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Graphene nanomeshes: Onset of conduction band gaps
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Hückel simulations of large finite graphene nanomeshes with lithographically induced holes show sizable
band gaps in the conduction while the optical absorption has generally the same semi-metal character as
pure graphene. There is a strong dependence of the band gap on the angle between the graphene axis and
the periodic hole axis. Simple modification of on-site energies shows that substituents on the edges of the
holes could also have a significant effect. These simulations show that graphene nanomeshes, which have
been recently fabricated, are potentially useful tunable materials for electronic applications.

� 2010 Elsevier B.V. All rights reserved.
Graphene as a new electronic material has been extensively
investigated lately both experimentally and theoretically [1–7].
Graphene itself is a semi-metal [8] but semiconducting behavior is
often desired. A potential advantage of graphene over carbon nano-
tubes is that the two-dimensional (2D) nature of graphene could
lead to large scale integration without sophisticated assembly steps
[9,10]. 1D-like graphene nanoribbons show a width-tunable band
gap [11–16], but are harder to assemble than inherently 2D
structures.

Interestingly, recently a new type of graphene structure,
nanomeshes (also known as antidot lattices), were produced, with
periodic holes carved out using electron beam lithography [5] or a
block co-polymer template [17] (Figure 1). The nanomesh struc-
ture introduces finite size effects into a large sheet of graphene
while retaining the overall 2D nature, resulting in ferromagnetism
[18] or interesting band-structure-like transmission which de-
pends on the holes’ periodic arrangement. Gaps in the conduction
(i.e., very low transmission over a range of energies) were observed
experimentally for nanomeshes with periodicities on the order of
100 nm [5], as well as theoretically using periodic tight-binding
[6] and density-functional theory (DFT) simulations [7].

Here we simulate large finite nanomeshes with small (< 10 nm
diameter) holes, corresponding to recently synthesized systems
[17]. We demonstrate that these meshes exhibit very large tunable
transmission gaps (few meV to >1 eV), despite a finite density of
states around E ¼ 0.

We use a typical Hückel Hamiltonian [19,20] on a hexagonal
honeycomb arrangement (Figure 1), which captures the semi-me-
tal effects of graphene without electron-polarization:
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r).
Hij ¼
aj if i ¼ j;

b if i – j; i; j nearest neighbors;
0 otherwise

8><
>: ð1Þ

where b ¼ 2:7 eV [21]. Typically we use a 212 nm� 212 nm lattice,
with about 1.7 million grid points. An alternate more accurate ap-
proach is a semiempirical method involving polarization, for exam-
ple the Pariser–Parr–Pople (PPP) approximation [22]. PPP, however,
is an iterative method and moreover the density is required at each
point is required for transmission calculations, making PPP calcula-
tions unfeasible for systems this large (up to millions of points)
without further approximations. Carving the nanomesh excludes
sites within the diameter of each hole (Figure 1), resulting in a
strictly non-commensurate lattice.

The transmission probability per unit bond is obtained from a
trace approach [23]:

PðEÞ ¼ NðEÞ
Ny
¼ 4

Ny
Tr CLGyCRG
h i

¼ 4
Ny

Tr AyðEÞAðEÞ
h i

: ð2Þ

Here, A � C
1
2
LGC

1
2
R, and we introduced the transmission sum, PðEÞ.

The Green’s function is defined as:

G ¼ E� H � iCL � iCRð Þð Þ�1
; ð3Þ

including left- and right-absorbing potentials, CL, CR, chosen to be
parabolic and typically extending over 15–20 bonds, with maxi-
mum height taken to be b. The results are insensitive to the precise
absorbing potential form and parameters [24].

In essence, Eq. (2) computes the flux of a wavefunction with en-
ergy E originating in the left region containing an absorbing poten-
tial CL that is absorbed by the right region containing absorbing
potential CR. The number of channels for the probability flux is
essentially equal to (up to spin factors) Ny, the number of atoms
along the direction perpendicular to the transmission; the sum is
therefore divided by Ny such that PðEÞ is normalized to a ‘‘per
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Figure 1. Schematic graphene nanomesh with a hexagonal array of holes with
periodicity Rcc, and oriented at an angle h to the carbon lattice. For clarity, in this
figure the holes are quite small and appear disordered; the actual simulated
nanomeshes had much larger holes with no disorder.
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channel” probability (i.e., ranges between 0 and 1). This trace formu-
lation is often used in reactive scattering wavepacket calculations
and simulations of electron transport through molecular systems
(see review in Ref. [25] and further examples in Refs. [26,27].)

The action of GðEÞ for a large system is challenging. For this, first
cast the trace as:

PðEÞ ¼ 4
Ny

Ngrid

NW

X
W

hWjAyðEÞAðEÞjWi; ð4Þ

where each W is a different orthonormal initial wavefunction. For-
mally the sum needs to extend over all possible wavefunctions,
but it was sufficient here to use a single wavefunction NW ¼ 1, with
a random value between �1 and 1 at each grid point. This approx-
imation is valid because the large number of atoms results in good
statistics, and each term is positive definite so there are no cancel-
lations. We checked that NW ¼ 5 yields essentially identical results.

To act GðEÞ on W we use the time-dependent Chebyshev method
[28]; defining jvi � C

1
2
RjWi,

iGjv ffi
Z T

0
ei E�HþiCLþiCRð Þtjvdt

¼
XT=s�1

k¼0

eiEks
Z s

0
ei E�HþiCLþiCRð Þt jv ksð Þdt

¼
XT=s�1

k¼0

eiEks
X

n

an Eð ÞCn H � iCL � iCRð Þjv ksð Þ; ð5Þ
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Figure 2. (a) Transmission PðEÞ through a 212 nm � 212 nm graphene nanomesh as a fun
shown by a flat region around zero energy. The hole-to-hole separation here is 8 nm. (b
unlike the transmission, no band gap emerges in the density of states.
where T is a large time by which vðTÞ decays to zero, and we intro-
duced the Chebyshev polynomials, Cn, acting on a shifted Hamilto-
nian divided by a spectral width, DH. The intermediate time step-
size, taken here as 100=DH, is needed since a Chebyshev expansion
loses stability if used for more than a few hundred terms at a time
for a Hamiltonian with absorbing potentials. The time dependent
wavefunction is analogous:

jv kþ 1½ �sð Þ ¼
X

n

bnCn H � iCL � iCRð Þjv ksð Þi: ð6Þ

Finally, an and bn are Chebyshev coefficients for
R s

0 ei E�HþiCLþiCRð Þtdt
and e�ðH�iCL�iCRÞs.

The resulting method is very stable and robust, with minimal
storage requirements as each AðEÞjW is only collected in the small
grid region where CL is non-zero. For all the (non-optimized) sim-
ulations T ¼ 500 fs, requiring about 104 Chebyshev terms. Most
simulations were done with identical on-site energy (equaling
the Fermi energy), taken for simplicity as ai ¼ 0.

Figure 2a shows PðEÞ for different holes diameters, keeping the
periodicity (hole-to-hole distance) fixed at 8 nm. Fabricating
meshes with holes of this size will be experimentally feasible in
the near future. A clear insulating band develops around zero en-
ergy as the hole diameter is increased; the transmission is not
step-like due to the finite system size. To quantify the insulating
band, we define a ‘‘conduction-onset” as the energy where the
transmission first reaches PðEÞ ¼ 0:001. Note that in graphene
jEjJ 1 eV would require non-physical densities (i.e. complete
depletion of charge), meaning systems with a conduction onset be-
yond 1 eV will effectively become insulators. We nevertheless
present results in the > 1 eV regime for illustrative purposes.

Figure 2b illustrates that the observed conduction onset is not
due to intrinsic band gap formation, but is a purely transmission-
based effect. Specifically, we calculated the average density of
the states (DOS) using a Chebyshev approach (geared to Hermitian
Hamiltonians) for the delta function:

nðEÞ � Tr d E� Hð Þ½ � ¼ 1
NW

X
W

gnhWjCn Hð ÞjWi; ð7Þ

where gn are the coefficients of a single (many-term) Chebyshev
expansion of a narrow delta-function-like Gaussian; as Figure 2b
shows, there is no band gap in nðEÞ even though the conduction is
gapped. Physically, the non-zero DOS around E ¼ 0 arises from edge
states around the boundaries of the holes. In practice these states
would be disrupted by the presence of terminal capping atoms
(e.g., hydrogen); regardless, they are localized and play no role in
transmission.

Figure 3 shows that the conduction onset is mainly dependent
on the neck width, i.e. the difference Rcc � d between the hole-to-
hole distance and the diameter. Here, we studied four systems with
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Figure 3. Conduction onset for a hexagonal grid, taken as the start of the region
near the Fermi energy where PðEÞ < 0:001, as a function of neck width (minimum
distance between nearest-neighbor hole edges). Different periodicities ðRccÞ are
denoted by distinct lines; the results show a roughly general inverse dependence on
the neck width.
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Figure 5. Similar to Figure 2(a) with just one set of holes (perpendicular to the
transmission direction) with periodicity of 8 nm; the figure shows that the
conduction onset requires a periodic arrangement along the transmission direction
rather than a single restriction.
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different Rcc values and varied the hole diameters to adjust the
neck width; all four systems show a similar inverse relationship
between neck width and conduction onset. Narrower neck widths
give smaller channels for the electrons to travel through, leading to
a more pronounced insulating band. It is known that edge effects in
graphene ribbons dominate the transport properties and the elec-
tronic wavefunction is highly localized around the edge [11]. Addi-
tionally, tight-binding simulations of imperfect wedge-shaped
constrictions in ribbons have shown transmission gaps of ’ 1 eV
for constrictions a few atoms wide, despite a large DOS around
E ¼ 0 [29]. In essence, a nanomesh is a periodic arrangement of
constrictions. Low energy states in the nanomesh are localized
around the hole edges and decoupled from the electrodes so they
play no role in transmission. Narrower neck widths amplify this ef-
fect, so even large holes and large diameters show sizable increases
in conduction onset.

Strictly, the nanomesh is insulating as the transmission de-
creases with total system length. In practice, however, beyond
the 200 nm system size we studied (and depending on tempera-
ture, possibly even below) dephasing will occur so the system will
conduct by hopping, and the lack of metallic character will be
immaterial for conduction. Additionally, both the transmission
and DOS are independent of system width beyond 30 nm.

An interesting aspect, covered in Figure 4, is the dependence of
the conduction onset on the angle h between the hexagonal
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Figure 4. Dependence of the conduction onset on the angle between the axis of the
hexagonal graphene and hole grids. A 30� angle, corresponding to the maximum
mismatch between the two hexagonal grids, leads to a strongly delayed conduction
onset due to frustrated delocalization of the wavefunction.
underlying carbon atom grid and the hexagonal hole grids.
Although the two grids are very different in scale, there is an al-
most step-like dependence of the onset on the angle between the
grids. A simple interpretation is that matched lattices allow for
delocalized electronic states across the entire system and thus high
conductivity (low conduction onset), while lattice mismatches
frustrate the delocalization.

In Figure 5 we compare the 2D geometry studied above to a
system with a single perpendicular row of holes, which shows no
conduction gap. The conduction onset delay is thus due to the
periodicity of the holes. It is analogous to Anderson localization
near the Fermi energy [30,31] and can be viewed as creation
of a meta-material. We also note in passing that an analogous
system to nanomeshes is narrow nanoribbons, which in density
functional theory simulations also show semiconducting behav-
ior for narrow neck widths [13] due to the angle between the
underlying grid and the nanoribbon, while for nanomeshes the
effect is due to the underlying periodicity of the 2D mesh
structure.

The final simulation tackles possible chemical effects on
nanomeshes by assigning a parameter asurface to the on-site ener-
gies of surface atoms (i.e., on hole edges). Variation of a surface sim-
ulates the effects of surface substituents, from, e.g., hydrogen
terminated surfaces to those with higher or lower electronegativ-
ity. Values of asurface that are less than �1:5 eV or greater than
1:5 eV lead to significant variation in the conductance onset, as
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Figure 6. Conduction onset as a function of the local energy of the surface sites
(bordering holes), simulating the effect of different substituents. The onset is
significantly extended for surface energies with magnitudes greater than 1:5 eV,
suggesting transport properties of nanomeshes can be tuned via functionalization
of the hole edges.
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shown in Figure 6. Nanomesh properties could therefore be tun-
able by changing surface substituents.

Finally, in real systems the carbon atoms at the hole edges will
reorganize to minimize the energy, potentially giving rise to holes
with slightly different atomic-level shapes than just exclusion any
atom within a hole’s radius. To examine the effect of the edge
shape on transmission, two systems (h ¼ 0 and h ¼ 90� from Figure
4) were ‘‘annealed” so that edges had no dangling carbon atoms
(atoms with only one neighbor). The presence or absence of these
dangling atoms had no significant effect on the transmission, DOS,
or the conduction onset, confirming that the dominant mechanism
is just the constriction between holes, which is insensitive to the
exact shape of the edges.

In conclusions, large-scale Hückel simulations point to a
wealth of controllability of coherent graphene conduction in re-
cently-fabricated nanomeshes through both geometric and litho-
graphic effects and potentially chemical substituents. Due to the
two different length scales, conductivity is essentially ‘‘gapped”
even though the DOS is unchanged. Potential applications abound
due to the favorable chemical, structural, and electronic proper-
ties of 2D graphene sheets. Further computational studies will
elucidate how polarization effects in higher level approaches,
such as density-functional theory, will affect the nanomeshes,
as well as effects of lattice vibrations on the conduction coher-
ence, and experimental or induced disorder and molecular
rearrangements.

Acknowledgments

We are grateful to Nicholas Kiousis for useful discussions and to
the NSF for support.
References

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.
Grigorieva, A.A. Firsov, Science 306 (2004) 666.

[2] J.S. Bunch, Y. Yaish, M. Brink, K. Bolotin, P.L. McEuen, Nano Lett. 5 (2005) 287.
[3] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201.
[4] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N.

Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312 (2006) 1191.
[5] J. Eroms, D. Weiss, New J. Phys. 11 (2009) 095021.
[6] T.G. Pedersen, C. Flindt, J. Pedersen, N.A. Mortensen, A.-P. Jauho, K. Pedersen,

Phys. Rev. Lett. 100 (2008) 136804.
[7] J.A. Fürst, J.G. Pedersen, C. Flindt, N.A. Mortensen, M. Brandbyge, T.G. Pedersen,

A.-P. Jauho, New J. Phys. 11 (2009) 095020.
[8] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V.

Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438 (2005) 197.
[9] Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291 (2001) 630.

[10] X. Duan, MRS Bull. 32 (2007) 134.
[11] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54 (1996)

17954.
[12] Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97 (2006) 216803.
[13] V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6 (2006) 2748.
[14] T.C. Li, S.-P. Lu, Phys. Rev. B 77 (2008) 085408.
[15] M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98 (2007) 206805.
[16] J. Bai, X. Duan, Y. Huang, Nano Lett. 9 (2009) 2083.
[17] J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Nat. Nano. 5 (2010) 190.
[18] N. Shima, H. Aoki, Phys. Rev. Lett. 71 (1993) 4389.
[19] S.K. Maiti, Solid State Commun. 149 (2009) 973.
[20] H. Raza, E. Kan, J. Comp. Electron. 7 (2008) 372.
[21] R. Baer, D. Neuhauser, J. Am. Chem. Soc. 124 (2002) 4200.
[22] S. Evangelisti, G. Bendazzoli, Chem. Phys. Lett. 196 (1992) 511.
[23] T. Seideman, W.H. Miller, J. Chem. Phys. 97 (1992) 2499.
[24] D. Neuhauser, M. Baer, J. Chem. Phys. 90 (1989) 4351.
[25] A. Nitzan, Annu. Rev. Phys. Chem. 52 (2001) 681.
[26] D. Neuhauser, K. Lopata, J. Chem. Phys. 127 (2007) 154715.
[27] D. Walter, D. Neuhauser, R. Baer, Chem. Phys. 229 (2004) 139.
[28] R. Kosloff, J. Phys. Chem. 92 (1998) 2087.
[29] F. Muñoz Rojas, D. Jacob, J. Fernández-Rossier, J.J. Palacios, Phys. Rev. B 74

(2006) 195417.
[30] P.W. Anderson, Phys. Rev. 109 (1958) 1492.
[31] S.-J. Xiong, Y. Xiong, Phys. Rev. B 76 (2007) 214204.


	Graphene nanomeshes: Onset of conduction band gaps
	Acknowledgments
	References


