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An ab initio Langevin dynamics approach is developed based on stochastic density functional theory (sDFT)
within a new embedded fragment formalism. The forces on the nuclei generated by sDFT contain a random
component natural to Langevin dynamics and its standard deviation is used to estimate the friction term
on each atom by satisfying the fluctuation–dissipation relation. The overall approach scales linearly with
system size even if the density matrix is not local and is thus applicable to ordered as well as disordered
extended systems. We implement the approach for a series of silicon nanocrystals (NCs) of varying size with
a diameter of up to 3nm corresponding to Ne = 3000 electrons and generate a set of configurations that are
distributed canonically at a fixed temperature, ranging from cryogenic to room temperature. We also analyze
the structure properties of the NCs and discuss the reconstruction of the surface geometry.

I. INTRODUCTION

Ab initio molecular dynamics based on density func-
tional theory (DFT) is becoming an important tool for
studying the plethora of structural and dynamical pro-
cesses in a broad range of systems in material science,
chemistry, biology and physics.1–11 The application of
this approach to very large systems is still limited by
the computational scaling of the electronic structure por-
tion of the calculation, regardless of whether one uses a
Lagrangian-based or Born-Oppenheimer-based methods.
This is because of the cubic scaling involved in solving
the Kohn-Sham equations coupled with the need to it-
erate to self-consistency or to propagate the Kohn-Sham
(KS) orbitals, as both of these options further increases
the computational times by an order of magnitude.

Significant advances in these respects have been made
along two major directions. One primary direction is
based on a Lagrangian formulation of density functional
theory1,11 and circumvents the need for SCF iterations
by propagation of the KS orbitals. This venue does not
eliminate the cubic scaling and is therefore limited to
relatively small systems. Another approach is based on
linear-scaling techniques12–15, that reduces the algorith-
mic complexity by finding the density matrix directly,
relying on its asymptotic sparseness in real-space. How-
ever, sparsity sets in only for very large systems, limiting
the applicability sparse-matrix methods, especially in 3D.

In a recent set of papers we have introduced the
stochastic DFT (sDFT) method16,17 which scales linearly
(or even sublinearly) with the system size and does not
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rely on the sparsity of the density matrix. sDFT is a gen-
eral approach to electronic structure based on a stochas-
tic process and is applicable to extended ordered as well
as disordered materials. The success of sDFT in reducing
the scaling comes at a price of introducing a stochastic
error in all its predictions, including forces, and that pre-
cludes application to ab initio molecular dynamics.

In this paper we show that sDFT can be used to study
equilibrium structural properties of large NCs, despite
the statistical fluctuations in the force estimates. For
this, we invoke the Langevin equation following the work
of Attaccalite and Sorella,18 and generate a sequence of
configurations distributed according to the canonical en-
semble. These configurations can be used in a variety of
applications for studying the structural, electronic and
optical properties of NCs. Here we demonstrate their use
for studying the structural properties of silicon nanocrys-
tals (NCs) with a diameter of up to 3 nm, and Ne = 3000
electrons.

The structure of the paper is as follows: Section II
includes an overview of the sDFT method, a variance re-
ducing method based on embedded fragments sDFT,17
applicable for covalently bonded systems (described in
detail also in Appendix A). The section also includes a
discussion of Langevin dynamics propagators, the param-
eters, and the validation of the approach. Section III in-
cludes the application of the method for studying struc-
tural properties of large Si NCs from cryogenic to room
temperatures. Section IV concludes.
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II. METHODS

A. Stochastic DFT

Kohn-Sham density functional theory19,20 maps a sys-
tem of Ne interacting electrons in an external electron-
nucleus potential veN (r) = − e

4πε0

∑
N

ZNe
|r−RN | , where

RN (N = 1, 2, ...) are the nuclei positions and ZNe are
their charge (e is the electron charge), onto a system of
non-interacting electrons (the KS system), having the
same ground-state density n (r). This mapping is per-
formed by solving the KS equations19,20

ĥKSφn (r) = εnφn (r) , (1)

where the KS Hamiltonian is:

ĥKS = − ~2

2me
∇2 + vKS (r) , (2)

and the KS potential vKS (r) is the sum of the ex-
ternal electron-nuclear potential veN (r), the density-

dependent Hartree potential vH (r) = e2

4πε0

∫ n(r′)
|r−r′|dr

′,
and the exchange-correlation potential vxc (r):

vKS (r) = veN (r) + vH (r) + vxc (r) . (3)

In the KS system, the density is expressed in terms of
the normalized single electron KS eigenstates φn (r) and
eigenvalues εn

n (r) = 2
∑
n

θ (µ− εn) |φn (r)|2 , (4)

where θ (x) is the Heaviside function and µ is the chem-
ical potential chosen so that 2

∑
n θ (µ− εn) = Ne.

Eqs. (1)-(4) must be solved self-consistently, since ĥKS
depends on the density. While the entire scheme is a
significant simplification over the original many-electron
problem, it remains a challenge for large systems since
the computational effort scales as O

(
N3
e

)
.

An important step towards reducing the computa-
tional scaling of KS-DFT was recently proposed by Baer,
Neuhauser, and Rabani (BNR),16 where the density of
Eq. (4) was expressed as a trace over the projected den-
sity operator:16

n (r) = 2Tr
[
θ
(
µ− ĥKS

)
δ (r − r̂)

]
. (5)

The problem now shifts into calculating self-consistently
the trace in Eq. (5) (since ĥKS depends on n (r)) rather
than solving the KS equations by brute-force diagonal-
ization. When the trace is performed using the KS eigen-
states, the computational cost remains O

(
N3
e

)
similar to

the traditional approach. However, since the trace is in-
variant to the basis, alternative schemes that potentially
lead to improved scaling can be used. One such scheme is

based on the concept of a stochastic trace formula, which
reduces the scaling of the trace operation by introducing
a controlled statistical error.21

Using the stochastic trace formula, the density can
be estimated as a symmetrized stochastic trace formula,
given by:16

nI (r) =

〈
〈χ|
√
θβ

(
µ− ĥKS

)
2δ (r − r̂) (6)

×
√
θβ

(
µ− ĥKS

)
|χ〉

〉
χ

where 〈· · · 〉χ denotes an average over I stochastic orbitals
|χ〉, defined as:

〈r|χ〉 = h−3/2eiϕr (7)

for each grid point r, the parameter h (not to be con-
fused with the KS Hamiltonian ĥKS operator) is the
grid spacing, and ϕr are statistically independent ran-
dom variables in the range [0, 2π] (

〈
eiϕre−iϕr′

〉
ϕ

= δr r′).
The density n (r) is, strictly speaking, given by the limit
n (r) = limI→∞ nI (r) and we approximate it with a fi-
nite I. The Heaviside function in Eq. (6) is smoothed
by the function θβ (ε) ≡ 1

2erfc [βε], where β is a large
constant satisfying βEg � 1, where Eg is the KS-DFT

fundamental gap. The action of
√
θβ

(
µ− ĥKS

)
on |χ〉

is evaluated by a Chebyshev expansion in powers of the
sparse KS Hamiltonian, ĥKS.22

The stochastic trace evaluation (Eq. 6) reduces the
computational scaling of KS-DFT to O (Ne) and for cer-
tain properties even to a sub-linear scaling.16 Impor-
tantly, it does not rely on the sparsity of the density
matrix often utilized by other linear-scaling methods for
DFT12,23 and is therefore suitable for studying the elec-
tronic properties of large 3D structures with open bound-
ary conditions.

A converged self-consistent solution of Eq. (6) provides
an estimate of the electron density and in addition can
be used to generate other quantities, such as the den-
sity of states (DOS), the total energy per electron, and
the forces acting on the nuclei. All estimates contain a
statistical error that can be controlled by increasing the
number of stochastic orbitals (I) used to evaluate the
trace in Eq. (6). Of particular relevance to this work are
the Cartesian forces exerted by the electrons on N nu-
clei (α = 1, . . . , N), which can be evaluated through the
Hellman-Feynman theorem:24,25

fα = −
∫
∂veN (r)

∂Rα
nI (r) d3r. (8)

These sDFT forces can be expressed as:

fα = fdetα + fflucα + fbiasα (9)
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Figure 1. The x-component of the atomic force statistics for the 71 atoms of Si35H36 calculated by sDFT (black dashed line for
I = 16) and efsDFT (solid lines, using passivated fragments of size smaller or equal to Si5, depending on the way surface atoms
are treated). For each atom α = 1, . . . , N and number of stochastic orbitals I we present the standard deviation (STD) σ (fx) =√〈

(fxα − 〈fxα〉)2
〉
I
(left) and the mean-absolute-deviation (MAD) from the deterministic DFT value,

〈∣∣∣fxα − (fxα)det
∣∣∣〉
I
(right)

calculated using 60 independent efsDFT/sDFT runs. Atoms are ordered by their distance from the origin, the first 35 atoms
are Si atoms followed by 36 H atoms.

where fdetα is the deterministic (generally unknown)
force, fflucα is the pure fluctuating term, and fbiasα is the
bias expected to be proportional to 1

I in leading order.
The choice of I should be large enough to reduce fbiasα to
negligible values and the only source of error in the pro-
cedure is then the statistical fluctuations proportional to
1√
I
with vanishing mean (

〈
fflucα

〉
= 0).

B. Embedded fragments sDFT

The reduction of the scaling in sDFT is achieved by re-
placing the deterministic, numerically exact, trace evalu-
ation with a stochastic sampling of the density. In return,
this leads to statistical errors in the computed observ-
ables. To reduce the size of the statistical fluctuations, an
embedded fragment method was introduced (see Ref. 17
). The system is divided into F small fragments that are
possibly overlapping. The division to fragments is flexi-
ble, and any desired physically motivated fragmentation
can be used. The density is then a sum of the fragment
density and a small correction term:

n (r) = nF (r) + ∆n (r) (10)

where nF (r) =
∑F
f=1 nf (r) is the density generated by

the individual fragments obtained from a deterministic
KS-DFT calculation for each fragment and ∆n (r) =(
nI (r)− nIF (r)

)
is a correction term evaluated using

stochastic orbitals. Here, nI (r) is given by Eq. (6) and

nIF (r) =
∑F
f=1 n

I
f (r) is a sum over a stochastic estimate

of the fragments density. In the limit I → ∞, Eqs. (6)
and (10) are identical and equal to the deterministic den-
sity. For finite values of I, the size of the statistical fluctu-
ations of the two approaches are quite different. Since the
deterministic fragmented density, nF (r), provides a rea-
sonable approximation for the full density n (r), the cor-
rection term, ∆n (r), which is evaluated stochastically, is
rather small, leading to a reduced variance in the relevant
observables (forces, DOS, total energy per electron, etc.)
compared to the direct stochastic approach of Eq. (6).
An equivalent viewpoint is that the fragmentation is a
device for reducing the variance in the stochastic evalua-
tion of the density. This is evident by rewriting Eq. (10)
in the following form

n (r) = nI (r) +

F∑
f=1

(
nf (r)− nIf (r)

)
, (11)

and the implementation of this form is described in Ap-
pendix (A).

To assess the accuracy of the embedded fragmented
sDFT (efsDFT), we calculated the standard deviations
(STDs) and mean absolute deviations with respect the
deterministic DFT (MADs) of the atomic forces in a
Si35H36 NC using hydrogen passivated Si5 fragments.
The results are shown in Fig. 1.26 The STDs and MADs
decrease as 1/

√
I, indicating that the bias in the force

estimation is negligible. The standard deviations in the
sDFT forces are larger by a factor of ≈ 3 compared to
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those of efsDFT. This implies that the required num-
ber of stochastic orbitals in efsDFT is nearly an order of
magnitude smaller than in sDFT for similar STDs. The
STDs can be further reduced by using larger fragments
as discussed below (cf., Fig. 7).

C. Langevin dynamics based on efsDFT

The standard approach to generate canonically dis-
tributed configurations using ab initio techniques is
based on molecular dynamics, which requires as input ac-
curate force estimates for each atomic degree of freedom.
Since the forces generated by efsDFT contain a stochastic
component, we use Langevin dynamics (LD) instead of
molecular dynamics to sample configurations according
to the Boltzmann distribution. A LD trajectory27–30 is
a sequence of configurations (p, q)

m
= (p (tm) , q (tm))

at discrete “times” tm = m∆t, where ∆t is the time
step, and q ≡ (q1, . . . , qN ) and p ≡ (p1, . . . ,pN ) are
the Cartesian coordinates and conjugate momenta, re-
spectively, for the N atoms, The trajectory is a solution
of the Langevin equation (LE) of motion:31

µαq̈α = fα (q)− γαpα + ηα. (12)

where µα is the mass of the atom α, γα is its friction
constant, and fα = fdetα + fflucα is the total efsDFT
force acting on it, including deterministic and fluctuat-
ing parts (see Eq. 9). The bias is assumed negligible, so
that 〈fα〉 = fdetα . In Eq. (12) ηα is an additional uncor-
related white-noise force introduced so as to satisfy the
fluctuation-dissipation (FD) relation. We require that
the total random fluctuation on each atom obey:

〈ηα (t)〉 =
〈
fflucα (t)

〉
= 0

and〈(
ηα (t) + fflucα (t)

)
⊗
(
ηα′ (t′) + fflucα′ (t′)

)〉
=

〈ηα (t)⊗ ηα′ (t′)〉+
〈
fflucα (t)⊗ fflucα′ (t′)

〉
= (13)

I3×3σ2
αδαα′δ (t− t′) ,

where α, α′ = 1, . . . N are atom indices, 〈· · · 〉 designates
average over the atomic force distribution, I3×3 is the 3×3
unit matrix, and σα is the atomic force STD of atom
α, which is taken to satisfy the fluctuation-dissipation
relation:

σ2
α = 2µαγαkBT. (14)

We use the Verlet-like algorithm32 for numerically in-
tegrating the LE of motion at a fixed temperature T and
a predefined time-step ∆t. The positions and momenta
in time step m+1 depend on the positions and momenta
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Figure 2. The Verlet-like32 temperature in Si35H36 evaluated
with efsDFT using: transient kinetic energy (dotted line),
running average kinetic energy for Si (red) and the running
average virial (black) using I = 30 stochastic orbitals, a time
step of ∆t = 1.2 fs and the friction coefficients are γSi = γH =
0.04 fs−1.

in time step m as well as on the forces in time step m
and the additional white noise ηmα is sampled from a
Gaussian distribution such that the discretized version
of Eq. (13) holds:

〈(
ηmα + fflucα

)
⊗
(
ηnα′ + fflucα′

)〉
∆t =

Iσ2
αδαα′δmn:

qm+1
α = qmα + bα∆tµ−1α p

m
α +

1

2
bα∆t2µ−1α

(
fmα + ηm+1

α

)
pm+1
α = aαp

m
α +

1

2
∆t
(
aαf

m
α + fm+1

α + 2bαη
m+1
α

)
,

(15)

where aα = bα
(
1− 1

2γα∆t
)
and b−1α = 1 + 1

2γα∆t. The
algorithm allows for stable and accurate solutions of the
LE with time step comparable to that used in molecular
dynamics simulations for similar systems. It treats the
additional white noise component ηα of the force differ-
ently from the force fα = fdetα + fflucα that result from
the efsDFT calculation containing deterministic and fluc-
tuating components that cannot be separated.

In Fig. 2 we plot for Si35H36 the running average of the
transient temperature, Tm, calculated from the kinetic
energy

TmK =
2

3NkB

∑
α

(pmα )
2
/2µα (16)

and from the virial estimator,

TmV = − 1

3NkB

∑
α

(fmα + ηmα ) · (qmα − 〈qα〉) . (17)

In the above, 〈qα〉 is the time average of the coordinate of
atom α. The initial positions of the Si atoms were taken
from the bulk values. All surface Si atoms with more than
two dangling bonds were removed and the remaining sur-
face Si atoms were passivated using one or two H atoms
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Figure 3. The normalized velocity autocorrelation function
(top panel) and the mean nearest-neighbor Si-Si distance
(bottom panel) in Si35H36 as a function of time for a LD
trajectory at T = 300K with time step ∆t = 1.2 fs calculated
using a dDFT based LD for different values of γ = γSi = γH.
The dashed curve corresponds to a efsDFT based LD calcu-
lation with γ = 0.04 fs−1 and I = 30 stochastic orbitals. The
simulation started intentionally from an inflated comfigura-
tion in order to to measure the relaxation time.

placed in a tetrahedral geometry at the Si-H distance of
1.47ï¿œ. The momenta were sampled from a Boltzmann
distribution at T = 300K. This non-equilibrium initial
configuration relaxes towards equilibrium.

The agreement in Fig. 2 between the two temperature
estimators is consistent with a proper sampling of the
canonical distribution of both positions and velocities.
The small discrepancies at the longest averaging time
are due to the large fluctuations of the transient temper-
ature, particularly when using the virial estimator. We
have also calculated the fluctuations in the kinetic energy
and found very good agreement with the corresponding
analytical value (not shown).

D. Determining the optimal friction

The effect of γSi on the configurational relaxation and
on the velocity autocorrelation decay is illustrated in
Fig. 3 for Si36H35. In order to decrease the number of
unknown parameters we set the value of γ and σ to be
identical for all atoms of the same type (i.e. Si or H in
the systems studied here). The value of the added white
noise is then determined by Eq. (14), ensuring that the
fluctuation-dissipation relation holds. Before this step
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Figure 4. The Si-Si pair distribution function g (r) for Si35H36

calculated using dDFT (dotted lines) and efsDFT based LD
(solid lines, see Table I for parameters) at T = 30K , (blue
curves) and 300K (red curves). Inset: Details of the first
(nearest neighbor) peak. The dotted lines are for different
friction coefficients γ = γSi = γH in the range 0.02− 0.5 fs−1 .

can be taken an estimate of the magnitude of the sDFT

force fluctuation
〈(
fflucα

)2〉
(α = x, y, z) appearing in

Eq. (13)must be obtained. This quantity is estimated by
a separate set of runs on the initial NC configuration us-
ing several independent sets of stochastic orbitals. Note,
that we have tested that the magnitude of the sDFT force

fluctuation
〈(
fflucα

)2〉
is not sensitive to the particular

configuration used.

NC T(K) γ
(
fs−1

)
I ∆t

(
fs−1

)
titer(min)H Si

Si35H36
30 0.12 0.04 120 1.2 1
300 0.04 0.04 30 1.2 1

Si147H100
30 0.12 0.04 120 1.2 2
300 0.12 0.04 30 1.2 2

Si705H300
30 0.12 0.04 120 1.2 10
300 0.12 0.04 92 1.2 10

Table I. Value of various parameters for the LD based on
efsDFT calculations: The friction coefficients γ, number of
stochastic orbitals I, time-step ∆t and the wall time per single
SCF iteration titer.

As expected, the configurational relaxation time in-
creases with increasing values of γSi with the opposite
trend for the decay time of the velocity autocorrelation
function. At the optimal γSi , therefore, both relaxation
times are equal. However, this choice leads to small val-
ues of the friction and requires a large number of stochas-
tic orbitals, increasing the total CPU time. Based on
the results of Si36H35 and the desired computational ef-
fort, we determined the optimal friction coefficients as
γSi = 0.04 fs−1 and γH = 0.12 fs−1. These values were
used for the larger systems described in the next section
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Figure 5. The Si-Si pair distribution function g (r) for
Si147H100 (left) and Si705H300 (right) calculated using efsDFT
based LD. Upper panels: g (r) for T = 30K (blue curves) and
T = 300K (red curves). Lower panels: The first peak of g (r)
at 30K shown for several times. The calculation parameters
given in Table I.

(see Table I). Note that the results shown in Fig. 3, which
were generated using LD under dDFT, could have been
equally well generated under efsDFT. This is shown ex-
plicitly for γSi = 0.04 fs−1 (dotted red line) proving that
the relaxation times are similar to those of the dDFT
based LD calculation with the same value of γSi.

E. Validation of LD within efsDFT

Validation of the structure obtained using efsDFT
based LD is demonstrated using the pair distribution
function g (r).27 For finite size NCs the average number
of neighbors at a distance r is expected to be smaller than
the bulk value due to surface atoms with a smaller num-
ber of neighbors. Fig. 4 shows a close agreement between
the dDFT and efsDFT based LD estimates of g (r) of the
Si35H36 NC at two temperatures. The inset focuses on
the first peak in g (r), comparing the efsDFT to dDFT
at T = 30 and 300K .

III. RESULTS

In the previous sections we presented the methods and
assessed the accuracy and validity of the efsDFT based
LD. Here we apply the method to study structural prop-
erties of larger NCs exceeding Ne = 3000 electrons. The
Si-Si pair distribution functions g (r) at two temperatures
T (30 and 300K) are displayed in the upper panel of Fig. 5
for Si147H100 and Si705H300. Temperature broadens the
peaks by a factor of 2− 3 without significantly changing
the peak position.

In the lower panel of Fig. 5 we plot the transient and
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Figure 6. Si-Si nearest neighbor distance averaged over
atoms in shells A-E (see Table II for definition), at 30K for
Si147H100 (left) and Si705H300 (right) as a function of time.
The calculation parameters given in Table I.

relaxed g (r) at 30K for the two systems, focusing on
the first, nearest neighbor peak. As described also for
Si35H36, the initial positions of the Si atoms for both
systems were taken from the experimental bulk values
and all surface Si atoms with more than two dangling
bonds were removed. The remaining surface Si atoms
were then passivated using one or two H atoms placed
in a tetrahedral position at the Si-H distance of 1.47ï¿œ.
The initially sharp peak broadens and shifts to longer
Si-Si bond lengths as the system relaxes towards thermal
equilibrium. For 30K, the relaxation times are 180 and
650 fs for Si147H100 and Si705H300, respectively. For 300K
they are 180 and 250 fs respectively.

Shell Rin Rout NSi NNN

A 0 5.5 35 52
B 5.5 8.5 113 158
C 9.0 11.6 153 163
D 11.6 13.6 200 189
E 13.6 15.1 205 168

Table II. The shells of the silicon NCs used for analyzing the
bond length relaxation in Fig. 6: Their inner and outer radii
(in ï¿œ), the number of Si atoms NSi, and the number of
nearest neighbor (NN) Si-Si pairs NNN.

The relaxation transient is studied in greater de-
tail in Fig.6, where the average nearest-neighbor bond
lengths are shown for Si147H100 (spherical shells A-B)
and Si705H300 (shells A-E); see Table II for the defini-
tion and properties of the shells. In Si705H300 the deep
layer shells (A-D) relax slower than those near the surface
showing that relaxation progresses from the surface in-
wards. The difference between the relaxation times of the
two systems is correlated with the smaller frequency, ω,
of the breathing mode of the larger NC. In the limit of an
over damped motion (as is the case here since γ2 � ω2),
the relaxation is dominated by two timescales propor-
tional to γ−1 and

(
ω2/γ

)−1. The former leads to a fast
relaxation while the latter is slower and depends on the
value of ω−2. The ratio of the breathing mode frequency
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for the two particles is ω2
L
ω2

S
≈ 2.8 (L/S for large/small)

assuming that the breathing mode frequency scales lin-
early with the NC diameter.33 This is similar to the ratio
of the relaxation times (650/180 = 3.6) for the lower
temperature. At the higher temperature, one needs to
consider anharmonic effects which are more pronounced
in the large NC with lower acoustic phonons. Another
noticeable feature in Fig. 6 is that the Si-Si bonds seem
slightly shorter in Si147H100 than in Si705H300. This re-
sults from the difference in the bond distance of atoms in
the outer shell, while the inner shell atoms have similar
bond distances.

IV. CONCLUSIONS

In this paper we developed an ab initio Langevin dy-
namics approach based on a new embedded fragment
stochastic DFT method. We showed how the noisy forces
resulting from the efsDFT calculation are used to gener-
ate a set of configurations that are distributed canonically
at cryogenic and room temperatures. By proper choice of
the friction coefficients and the number of stochastic or-
bitals, thermalization is reached within ≈ 100 time steps
for these materials. Using the calculations we determined
the structural properties of silicon nanocrystals of size up
to 3nm in diameter containing more than 3000 electrons.
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Appendix A: The embedded fragments approach

Here, we provide the technical details for the embedded
fragment method described in Section II. The method

corrects the stochastic estimate
〈
Â
〉I

for the expectation

value
〈
Â
〉
of a one-body operator Â, using calculations

performed on F separate fragments (see Eq. (11)):

〈
Â
〉

=
〈
Â
〉I

+

F∑
f=1

∆AIf , (A1)

where the stochastic correction due to fragment f is

∆AIf =
〈
Âf

〉
−
〈
Âf

〉I
, (A2)

and the deterministic and the stochastic estimates,
〈
Âf

〉
and

〈
Âf

〉I
are calculated directly on the fragment itself.

Previous implementations of embedded fragment
sDFT were applied to systems of many weakly interact-
ing molecules where the selection of fragments or clus-
ters of such molecules was natural.17 We now describe a
new method for defining and carrying calculations with
fragments which can break up covalently bonded systems
such as silicon NCs. The large system is divided into F
small fragments composed of one or more bonded atoms
each. The surface dangling bonds of the fragment are
passivated using a H atom placed in 1.46ï¿œ from the
Si atom, in the direction of the neighboring atom which
is not included in the fragment. This forms a saturated
fragment. For a saturated fragment f , the determin-
istic KS-DFT method is applied to determine the KS
eigenvalues εfn and eigenfunctions ψfn (r). Further, oc-
cupation numbers

(
pfn
)2

= 1
2erfc

(
β
(
εfn − µf

))
are in-

troduced for determining the saturated fragment den-
sity nsf (r) =

∑
n

(
pfn
)2
ψfn (r)

2. The fragment density
nf (r) = cf (r)

2
nsf (r) is “carved out” of nsf (r) using a

carving function cf (r)
2. Thus:

nf (r) = cf (r)
2
∑
n

(
pfn
)2
ψfn (r)

2
, (A3)

where, inspired by Hirshfeld partitioning,34 the carving
function is defined as:

cf (r) =

√√√√∑
a∈f n

(0)
a (r)∑

a∈sf n
(0)
a (r)

,

where n(0)a (r) is the spherical density of neutral atom
a. The temperature parameter β in the definition of the
population pfn is chosen be the same value as that of the
sDFT calculation, while the chemical potential µf of each
fragment is determined by the condition of neutrality of
the fragment:∫

nf (r) dr =

∫ ∑
a∈f

n(0)a (r) dr. (A4)

Defining non-orthogonal functions ψ̃fn (r) =
cf (r) pfnψ

f
n (r), the fragment density of Eq. (A3)

becomes nf (r) = 2
∑
n ψ̃

f
n (r)

2, so the chemical
potential is determined from the condition:

2
∑
n

〈
ψ̃fn

∣∣∣ψ̃fn〉 =

∫ ∑
a∈f

n(0)a (r) dr. (A5)

After determining µf and in order to construct the
reduced density matrix (RDM), we orthogonalize the
functions ψ̃fn (r) by diagonalizing the overlap matrix
Sfnn′ =

〈
ψ̃fn

∣∣∣ψ̃fn′

〉
, obtaining the unitary matrix Uf

of eigenvectors and the eigenvalues sfn > 0 (so that
UTf SfUf = diag

[
sf1 , s

f
2 . . .

]
). The orthogonal wavefunc-

tions are: φfm (r) =
∑
n ψ̃

f
n (r)Ufnm and the norm is
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Figure 7. Efficacy of fragments on the inherent sDFT STD σ1 (fx) of the x-component of the force on each atom of Si35H36

(left) and Si705H300 (right) NCs. The inherent STD σ1 is the actual STD σ times
√
I. Si atoms are shown first followed by H

atoms, where atoms are ordered by distance from the NC center. Calculations are done on the configuration cut out from the
bulk silicon, where H atoms were placed near the surface for saturating the dangling bonds.

〈
φfm
∣∣φfm 〉 = sfm. Using the new wave functions, the un-

saturated fragment density is given by:

nf (r) = 2
∑
m

φfm (r)
2

and the RDM by

θ̂f = 2
∑
m

∣∣φfm〉 〈φfm∣∣ .
Using the RDM we express the unsaturated fragment ex-
pectation value appearing in Eq. (A2) as:

〈
Âf

〉
≡ tr

[
θ̂f Â

]
= tr

[√
θ̂f Â

√
θ̂f

]
,

where √
θ̂f =

√
2
∑
m

(
sfm
)−1/2 ∣∣φfm〉 〈φfm∣∣ . (A6)

By choosing the fragment grid-points to be a subset of the
full system grid, each stochastic orbital χi (i = 1, . . . , I)
of the full system appears as a stochastic orbital on the
fragment grid and can be used to perform the stochastic
estimate appearing in Eq. (A2) as:〈

Âf

〉I
=

1

I

∑
i

〈
χi

∣∣∣∣√θ̂f Â√θ̂f ∣∣∣∣χi〉
f

,

where the subscript f on the left denotes integration over

the fragment grid. The difference ∆AIf =
〈
Âf

〉
−
〈
Âf

〉I
in Eq. (A2) can now be written in a unified form as:

∆AIf = 2
∑
mm′

∆f I
mm′

〈
φfm

∣∣∣Â∣∣∣φfm′

〉
f
, (A7)

where:

∆f I
mm′ ≡ δmm′ − 1

I

∑
i

〈
χi
∣∣φfm 〉f 〈φfm′ |χi

〉
f√

sfms
f
m′

. (A8)

Hence, by calculating the matrix ∆f I
mm′ all types of expec-

tation value corrections can be obtained from Eq. (A7).
The efficacy of embedded fragments in sDFT force cal-

culations is achieved through a reduction of the STD
σ (fx) of a force component. The STD σ (fx) is pro-
portional to 1/

√
I, where I is the number of stochas-

tic orbitals and the proportionality constant, denoted
σ1 (fx) =

√
Iσ (fx), is called the inherent STD. This

quantity depends on the NC characteristics but not on
the number of stochastic orbitals. In Fig. 7 we plot the
inherent STD on each atom for Si35H36 and Si705H300 as
a function of fragment size. Even the use of the smallest
fragments reduces the inherent force STD by a signifi-
cant factor, 1.6 (for Si705H300) to 2.3 (for Si35H36). Using
larger fragments reduces the STD by an additional factor
of ≈ 1.5, with increasing effect for larger systems, since
the electron density in the larger fragments is similar to
that of the full system. It is interesting to see that for
the forces there is no noticeable sublinear scaling: the
inherent STD for both systems is similar, with the larger
system having a slightly (≈ 5%) STD.

In summary, the embedded fragment sDFT method
serves as a way to expedite the sDFT calculation by a
judicious choice of fragment size and composition. As
the fragment size grows, the numerical effort invested
in sDFT decreases (due to reduction of STD) while in
dDFT it increases. For example, consider Fig. 7 where
we showed that increasing the fragment size by a factor
of 10−20 reduces the STD by a factor of 2 and therefore
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the sDFT CPU time by a factor of ≈ 22 = 4. On the
other hand since the fragments are ten-fold larger, the
amount of dDFT work on them increases (cubically) by
a factor of more than∼ 103. Clearly then, the optimal
fragment size is system dependent. Embedded fragments
have the additional benefit of providing an initial density
for the SCF calculation, significantly reducing the num-
ber of SCF cycles.
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