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I. SOME TRICKS OF THE TRADE CONCERNING RANDOM ORBITALS

A. Real random orbitals

A real random orbital ζ(r) is a set of random numbers associated with each grid point

and can take the values ±h−3/2 with equal probability, where h is the grid spacing. In

the algorithm below by �draw a random orbital� we mean that one has to produce by a

pseudorandom number generator a sample of ζ (r).

The mean of the projection 〈|ζ 〉 〈 ζ|〉ζ is the unit operator on the grid: 〈|ζ 〉 〈 ζ|〉ζ = 1̂.

For an operator Â the stochastic trace formula[1] is tr
[
Â
]

=
〈〈
ζ
∣∣∣Â∣∣∣ ζ〉〉

ζ
.

B. Chebyshev evaluation

The algorithm below assumes we need to compute the self-energy Σ̃ (ω; ε) for several

Kohn-Sham energies ε (say, εn, n = 1, . . . , Nε). A �ltered real random orbital is associated

with each energy ε using an appropriate �ltered φε = fσ

(
ĥKS − ε

)
φ where φ is a random

orbital.

The �lter function fσ

(
ĥKS − ε

)
is applied onto φ using Chebyshev expansion techniques

[2] by which φε =
∑

m cm (ε)φm where φ0 = φ, φ1 = ĥφ and the following iteration is used

for the other terms: φm+1 = 2ĥφm − φm−1. Note that only 3 auxiliary wave functions are

needed for applying this series. Here, ĥ = ĥKS−h̄
∆h

is a shifted-scaled Hamiltonian, such that

the eigenvalues of ĥ are contained in the interval [−1, 1] and the expansion coe�cients are

obtained from cm (ε) =
´ π

0
fσ
(
∆h cos θ + h̄− ε

)
cosmθdθ.

When φε for several values of the parameters ε are needed one can save numerical e�ort

by exploiting the fact that φm are not ε dependent and thus summing φε =
∑

m cm (ε)φm

simultaneously for all values of ε.

C. The use of φ̄

For evaluating the expectation value aε = Q (ε)−1 tr

[
fσ

(
ĥKS − ε

)2

Â

]
, where Q (ε) =

tr

[
fσ

(
ĥKS − ε

)2
]
, one can use the stochastic trace formula aε = Q (ε)−1

〈 〈
φε

∣∣∣Â∣∣∣φε〉〉
φ
,

Q (ε) = 〈〈φε |φε 〉〉φ. However this is expensive numerically, since one needs to operate with
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Â on φ Nε times, for each desired value of ε. Instead, one can de�ne φ̄ =
∑

ε φε and then

aε = Q (ε)−1
〈〈
φε

∣∣∣Â∣∣∣ φ̄〉〉
φ
,where now Q (ε) =

〈〈
φε|φ̄

〉〉
φ
. Since φ̄ does not depend on ε,

one has to act with Â on φ̄ only once and then for each value of ε preform the stochastic

average to obtain aε.

D. Matrix/Operator Compression and decoupling

Given an operator Â we draw a real random orbital ζ (r) and Â =
〈
Â |ζ 〉 〈 ζ|

〉
ζ

=

〈|ζA 〉 〈 ζ|〉ζ ; therefore, as a grid-matrix:
〈
r1

∣∣∣Â∣∣∣ r2

〉
= 〈ζA (r1) ζ (r2)∗〉ζ and one achieves a

compact and �decoupled� stochastic representation of Â.

E. Compression of the density matrix and the exchange self-energy

The exchange self-energy at orbital energy ε can be obtained by one of two choices. The

�rst uses φ̄ and φε as de�ned above to calculate the exchange self-energy for all sampled

energies simultaneously:

ΣX (ε) = − 1〈〈
φε|φ̄

〉〉
φ

〈¨
φε (r1)

ρ (r1, r2)

|r1 − r2|
φ̄ (r2) d3r1d

3r2

〉
φ

, (1)

For large enough β (β � 1
Eg
, where Eg is the QP gap), the density matrix (DM), ρ (r1, r2),

can be expressed as the matrix elements of the operator

ρ̂ ≡ θβ

(
µ− ĥKS

)
=

1

2

{
1 + erf

(
β
(
µ− ĥKS

))}
, (2)

where ĥKS is the KS Hamiltonian and µ the chemical potential. Since ρ̂ = ρ̂2, one can

de�ne a compact representation of ρ̂ in terms of a new set of stochastic orbitals, ϕ, as

〈ϕµ (r1)ϕµ (r2)∗〉ζ , where ϕµ = 1
2

[
1 + erf

(
β
(
µ− ĥKS

))]
ϕ. Note that these are exactly

the same orbitals used for the stochastic time propagation. Using this representation of ρ̂,

we rewrite the exchange self-energy as:

ΣX (ε) = − 1〈〈
φε|φ̄

〉〉
φ

〈ˆ ˆ
d3r1d

3r2φε (r1)ϕµ (r1)
1

|r1 − r2|
ϕµ (r2) φ̄ (r2)

〉
ϕφ

. (3)

For every pair of random orbitals ϕ and φ we need to compute ϕµ, φε and φ̄ =
∑

ε φε, and

then through a Fourier transform perform the convolution to obtain the exchange energy.
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The second variant uses the fact that most of the numerical e�ort in the exchange energy

goes towards the determination of the orbitals ϕµ rather than the actual calculation of the

exchange integral in Eq. (3). Therefore, a better numerical convergence with very little

additional cost is achieved if the exchange energy is calculated for each energy separately,

replace φ̄ by φε:

ΣX (ε) = − 1

〈〈φε|φε〉〉φ

〈ˆ ˆ
d3r1d

3r2φε (r1)ϕµ (r1)
1

|r1 − r2|
ϕµ (r2)φε (r2)

〉
ϕφ

.

This is the variant we used in the computations reported in the paper. We �nd that for a

�xed statistical error, the number of ϕ's and φ′s is independent of system size, which implies

that the calculations of the exchange self-energy is scaling linearly.

II. ALGORITHM

The steps below are done IsGW times. In each stochastic sampling we

1. Draw a real random orbital ζ(r) and a real random orbital φ (r) and by �ltering produce

φε (r) =
〈
r
∣∣∣fσ (ĥKS − ε)∣∣∣φ〉. Generate φ̄ =

∑
ε φε. Typically we �ltered two or four

orbitals simultaneously, e.g., two near the HOMO and two near the LUMO. This is

done with a single Chebyshev expansion, as explained above.

2. Add the contribution to the exchange correlation energy,
´
vXC (r) |φε (r) |2d3r, and the

contributions
´
|φε (r) |2d3r and

´
φε (r) φ̄ (r) dr to the denominators, Q (ε) =

〈〈
φε|φ̄

〉〉
(used for the polarization) and 〈〈φε|φε〉〉 (used for the exchange and the Kohn-Sham

energy).

3. Draw Nψ real random orbitals ψ` (r), ` = 1, . . . , Nψ. These will be used to generate

W (r) (ζφε, ψ`, tk) and
〈
φεζ̄ (t)∗

∣∣ψ`〉 in steps (5) and (8).

4. Calculate ∆ (r) =
´
uC (r− r′) ζ (r′) φ̄ (r′) d3r′.

5. Draw NTDH random orbitals ϕm (r), m = 1, . . . , NTDH and project each one on the

occupied space: ϕm,µ (r) =
〈
r|θβ

(
µ− ĥKS

)
|ϕm

〉
. These orbitals are then used for

two purposes:
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(a) Evaluate the Fock exchange self-energy for which we accumulate the contribution:

− 1

NTDH

NTDH∑
m=1

ˆ ˆ
φε(r)ϕm,µ(r)uC(|r− r′|)φε(r′)ϕm,µ(r′)d3r d3r′. (4)

(b) Propagate the orbitals using the stochastic time-dependent Hartree equations

(only for positive times):

i~ϕ̇m,µ (r, t) =
[
ĥKS +

´ δn(r′,t)
|r−r′| d

3r′
]
ϕm,µ (r, t)

δn (r, t) = 2
NTDH

∑NTDH
m=1

(
|ϕm,µ (r, t)|2 − |ϕm,µ (r, 0)|2

)
.

(5)

This is done on a time grid t = τδt, δt ≡ T
NT

, τ = −NT , . . . , NT containing 2NT+1

points for a maximum time T ≈ 100~E−1
h using a split operator technique with

δt = 0.05au. The propagation is done twice:

i. For an initial state ϕim,µ (r, t = 0) = e−i∆(r)ηϕm,µ (r).

ii. For an initial state ϕiim,µ (r, t = 0) = ϕm,µ (r).

6. Use ∆n (r, τδt) = 1
η

[δni (r, τδt)− δnii (r, τδt)] to form Nψ time-dependent retarded

(r) overlaps:

W r (ε, `, τ) = θ(τδt)

¨
d3r1d

3r2ψ` (r1)

ˆ
uC (r1 − r2) ∆n (r2, τδt). (6)

7. Multiply the time-dependent overlapsW r (ε, `, τ) by a regularization function g (τδt) =

exp
{
− (Γτδt)2

2

}
, where Γ is a damping parameter (typically we set Γ = 0.03~−1Eh).

Perform the transformation [3]

W̃ (ε, `, ωτ ) = W̃ r (ε, `, ωτ ) θ (ωτ ) + W̃ r (ε, `, ωτ )
∗ θ (−ωτ )

(7)

where W̃ r (ε, `, ωτ ) is the discrete Fourier transform ofW r (ε, `, τ). Transform W̃ (ε, `, ωτ )

back to the time domain to generate the time-ordered overlaps, W (ε, `, τ).

8. Filter the random orbital ζ to yield its occupied and unoccupied parts,

ζ−(r, t = 0) = 〈r|θβ
(
µ− ĥKS

)
ζ〉

ζ+ (r, t = 0) = ζ(r)− ζ−(r, t = 0) (8)
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9. Propagate ζ+ forward in time and ζ− backward in time under ĥKS.

10. Calculate and storeG (ε, `, τ) =
〈
φεζ̄ (τδt)∗

∣∣ψ`〉, where ζ̄(t) = θ(t)ζ+(t)−θ(−t)ζ−(−t).

11. Average the polarization self-energy

ΣP (τδt, ε) =
g(τδt)

Nψ

Nψ∑
`=1

〈G (ε, `τ)W (ε, `, τ)〉φζ .

At the end of the stochastic iterations Eq. (1) in the paper is solved to yield the �nal

quasi-particle energy.
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