LSDA
erroneously shows a continuous charge transfer between
the atoms as vbias is increased. The new functional de-
scribes the correct physics: when vbias < IP� EA no
charge is transferred while a complete electron is trans-
ferred otherwise.

Summarizing, we developed an exact representation of
the XC energy, constructing a new approximate functional
exhibiting correct long-range behavior. The function v��r�
[Eq. (5)] is not fundamental: any interaction that smoothly
turns off the Coulomb potential ‘‘from the inside out’’
leads to a similar theory. Recently, the form erf��r� was
used [30] in an exchange-only method. Related approaches
to ours [31,32] also separated the interaction to long-range
and short-range parts but for different purposes.

Future work is needed. Monte Carlo calculations will be
extended, seeking a spin-polarized "�C�n�. It is important to
optimize � or try new forms of �	n
. Applications await,
computing molecular response, excitations, especially for
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FIG. 2 (color online). Polarizability of a linear hydrogen chain,
as a function of its length, calculated with LDA, HFT, and the
present functional.
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TABLE I. Atomization energy, bond length, and vibrational frequency, and atomic affinity energy, comparing experimental data to
the � � 1 approximation and the LSDA.

kcal=mol Angstrom cm�1 eV
Atom (X) �E (X2) Re (X2) !e (X2) EA (X)

C Expt. 145 [36] 1.242 1855 [37] 1.26 [38]
� � 1 132 1.27 1810 1.33
LSDA 169 1.25 1770

N Expt. 225 [39] 1.098 [37] 2358 [37] Unstable
� � 1 223 1.06 2540 Unstable
LSDA 256 1.089 2520

O Expt. 118 [39] 1.208 [37] 1580 [37] 1.46 [38]
� � 1 122 1.14 1640 1.50
LSDA 167 1.20 1590

F Expt. 37 [39] 1.412 [37] 916 [37] 3.40 [38]
� � 1 35 1.330 1200 3.73
LSDA 75 1.390 1000
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Rydberg states using time-dependent DFT. In molecular
conductance [33] self-repulsion removal is important, as
they are for metallic surfaces [34] and strong lasers [35].
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