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We formulate the Kohn-Sham density functional theory (KS-DFT) as a statistical theory in which the

electron density is determined from an average of correlated stochastic densities in a trace formula. The

key idea is that it is sufficient to converge the total energy per electron to within a predefined statistical

error in order to obtain reliable estimates of the electronic band structure, the forces on nuclei, the density

and its moments, etc. The fluctuations in the total energy per electron are guaranteed to decay to zero as

the system size increases. This facilitates ‘‘self-averaging’’ which leads to the first ever report of sublinear

scaling KS-DFT electronic structure. The approach sidesteps calculation of the density matrix and thus,

is insensitive to its evasive sparseness, as demonstrated here for silicon nanocrystals. The formalism is not

only appealing in terms of its promise to far push the limits of application of KS-DFT, but also represents

a cognitive change in the way we think of electronic structure calculations as this stochastic theory

seamlessly converges to the thermodynamic limit.
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Density functional theory (DFT) is used for studying
properties of condensed phase, biological, and molecular
systems. While the actual goal of DFT is to determine the
electronic density and ground state energy, the common
approach goes through the Kohn-Sham (KS) equations, i.e.,
calculating and storing all the occupied KS orbitals or the
idempotent density matrix. Linear scaling methods were
developed to circumvent the need for KS orbitals [1–16],
but their reliance on Kohn’s ‘‘nearsightedness’’ principle
makes them sensitive to the dimensionality and the char-
acter of the system.

A complimentary DFT formulation is based on orbital-
free methods [17–21], which promise linear scaling in
algorithmic complexity, regardless of the dimensionality
of the system. However, the imperfect representation of
the kinetic energy in these approaches may hamper their
accuracy. A recent promising development along these
lines, based on the availability of an approximate functional
connecting the ground state density of noninteracting elec-
trons to the underlying potential, provides an estimate of the
kinetic energy from adiabatic connection integration [22].

In this Letter, we develop a theory that allows an in
principle accurate bridge between the Kohn-Sham and
the orbital-free approaches to DFT, gaining from both
worlds. The core idea is to use a stochastic technique to
DFT (SDFT) calculating directly the density from the
KS Hamiltonian using a trace formula without computing
KS orbitals or density matrices. The use of a stochastic
technique combined with DFT has been put forward
several decades ago based on path integral Monte Carlo
calculations [23–26], but has not found general use due to
algorithmic problems [23]. In contrast, our approach uses a
deterministic Chebyshev expansion of the density matrix

projection operator and applies it to stochastic orbitals,
thereby, circumventing the pathologies of path integral
Monte Carlo calculations.
The stochastic aspect guarantees an unbiased statistical

error distribution and thus, enables us to demand conver-
gence, not in the total energy as typically required, but in the
total energy per electron. Statistical mechanics guarantees
that in the thermodynamic limit, the fluctuations in the total
energy per electron are negligible. This expected decrease
of fluctuations is the basis for the new concept of
‘‘self-averaging’’ introduced in the present electronic struc-
ture theory. It also enables the development of an algorithm
with sublinear scaling in computational complexity. Thus,
the present approach provides for a smooth transition from
traditional quantum methods originally developed for small
systems to the realm of macroscopic structures understood
in terms of ensembles and statistical fluctuations.
Related approaches have been recently developed by us

for estimating the rate of multiexciton generation in nano-
crystals (NCs) [27], for a linear scaling calculation of the
exchange energy [28], for overcoming the computational
bottleneck in Møller-Plesset second order perturbation
theory [29], and for calculating the random-phase-
approximation correlation energy for DFT [30]. These
are corrections to the fundamental problem of describing
the electron density and total energy, which is addressed
here for the first time.
In DFT, given a potential vðrÞ, the electron density can

be calculated as a trace:

n�ðrÞ ¼ tr½��ð�� ĤÞn̂ðrÞ�; (1)

where ��ðEÞ ¼ ð1=2Þ erfc½��E� is a smoothed Heaviside

step function with �Eg � 1, Eg is the frontier orbital gap,
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Ĥ ¼ �1=2r2 þ vðr̂Þ is the one-body Hamiltonian (atomic
units are used throughout), and n̂ðrÞ ¼ �ðr� r̂Þ. The num-
ber of electrons is determined by the chemical potential
parameter� and its value (��) is chosen to yield the
desired number of electron in the system (Ne):

Ne ¼
Z

n��ðrÞd3r ¼ tr½��ð�� � ĤÞ�: (2)

In the usual approach to KS-DFT, the trace is performed

using the lowest eigenstates c nðrÞ of Ĥ, where ��ð�� ĤÞ
projects on the occupied space so the density is given by
nðrÞ¼P

e
n¼1 jc nðrÞj2. The cubic scaling of conventional

KS-DFT methods results from the need to find the Ne

lowest energy eigenstates of the Hamiltonian.
In order to eliminate the need for determining the KS

eigenstates, we use stochastic wave functions, �ðrÞ, for
which the completeness property holds:

hj�ih�ji� ¼ Î; (3)

where Î is the identity operator and h� � �i� represents a

statistical expectation value (mean) over the stochastic wave
functions. From Eqs. (1) and (3), the density is given by:

n�ðrÞ ¼ hj��ðrÞj2i�; (4)

where ��ðrÞ is a stochastic occupied orbital evaluated using
a Chebyshev expansion [15,31–33]:

j��i ¼ ��ð�� ĤÞj�i � XNC

n¼0

anð�Þj’ni: (5)

In the above, NC is the length of the Chebyshev poly-
nomial, j’ni is a fixed linear combination of j’n�1i,
Ĥj’n�1i, and j’n�2i, ’0 ¼ �, and ’�1 ¼ 0 (see details
in Ref. [34]). The Chebyshev expansion length NC is
proportional to��E, where �E is the energy range of

the Hamiltonian Ĥ, and is of the order 103–104. Note
that while most of the numerical effort goes into the
calculation of ’n, these states do not depend on the chemi-
cal potential �. Only the coefficients anð�Þ depend on it.
Thus, it is not significantly more expensive to determine
j��i for several values of � [35].

Since h��ðrÞ��ðr0Þ�i� is the KS density matrix, any

one-particle observable (e.g., the kinetic energy, the local
and nonlocal pseudopotential energy, forces on the nuclei,
etc.) is computed as an average:

hÂi� ¼ hh��jÂj��ii�: (6)

In the SDFT calculation for Ne electrons, one starts by
guessing an initial density nðrÞ and the chemical potential
��. For example, the initial density can be taken as the sum
over the spherical densities of the atoms. The following
steps are then used to update the density and the chemical
potential:

(i) Compute the KS potential from the density.
(ii) Generate stochastic orbitals. In a grid (or plane wave)

representation, �ðrgÞ ¼ ei�g=
ffiffiffiffiffi
h3

p
, where �g is a ran-

dom phase and h is the grid spacing. For each orbital,
calculate its projection onto the occupied space ��ðrÞ
using Eq. (5).

(iii) Determine the density n�ðrÞ from Eq. (4) for several
values of � using the same Chebyshev expansion.
Linearly interpolate to find the correct value of the
chemical potential, �� using Eq. (2).

(iv) Reiterate until �� converges below a defined
threshold.

It is important to note that one must keep the same
random orbitals throughout the self-consistent procedure.
Otherwise, the convergence of the self-consistent proce-
dure would be limited by the stochastic noise. In addition,
while the above procedure is exact in the limit of an infinite
set of �0s, in practice, one uses a finite set containing I
stochastic orbitals and the estimates of the density and the
expectation values involve a statistical error (SE) that is

proportional to 1=
ffiffiffi
I

p
.

We demonstrate the approach on a series of silicon NCs
described in Table I. The calculations were done using the
local density approximation (LDA) for the XC energy [36]
and the nuclear electron interaction was described using
Troullier-Martins norm conserving pseudopotentials [37]

with a local and nonlocal part: V̂ ¼ vLðrÞ þ V̂NL. The total
energy

E ¼ hh�jT̂ þ V̂NLj�ii� þ
Z

nðrÞvLðrÞd3r

þ 1

2

ZZ nðrÞnðr0Þ
jr� r0j d

3rd3r0 þ EXC½n� (7)

was converged self-consistently to 10�7Eh per electron
using DIIS acceleration [38]. The last two columns in
Table I show several meV deviations of the stochastic
energy per particle from the exact LDA value. The expec-
tation value was estimated from 15 samples of independent
SCF runs, each with a different set of I ¼ 1200 stochastic

TABLE I. Parameters for the silicon nanocrystals. Shown are

the number of grid points in each Cartesian dimension N1=3
g , the

� parameter used to represent the Heaviside function, the length
of the Chebyshev expansion (NC), the total energy per electron
from the deterministic LDA calculation (when available), and
the corresponding stochastic result (based on I iterations).

E=NeðeVÞ
System N1=3

g Eh� NC I Deterministic Stochastic

Si16H16 42 55 4270 2700 �24:023 �24:025

Si35H36 60 55 4560 2700 �23:921 �23:919

Si87H76 64 80 6330 2700 �23:550 �23:545

Si353H196 96 125 9530 720 — �23:845

Si705H300 108 155 11510 180 — �23:448
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orbitals. The SE is the square root of the variance of this
random variable and is estimated from the standard devia-
tion of the sample.

In Fig. 1, we show the SE as a function of system size.
As the system size increases, the SE decreases. This can be
explained by considering a large system composed of two
noninteracting identical parts Aþ B having NA and NB

electrons. The SE in the total energy of the two indepen-
dent parts relates to the SE in the total energy of each part
as �2

t ¼�2
Aþ�2

B¼2�2
A. Thus, for large systems, the SE of

the total energy scales as �2
t / Ne, where Ne ¼ NA þ NB

is the total number of electrons. For the statistical error
of the energy per particle, one then finds that �2 ¼
ð�t=NeÞ2 / 1=Ne, i.e., inversely proportional to the system
size. Thus, the SE per electron is expected to decrease as

N�1=2
e for large system. Figure 1 shows that this expected

behavior holds for systems with Ne > 400.
Figure 2 shows the CPU time for the SDFTas a function

of system size for a fixed SE per electron of 10 meV. We
find that the algorithmic scaling is sublinear with system
size. The total CPU time depends on several factors: the
grid size which scales linearly with the number of elec-
trons; the inverse HOMO-LUMO gap which determines
the values of � and the length of the Chebyshev expansion

Nc, and roughly scales as Eb þ�=N2=3
e (Eb is the bulk

band gap and� is a constant); and the number of stochastic
orbitals needed to reach a given SE per electron.

The fact that the SE per electron decreases as 1=
ffiffiffiffiffiffi
Ne

p
implies that, for a fixed SE per electron, fewer stochastic
orbitals are required to converge the expectation values of
the energy per electron to within a desired tolerance as the
system grows (see inset of Fig. 2). In the limit of a macro-
scopic system, only a single stochastic orbital will be

needed to estimate the total energy per electron with
negligible error. This self-averaging property leads to
sublinear scaling at intermediate system sizes. Once the
system size is so large as to enable a single stochastic orbital
to be used (for the present system, this is extrapolated to be
at 500 000 electrons), the numerical effort of the approach
will scale linearly with system size (regime not shown).
In comparison to the deterministic approach, the CPU

time for the SDFT calculation crosses that of the determi-
nistic calculation at systems containing about 3000 elec-
trons (order of 700 silicon atoms) for a SE per electron of
10 meV. It is interesting to note that the calculations shown
in Figs. 1 and 2 were carried on a parallel cluster (with
180 cores) for the stochastic approach and on a single core
for the deterministic one. As the communication overhead
is negligibly small, such a comparison can be madewithout
any bias towards the single-core calculation. This is an-
other significant advantage of the present theory—it scales
linearly with the number of cores as long as this number is
smaller than I. The scaling of the present approach with
CPU time and memory is unprecedented for 3D structures.
Once again, it relies on converging the total energy per
electron rather than the traditional approaches to converge
the total energy.
The convergence of the total energy per electron is

perhaps sufficient to obtain an accurate estimate of this
property alone. However, the SE in the total energy itself is
rather high, far from a desired accuracy of tens of meVs.
This raises a concern whether the current approach can
be used as a reliable tool to obtain expectation values of
quantities that depend on all electrons. To address this
concern, in Fig. 3, we plot the forces along an arbitrary
(x) direction obtained by the SDFT for one of the silicon
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FIG. 2. CPU time for full (triangles) and stochastic (circles)
SCF DFT calculation for silicon NCs as a function of the number
of electrons. Inset: Log-log plot of the number of stochastic
orbitals required to converge the total silicon NCs energy per
electron to 10 meV as a function of the number of electrons.
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NCs studied. Calculations for the other NCs provide a
similar picture. The forces were obtained by integrating
the density with the gradient of the electron-nucleolus
potential.

The two panels in Fig. 3 correspond to two sets of SDFT
calculations in which a small (I ¼ 80) and a larger
(I ¼ 320) number of stochastic orbitals were used. The
SE in the total energy is �6 eV and �3 eV in the two
calculations, respectively, yet the error in the forces is of
statistical nature and is perfectly controllable: it drops by a
factor of 2 when I increases by a factor of 4. The SE in the
force on the silicon atoms (low index in Fig. 3) is about 4
times larger than that on the H atoms (high index in Fig. 3).
This is due to the higher number of electrons near the
silicon nucleus (also by a factor of 4) and could likely
be reduced with importance sampling techniques, as will
be explored in future studies. When the SE in the total
energy per electron is 10 meVan error bar of �0:02Eh=a0
is associated with the force on a silicon atom. Such a value
is low enough to enable Langevin dynamics simulations
which shed light on the equilibrium and nonequilibrium
statistical mechanical properties of large systems.

Despite the orbitaless nature of the calculation, the density
of states (DOS) andKSorbital energies are readily available.
In the left panel of Fig. 4, we show the DOS for Si35H36 for
energies close to the chemical potential�� estimated from a
finite difference formula applied to @Neð�Þ=@�. Results
obtained from two different stochastic runs are compared
to those of the direct approach using the KS orbital energies
Ndirect

e ð�mÞ �
P

n
1
2 erfc½��ð�m � �nÞ�. The value of the

chemical potential �� for each stochastic run varies
(�� typically ‘‘sticks’’ to near to the HOMO or to the
LUMO of the system) but the DOS is similar between the
different runs and agrees well with that of the direct
approach, to within a small statistical error.

In the right panel of Fig. 4, we plot the values of the LDA
KS orbital energies taken from both stochastic (720 sto-
chastic wave functions) and deterministic calculations for
Si35H36, showing a remarkable agreement between the two

approaches. The inset of Fig. 4 shows the KS orbital energy
error defined by the difference between the stochastic and
deterministic estimates near the top of the valance band
and the bottom of the conduction band. The small error
(< 0:1 eV) has a stochastic and deterministic components.
The former can be decreased by increasing the number
of stochastic orbitals used for the SDFT procedure while
the latter is controlled by the length of the Chebyshev
polynomial.
In summary, we have presented a stochastic formulation

of DFT that provides a link between KS and orbital-free
DFT formulations. The electron density is given in terms
of a trace formula which is evaluated using stochastic
occupied orbitals generated by a Chebyshev expansion
of the occupation operator, rather than by finding all the
KS orbitals. Due to the statistical nature of the formalism,
the electron density and expectation values involve an
unbiased statistical error, which obeys normal large-
number statistics and thus, can be controlled by increasing
the number of stochastic orbitals I. We demonstrated the
method and its properties on silicon NCs.
A novel aspect of our formalism is that it allows us to

calculate the total energy per electron instead of the total
energy itself while obtaining statistically significant esti-
mates of electron densities forces on nuclei and band
structure from the calculation. For this reason, the method
seamlessly connects with the thermodynamic limit where
the statistical fluctuations in the total energy per electron
vanish. Therefore, our formalism enjoys an effect of self-
averaging, whereas the silicon NC grows, one requires
fewer stochastic iterations for reaching the same accuracy.
It is this effect which enables sublinear scaling, never
before seen in KS-DFT electronic structure.
Finally, since the method produces a KS Hamiltonian,

it can be integrated with the 2nd order Møller-Plesset
perturbation theory (MP2) and the random phase approxi-
mation (RPA) stochastic approaches we recently devel-
oped [29,30].
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