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We study a time-dependent semiempirical method to determine excitation energies, TD-PM3. This
semiempirical method allows large molecules to be treated. A Linear-response Chebyshev approach
yields the TD-PM3 spectrum very efficiently. Spectra and excitation energies were tested by
comparing it with the results obtained using TD-DFT �Time Dependent-Density Functional Theory�,
using both small and large basis sets. They were also compared to PM3-CI, Time
Dependent-Hartree Fock using the STO-3G basis set, and to experiment. TD-PM3 results generally
match better the large-basis set calculations than the small-basis TD-DFT do; excitation energies are
almost always accurate to within about 20% or less, except for a few small molecules. Accuracy
improves as the molecules get larger. © 2010 American Institute of Physics.
�doi:10.1063/1.3453683�

I. INTRODUCTION

Semiempirical methods have an important role in large
scale simulations, allowing treatment of very large
systems.1,2 Traditionally, semiempirical methods have been
mostly used for time-independent ground-state simulations.
However, with the rising interest in excited state dynamics,
and the advent of large scale iterative computational meth-
ods, a natural question arises whether semiempirical time-
dependent and/or iterative methods can be as useful for dy-
namics and for excited states. At present there are several
semiempirical methods which have been used for excited-
state dynamics. One is time-dependent tight-binding DFT,4,5

a method which bridges DFT �Density Functional Theory�
and semiempirical tight binding6,7 in order to also treat sys-
tems such as organic molecules and biological molecules
with atoms of different electronegativities, rather than the
solid-state systems that tight binding has been generally used
for. The other approach is to use a semiempirical MO-CI
�molecular orbital-configuration interaction� method.8–10

This involves using a semiempirical program such as PM3 or
MNDO along with a CI �configuration interaction� calcula-
tion such as CI singles or CI doubles in order to get single or
double excited states.

A decade ago some interest has also risen in using time-
dependent methods for polymeric systems. It was also real-
ized that a Krylov subspace approach could be used to turn
the time-dependent equation into a linear-response equation
with an easily calculated action of a time-independent Liou-
ville operator.12 Here, we systematically investigate the PM3
approach using a Chebyshev framework of polynomial
expansion of linear-response time-dependent density
methods.14,15 We examine such an approach for a collection
of small molecules, showing that even for small systems the
excitation energies are quite accurate. The resulting approach
is therefore very efficient numerically compared with direct

real time propagation since no time-dependent propagation is
needed and the results are calculated directly in frequency
space, iteratively, without any matrix diagonalization.

Conceptually, PM3 may seem unnatural as a time-
dependent method, as it has been parametrized for ground
states. However, it is known that linear-response time-
dependent methods tend to have surprisingly good
accuracies.14–17 The formal reason is that much of the effects
which are missing in time-independent descriptions are just
the polarization of the electron cloud �due to the Hartree
terms� and a time-dependent treatment automatically takes
those into account. �Formally, a time-dependent treatment
takes the RPA �random phase approximation� diagrams into
account.� We therefore examine here a straightforward appli-
cation of PM3 to excited-state studies, and, indeed, find that
the method is surprisingly accurate. Specifically, we show
below that even without any parameter tweaking, a linear-
response PM3 approach yields excitation energies which are
often five times more accurate than the time-independent
highest occupied molecular orbital-lowest unoccupied mo-
lecular orbital �HOMO-LUMO� gap, and are generally accu-
rate to within 10%–20%.

The paper is arranged as follows. Section II reviews
PM3 and linear response. Section III shows results, and con-
clusions follow in Sec. IV.

II. THEORY

A. PM3 equations

PM3 is an acronym for the modified neglect of diatomic
orbital method-parametrized model 3 or MNDO-PM3. This
model makes several assumptions in order to make its calcu-
lations feasible and efficient. It only treats the valence elec-
trons of an atom, in a minimal basis, and approximates its
inner shell electrons and the rest of its nucleus as a fixed
core.

The electronic energy is calculated usinga�Electronic mail: dxn@chem.ucla.edu.
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E =
1

2�
ij

Pij�Hij + Fij� . �1�

Here, P is the density matrix; H is the core Hamiltonian
matrix, which includes the usual core Hamiltonian together
with a dipole term

Hij = H0,ij + E · Dij , �2�

due to any external electric fields, E �as will be important for
the linear response evolution below�, D is the electric dipole
matrix, and F is the Fock matrix. The basis set for the ma-
trices is composed of the valence shell atomic orbitals of
each atom in the molecule.

The equations used to calculate the core Hamiltonian
matrix and the Fock matrix are detailed by Stewart, Dewar,
and Thiel19–21 and are briefly described below. We use the
close-shell version, since if the ground state is made from
closed-shell orbitals, it is sufficient to consider only the
closed-shell equations for singlet-singlet transitions.

The core Hamiltonian matrix is composed of one-
electron terms and is calculated by

H�� = U�� + �
B

V��,B, �3�

H�� = �
B

V��,B, �4�

H�� = 1
2 ���

A + ��
B�S��, �5�

where the symbols are defined as follows.
First, here and in the following, � and � correspond to

matrix elements pertaining to atomic orbital in atom A. The
subscripts � and � denote atomic orbitals in an atom B which
is different from atom A.

U�� is the sum of the kinetic energy of the electron in
orbital � and the potential energy of the attraction between
the electron and the core of the atom in which this orbital
resides. This parametrized term is determined by fitting sev-
eral of its theoretical valence energies against the corre-
sponding spectroscopic results.

V��,B is the potential energy of the attraction between the
electron in atom A and the core of atom B and is calculated
by evaluating the two center integral representing the repul-
sion interactions between the charge distribution of the
atomic orbitals represented by � and � in atom A and a
purely spherical �s-type� charge distribution in atom B which
approximates the core of atom B.

The �’s are parameters specific to the atom and the type
of atomic orbital, i.e., whether it is s or p �there have been
extensions to d- and higher order orbitals, but for most ap-
plications s and p orbitals suffice�.

Finally, S�� is an element from the overlap matrix cal-
culated from the overlap integrals of the individual minimal
basis Slater orbitals. Next, we turn to the Fock matrix in a
static field. It is composed of the core Hamiltonian and two-
electron terms, the open shell equations for the alpha
�spinup� Fock matrix are

F��
� = H�� + �

�

A

�P��
�+����

A��
A,��

A��
A�

− P��
� ���

A��
A,��

A��
A�� + �

B
�
�,�

B

P��
�+����

A��
A,��

B��
B� ,

�6�

F��
� = H�� + 2P��

�+����
A��

A,��
A��

A� − P��
� ����

A��
A,��

A��
A�

+ ���
A��

A,��
A��

A�� + �
B

�
�,�

B

P��
�+����

A��
A,��

B��
B� , �7�

F��
� = H�� − �

�

A

�
�

B

P��
� ���

A��
A,��

B��
B� . �8�

Here, � represents the atomic orbitals of the specified atom.
The terms in parentheses composed of atomic orbitals in the
same atom A are the one-center two-electron repulsion inte-
grals due to exchange and Coulomb forces between two elec-
trons in different atomic orbitals but in the same atom. These
are parametrized specifically to each atom using experimen-
tal data.

The terms in parentheses composed of atomic orbitals
from two different atoms, A and B, are the two-center two-
electron repulsion integrals due to the repulsion forces be-
tween two electrons in two different atoms. �All three- and
four-center integrals are neglected.� The two-center integrals
were calculated using the method and equations by Dewar
and Thiel,21 where the interaction between orbitals on differ-
ent atoms is approximated from electrostatic moments.

As the equations above show, a trait of semiempirical
methods is the simplification of the Hamiltonian by replacing
some of the terms with parameters and equations obtained by
deriving them from and fitting them against experimental
results and data.1,2,23–26

The first stage in the simulation is completed by itera-
tively preparing the ground-state Fock and density matrices
P0, F0 fulfilling

P0 = 	�� − F0�P0�� , �9�

where we introduced the chemical potential and step func-
tion. Standard sparse-matrix methodologies can be used to
efficiently do the Hartree–Fock �HF� iterations for large sys-
tems. The ground-state density matrix is then used as an
input to the time-dependent stage.

B. Time-dependent PM3

After the electronic energy converges, the time-
dependent response is mostly simply calculated in real time
from evolving the time-dependent equation

i
�P

�t
= �F�P�t��,P�t�� . �10�

The time dependence is induced by a simple addition of
an electric field delta-function �in time� perturbation to the
initial Fock matrix, i.e., using
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E�t� = 
�t�E0. �11�

After the delta-function perturbation ends, the density matrix
�denoted as Pstart to distinguish it from the original density
matrix, P0� takes the form

Pstart = P0 − i�E · D,P0� . �12�

Pstart is used as the initial condition to the time-dependent
propagation.

A full time-dependent linear propagation is often expen-
sive, although there has been considerable progress in direct
real time propagation �see, e.g., Ref. 27 and references
therein�. Since the vast majority of applications will be con-
cerned with linear response, we used here a more efficient
iterative Chebyshev approach �see Refs. 14 and 15�. This
approach is different from the more commonly used
frequency-based linear-response approach used by
Casida28,29 and others16,17,30 in that it processes all frequen-
cies at once without matrix diagonalization. Using this ap-
proach allows for the excitation energies to be found simply
from the Fourier transform of the propagation of the density
matrix over time. For greater efficiency, a similar iterative
approach to that developed in Refs. 14 and 15 but which
extracts the spectrum directly in frequency space was used
here. This approach will be explained below.

C. Manifestly linear evolution equations

The linear response approach to PM3 and density matri-
ces in general is even simpler than the previously introduced
wave function approach.14,15

We define the deviation between the actual and ground-
state density matrix as

W�t� = P�t� − P0. �13�

Defining F0=F�P0� and using �F0 , P0�=0, we expand the
evolution equation �Eq. �10�� for the density matrix ignoring
terms of order W2,

i
�

�t
W�t� = �F�W�t� + P0� − F0,P0� + �F0,W�t�� , �14�

a form which is linear in W for small enough deviations.
The-F0 term in Eq. �14� is important to impose linearity in
the typical case where numerically �F0 , P0� is small but non-
vanishing. The linearity can be further imposed by scaling
through a small constant, denoted by g, resulting at

�

�t
W�t� = LW , �15�

where the Liouville superoperator is defined as

LW =
− i

g
�F�gW�t� + P0� − F0,P0� − i�F0,W� �16�

�in practice we found that a variable g, equal to a small
number �e.g., 10−5� times the norm of W, leads to uniformly
stable results�.

The initial density matrix is then obtained by applying a
delta-function electric field perturbation, which results in a
starting density of

Wstart = Pstart − P0 = − i�E · D,P0� . �17�

The linear evolution equation is then solved by the itera-
tive Chebyshev algorithm. Formally, the time-dependent
propagation is represented as

W�t� = eLtWstart = �
n

�2 − 
n0�Jn�t��Tn� L

�
�Wstart

= �
n

�2 − 
n0�Jn�t���n, �18�

where � is a parameter essentially equaling to �or somewhat
larger than� the typical energy range in the Fock operator,
and we introduced the Bessel function and the modified
Chebyshev series, formally defined as

�n = Tn� L

�
�Wstart, �19�

where Tn are modified Chebyshev operators defined as

Tn�x� = i−n acos�ix� . �20�

In practice, the series is evaluated as

�0 = Wstart,

�1 =
LWstart

�
, �21�

�n = 2
L�n−1

�
+ �n−2.

Note that each element �n is itself a density matrix of the
same dimensions as P0.

In practice we are typically interested in the absorption
spectrum. For that, we need the time-dependent dipole,

d�t� = Tr�DW�t�� . �22�

The dipole will yield the absorption cross section defined as

B�� =  Im�E0 · d��� , �23�

where

d�� =
1

2�
�

0

�

e−t2a2/2eitd�t�dt .

Noticing that Wstart is purely imaginary, we get

Im d�� =
1

2�
Im�

0

�

Tr�D · eiteLtWstart�dt

= Tr�D · 
�iL − �Wstart�dt , �24�

where the delta function is evaluated by a Chebyshev itera-
tive algorithm. In practice, it is Gaussian broadened and de-
fined as


�iL − � =
1

	2�a
exp�−

�iL − �2

2a2 � , �25�

where a is a frequency-width parameter; we then follow with
the expression
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1
	�a

exp�−
�iL − �2

a2 � = �
n

Tn� L

�
� fn�� , �26�

where fn�� are frequency dependent coefficients �evaluated
in the Appendix�. The equations above result in Gaussian
broadened density matrices,

W�� 

1

	�a
exp�−

�iL − w�2

a2 �Wstart = �
n

fn���n, �27�

so that finally,

B�� = �
n

fn��D · Rn, �28�

where the residues

Rn = Tr�DTn� L

�
�Wstart� = Tr�D�n� �29�

are each a length-three vector.
The final result is therefore very simple, as in practice

the calculation of the absorption spectrum amounts to the
calculation of Chebyshev series, and while it is evaluated the
residues need to be collected. Then, for each desired damp-
ing parameter, the spectrum is calculated from Eq. �28�.

The number of Chebyshev terms in our simulations is
about 4� /a, which for typical spectra yields several thou-
sand terms. There are several methods for expediting conver-
gence of a Chebyshev series and these should yield up to an
order of magnitude improvement in the number of terms
�and even more for isolated spectra� as will be investigated in
future studies.

III. SIMULATIONS

A. Overview

For this test study, several small representative mol-
ecules were first used: dihydrogen, hydrogen fluoride, difluo-
ride, carbon monoxide, methane, ethene, and formaldehyde.
These molecules are well represented by established methods
such as DFT and TD-DFT �Time Dependent-Density Func-
tional Theory� with standard functionals. In addition, the pro-
gram was tested on the following aromatics, benzene, naph-
thalene, anthracene, tetracene, and pentacene, in order to
determine its accuracy as the molecules increase in size.

The first step in the simulations is the construction of the
ground-state density and Fock matrices by established meth-
ods. The electric dipole perturbation is then added and the
density matrix is iterated over time using Eq. �14�.

Next, Eq. �28� is applied; typically we use a few thou-
sand terms for convergence �indicated by a totally positive
spectrum without any negative parts which will be artifacts
of lack of convergence�. The width parameters taken were

a = 0.05 eV, � = 50 eV, �30�

where a was chosen to yield well-isolated peaks in the spec-
tra, while � was chosen to ensure convergence of the Cheby-
shev expansion �the only requirement on � is that it needs to
be higher than the half width of the spectrum of L; the sim-
plest way to ensure this requirement is by empirically choos-
ing a low enough where the expansion still converges�.

From the spectrum we extract the lowest excitation en-
ergies. For the test calculations, we first checked our time-
independent PM3 results against that of established PM3
routine in Gaussian, obtaining essentially identical results.
The HOMO-LUMO gap was then reproduced by direct di-
agonalization of the time-independent Fock.

The PM3 program in the molecular package MOPAC

�Ref. 20� was first used to optimize the geometry of the small
molecules. The DFT program in the molecular package
Q-CHEM �Ref. 31�, was ultimately used to optimize the ge-
ometry using the B3LYP functional with the 6-311G�� basis
set. The excitation energies were then found for the mol-
ecules in their optimized geometry using the resulting linear-
response time-dependent PM3 and also the TD-DFT program
in Q-CHEM.

B. Results

Table I shows the lowest allowed singlet vertical excita-
tions with significant oscillation strengths �generally above
10−4 a.u.� calculated using the time-dependent PM3 pro-
gram by the TDDFT module in Q-CHEM using two basis sets,
large �aug-cc-pvtz� and small �3-21G�, the PM3-CI program
in MOPAC with five states, and experimental values. In all
cases we compared closed-shell simulations, where the
ground-state density matrix is equal for both spins. There are
some weak transitions which have very little overlap with
symmetric closed-shell transitions which are therefore not

TABLE I. Lowest excitation energies of small molecules obtained using TD-PM3 and various methods �energies in eV; TD-DFT using B3LYP�.

Molecule Transition TD-PM3 TD-DFT aug-cc-pvtz TD-DFT 3-21G TD-HF STO-3G PM3-CI Band gap Expt.

H2 �u :�→�� 9.96 11.74 15.76 15.07 10.25 20.86 11.19a

HF �g :n→�� 8.66 9.33 9.57 13.11 8.59 19.75 10.35b

F2 �u :��→�� 4.85 5.26 5.29 7.16 4.52 15.53 4.4c

CO � :�→�� 7.56 8.60 8.43 8.59 7.01 14.03 8.55d

CH4 T2:�→�� 8.76 9.63 13.43 24.03 8.59 17.88 9.7d

C2H4 B3u :�→3s 8.26 6.69 10.11 15.37 8.43 7.11d

B1u :�→�� 5.76 7.47 8.76 11.41 6.65 11.72 7.60d

CH2O B2:n→3s 5.56 6.48 9.15 18.65 5.57 11.37 7.11d

aReference 3.
bReference 13.
cReference 18.
dReference 22.
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shown, such as a weak A2 transition in TDDFT and experi-
ment around 4.0 eV for CH2O.

The TDDFT calculations used the hybrid exchange and
correlation functional B3LYP. Generally, the larger the basis
set the more accurate is the result obtained by a TDDFT
calculation. Accuracy can also be improved by choosing a
basis set that includes diffusive and valence polarization
functions. While the large basis set will be more accurate, it
is limited in practice for large systems due to the numerical
cost; this was the reason we compared PM3 to smaller basis
sets.

In practice, the lowest excitation energies were obtained
using the time-dependent iterations and the graphs produced
and taking the lowest peak �and as mentioned, more efficient
approaches can be envisioned for extracting the gap from the
Chebyshev series if only the low energy spectrum is desired�.
The peaks give energies that are allowed and have significant
oscillator strengths. The transitions were determined by ob-
serving the direction of the dipole applied on the molecule.

Table I shows mixed quality results. The TD-PM3 re-
sults were much better than the band gap and in many cases
better than TD-DFT with the 3-21G basis set. They were
generally about 20% lower than the more accurate large-
basis �aug-cc-pvtz� TD-DFT results as well as the experi-
mental results. The main exception is C2H4, where the true
lowest state with significant dipole strength is a transition to
�→3s transition, while TD-PM3 predicts a �→�� as lower.

Table II compares TD-PM3, TD-DFT, and PM3-CI for a
series of aromatic rings. PM3-CI is accurate for the smaller
aromatics, but for the fixed number n=5 of configurations
used here, it deteriorates, indicating that more configurations
are needed for larger systems. The TD-PM3 results improved
�relatively and absolutely� as the molecules got bigger.

IV. DISCUSSION AND CONCLUSIONS

Our results indicate that a time-dependent application of
a semiempirical method �in this case PM3 but the results
should be of general validity� is useful for large molecules.
The results, especially for larger molecules, were surpris-
ingly accurate, especially considering that we did not reopti-
mize the parameters. The PM3 parameters that were em-
ployed have been optimized previously to yield accurate

ground-state properties, and this work shows that these same
parameters lead to surprisingly accurate excitation energies
when used in a TD-PM3 scheme.

The timings on the method are interesting. The nonopti-
mized TDPM3 code was about 200–150 times faster than the
large-basis TDDFT code. PM3-CI with n=5 configurations
was faster significantly �more than an order of magnitude�
than TD-PM3, especially since at present TD-PM3 scales
like the cube of the number of orbitals because of the matrix
multiplication ��F ,H�� in the time evolution. TD-PM3 is
clearly not a method for small molecules, but rather for large
systems for two purposes: real time dynamics, or for spectral
applications, once the method is made numerically more ef-
ficient, especially by accounting for the sparsity in the appli-
cation of F on H. Numerical efficiency and its improvements
will be discussed in more details in future publications.

Further improvements can still be made. PM3 equations
and parameters for d-orbital atoms have already been
developed32,33 so this program can be revised to include
d-orbital atoms. Another improvement is to modify the pa-
rameters used in the PM3 program. Since the parameters
used are based on the ground state of the molecule, in prin-
ciple they could be modified to yield better spectra while
retaining reasonable accuracy for ground-state properties. In
a future publication we discuss the application of these con-
cepts to more general quantities than absorption, as well as
more rapid extraction of the frequency information.

In addition, the same concepts and methods implied here
can be applied directly to other semiempirical methods such
as INDO/S �Intermediate Neglect of Differential Overlap/
Screened Approximation�, which has been popular for com-
puting vertical excitation energies; future publications will
examine where TD-INDO/S will outperform TD-PM3.

To conclude, our results show that a time-dependent ap-
plication of a semiempirical method should be useful for
large systems, where highly quantitative results are not
needed but accuracies of �20% are desired. Further numeri-
cal developments to improve the scaling should make the
method applicable for a range of large scale problems.
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APPENDIX: FREQUENCY DEPENDENT EXPANSION
COEFFICIENTS

The calculation of the coefficients in Eq. �26� is straight-
forward and well known, and is presented here for complete-
ness, since we use the modified Chebyshev polynomials
rather than the regular ones �defined as in Eq. �20� without
the i’s�. A general function of iL− is written as

f�iL − � = �
n

Tn� L

�
� fn�� . �A1�

Using the definition of the modified Chebyshev operator, we
have

�
0

2�

Tn�i−1 cos�	��Tm�i−1 cos�	��d	 =
2�

2 − 
n0

nm, �A2�

so that

fn�� =
�2 − 
n0�

2�
�

0

2�

cos�n	�f�� · cos 	 − �d	

= Re
�2 − 
n0�

2�
�

0

2�

ein	f�� · cos 	 − �d	 , �A3�

where the last step is valid for real functions. Therefore, the
coefficients are easily obtained by a simple Fourier trans-
form.
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