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Linear-scaling implementations of density functional theory (DFT) reach their intended efficiency
regime only when applied to systems having a physical size larger than the range of their Kohn-
Sham density matrix (DM). This causes a problem since many types of large systems of interest
have a rather broad DM range and are therefore not amenable to analysis using DFT methods. For
this reason, the recently proposed stochastic DFT (sDFT), avoiding exhaustive DM evaluations,
is emerging as an attractive alternative linear-scaling approach. This review develops a general
formulation of sDFT in terms of a (non)orthogonal basis representation and offers an analysis
of the statistical errors (SEs) involved in the calculation. Using a new Gaussian-type basis-set
implementation of sDFT, applied to water clusters and silicon nanocrystals, it demonstrates and
explains how the standard deviation and the bias depend on the sampling rate and the system size in
various types of calculations. We also develop basis-set embedded-fragments theory, demonstrating
its utility for reducing the SEs for energy, density of states and nuclear force calculations. Finally,
we discuss the algorithmic complexity of sDFT, showing it has CPU wall-time linear-scaling. The
method parallelizes well over distributed processors with good scalability and therefore may find
use in the upcoming exascale computing architectures.

I. INTRODUCTION

Density functional theory (DFT) is emerging as a
usefully-accurate general-purpose computational plat-
form for predicting from first principles the ground-state
structure and properties of systems spanning a wide
range of length scales, from single atoms and gas-phase
molecules, through macromolecules, proteins, nanocrys-
tals, nanosheets, nanoribbons, surfaces, interfaces up to
periodic or amorphous homogeneous or heterogeneous
materials [1–5]. Significant efforts have been diverted to-
wards the development of numerical and computational
methods enabling the use of DFT for studying exten-
sive molecular systems. Several routes have been sug-
gested: linear-scaling approaches [6–32], relying on the
sparsity of the density matrix [33], DFT-based tight-
binding (DFTB) methods [34–36] which reduce the nu-
merical scaling using model Hamiltonians. Moreover,
significant efforts have gone towards developing orbital-

free DFT [36, 37] approaches using density-dependent
kinetic energy functionals. The first two types of ap-
proaches mentioned above are designed to answer ques-
tions typically asked about molecules, while for materials
and other large scale systems, we are more interested in
coarse-grained properties. For example, with molecules,
one is interested in bond orders, bond lengths spectral
lines; while for large systems we are more interested
in atomic densities, pair-correlation distributions (mea-
sured using neutron scattering) as well as charge/spin
densities, polarizabilities and optical and electrical con-
ductivity. In molecules, we strive to understand each oc-
cupied/unoccupied Kohn-Sham eigenstate while in large
systems we are concerned with the density of hole and
electron states.

Of course, detailed “molecular type” questions can also
arise in large systems, primarily when the processes of in-
terest occur in small pockets or localized regions — for
example, biochemical processes in proteins, localized cat-
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alytic events on a surface, impurities in solids, etc. Here,
a combination of methods, where the small subsystem
can be embedded in the larger environment is required.

In this advanced review, we will focus on the stochas-
tic DFT (sDFT) approach, developed using grids and
plane-waves in recent years [38–42] but also based on
ideas taken from works starting in the early 1990’s,
mainly within the tight-binding electronic structure
framework [43–50]. We make the point that the effi-
ciency of sDFT results from its adherence to answering
the coarse-grained “large system questions” mentioned
above, rather than those asked for molecules.

The new viewpoint taken here is that of stochastic
DFT using non-orthogonal localized basis-sets. The pri-
mary motivation behind choosing local basis-sets is that
they are considerably more compact than plane-waves
and therefore may enable studying significantly larger
systems. Deterministic calculations using local basis-sets
are more readily applicable to large systems, and thus
can generate useful benchmarks with which the statisti-
cal errors and other properties characterizing sDFT can
be studied in detail.

The review includes three additional sections, further
divided into subsections, to be described later. Sec-
tion II reviews the theory and techniques used for non-
orthogonal sDFT and studies in detail the statistical er-
rors and their dependence on sampling and system size.
In section III we explain the use of embedded fragments
and show their efficacy in reducing the stochastic errors
of sDFT. Section IV summarizes and discusses the find-
ings.

II. THEORY AND METHODS

In this section, we discuss three formulations of KS-
DFT represented in non-orthogonal basis-sets. Since the
issue of algorithmic scaling is at the heart of develop-
ing DFT methods for large systems, we emphasize for
each formulation the associated algorithmic complexity
(so-called system-size scaling). We start with the tra-
ditional basis-set formulation of the Kohn-Sham equa-
tions leading to standard cubic-scaling (subsection II A).
Then, showing how, by focusing on observables and ex-
ploiting the sparsity of the matrices, a quadratic-scaling
approach can be developed with no essential loss of rigor
or accuracy (subsection II B). Most of the discussion will
revolve around the third and final approach, stochastic
DFT, which estimates expectation values using stochas-
tic sampling methods, as described in subsection II C.
This latter approach leads, to linear-scaling complexity.

A. Traditional basis-set formulation of Kohn-Sham
equations with cubic scaling

The Kohn-Sham (KS) density functional theory (KS-
DFT) is a molecular orbitals (MOs) approach which can
be applied to a molecular system of Ne electrons using a
basis-set of atom-centered orbitals φα (r), α = 1, . . . ,K.
The basis functions were developed to describe the elec-
tronic structure of the parent atom, and for molecules
they are the building blocks from which the orthonormal
MOs are built as superpositions:

ψn (r) =

K∑
α=1

φα (r)Cαn, n = 1, . . . ,K. (1)

In the simplest “population” model, each MO can either
“occupy” two electrons (of opposing spin) or be empty.
The occupied MOs (indexed as the first Nocc = Ne/2
MOs) are used to form the total electron density:

n (r) = 2×
Nocc∑
n

|ψn (r)|2 . (2)

The coefficient matrix C in Eq. (1) can be obtained
from the variational principle applied to the Schrödinger
equation, leading to the Roothaan-Hall generalized eigen-
value equations [51, 52] (we follow the notations in
refs. [53–55]):

FC = SCE. (3)

Here, F = T + V en + J [n] + V xc [n] is the K × K
KS Fock matrix, Sαα′ = 〈φα|φα′〉 is the overlap matrix
of the AO’s and E is a diagonal matrix containing the
MO energies, ε1, . . . , εK . The Fock matrix Fαα′ includes
the kinetic energy integrals, Tαα′ =

〈
φα
∣∣− 1

2∇
2
∣∣φα′

〉
,

the nuclear attraction integrals V enαα′ = 〈φα |v̂en|φα′〉,
where v̂en is the electron-nuclear interaction opera-
tor, the Coulomb integrals Jαα′ = 〈φα |vH [n] (r̂)|φα′〉,
where vH [n] (r) =

∫ n(r′)
|r−r′|d

3r′ is the Hartree potential,

and finally, the exchange-correlation integrals, V xcαα′ =
〈φα |vxc [n] (r̂)|φα′〉 where vxc [n] (r̂) is the exchange cor-
relation potential.

In KS theory, the Fock matrix F and the electron den-
sity n (r) are mutually dependent on each other and must
be obtained self-consistently. This is usually achieved by
converging an iterative procedure,

· · · −→ n (r) −→ {vH [n] (r) , vxc [n] (r)} −→ (4)

−→ F
O(K3)
−−−−→ {C,E} −→ n (r) −→ . . . ,

where in each iteration, a previous density iterate n (r)
is used to generate the Hartree vH [n] (r) and exchange-
correlation vxc [n] (r) potentials from which we construct
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the Fock matrix F . Then, by solving Eq. (3) the coef-
ficient matrix C is obtained from which a new density
iterate n (r) is generated via Eqs. (1)-(2). The iterations
continue until convergence (density stops changing with
a predetermined threshold), and a self-consistent field so-
lution is thus obtained.

This implementation of the basis-set based approach
becomes computationally expensive for very large sys-
tems due to the cubic scaling of solving the algebraic
Roothan-Hall equations (Eq. (3)). This cubic-scaling
step is marked by placing O

(
K3
)

on the correspond-
ing arrow in Eq. (4). The Coulomb integral calculation
has a much lower scaling and can be completed in a
O (K logK) scaling effort, either using continuous fast-
multipole methods [56, 57] or fast-Fourier transforms on
grids, as done here.

B. Equivalent trace-based formulation with
quadratic scaling

In order to lower the scaling, we can take advantage of
the fact that both F and S are very sparse matrices in the
AO representation. The complication, however, is that
the C matrix of Eq. (3) is non-sparse and therefore should
be circumvented. This is challenging since the C matrix
of Eq. (3) is used to extract both the eigenvalues εn and
at the same time to enforce the MO orthogonalization,
both described by the matrix equations:

CTFC = E, and CTSC = I. (5)

The first step in circumventing the calculation of the
C matrix introduces the density matrix (DM) formally
defined as

P = Cf (E;T, µ)CT , (6)

where f (E;T, µ) is the diagonal matrix obtained by plug-
ging E instead of ε in the Fermi-Dirac distribution func-
tion:

f (ε;T, µ) ≡ 1

1 + e(ε−µ)/kBT
. (7)

The diagonal matrix elements, 2f (εn) (we omit desig-
nating the temperature T and chemical µ in f when no
confusion is expected) represent the level occupation of
the MO ψn (r) (which typically holds a spin-up and a
spin-down electron, hence the factor of 2). T can be a
real finite temperature or a very low fictitious one. In the
latter case, the T → 0 limit of Eq. (7) yields f (εn) = 1
for n ≤ Nocc and 0 otherwise, assuming that the chemical
µ has been chosen such that Ne = 2

∑
n f (εn).

In contrast to the formal definition in Eq. (5) of P as
a matrix, in sDFT regards P as an operator expressed in
terms of F and S through the relation

P = f
(
S−1F ;T, µ

)
S−1. (8)

Here, S−1F is “plugged” in place of ε into the function
f of Eq. (7) [58]. Just like P is an operator, our method
also views S−1 as an operator which is applied to any
vector u with linear-scaling cost using a preconditioned
conjugate gradient method [59,60]). The operator P , ap-
plied to an arbitrary vector u, uses a Chebyshev expan-
sion [9,17,44,61] of length NC : Pu =

∑NC

l=0 al (T, µ)ul

where al are the expansion coefficients and u0 = S−1u,
u1 = Hu0 and then ul+1 = 2Hul − ul−1, l = 2, 3, .... In
this expansion the operator H is a shifted-scaled version
of the operator S−1F bringing its eigenvalue spectrum
into the [−1, 1] interval. Every operation Pu, which in-
volves repeated applications of H to various vectors is
automatically linear-scaling due to the fact that F and S
are sparse. Clearly, the numerical effort in the applica-
tion of P to u depends on the length NC of the expansion.
When the calculation involves a finite physical tempera-

ture T , NC = 2
(
Emax−Emin

kBT

)
, where Emax (Emin) is the

largest (smallest) eigenvalue of H. Since NC is inversely
proportional to T , the numerical effort of sDFT reduces
as T−1 in contrast to deterministic KS-DFT approaches
where it rises as T 3 [41]. For zero temperature calcu-
lations one still uses a finite temperature but chooses it
according to the criterion kBT � εg where εg is the KS
energy gap. For metals it is common to take a fictitious
low temperatures.

The above analysis shows then, that the application of
P to a vector can be performed in a linear-scaling cost
without constructing P . We use this insight in combina-
tion with the fact that the expectation value of one-body
observables Ô =

∑Ne

n=1 ôn (where ô is the underlying sin-
gle electron operator and the sum is over all electrons)
can be achieved as a matrix trace with P :〈

Ô
〉

= 2Tr [PO] , (9)

where Oαα′ = 〈φα |ô|φα′〉 is the matrix representation
of the operator within the atomic basis. Eq. (9) can be
used to express various expectation values, such as the
electron number

Ne = 2Tr [PS] (10)

= 2Tr
[
f
(
S−1F ;T, µ

)]
,

the orbital energy

Eorb = 2Tr [PF ] (11)

= 2Tr
[
e
(
S−1F ;T, µ

)]
,

where, e (ε) = f (ε) ε and the fermionic entropy

ΣF = −2kBTr [PS lnPS + (I − PS) ln (I − PS)] (12)

= 2Tr
[
σF
(
S−1F ;β, µ

)]
where σF = −kB (f ln f + (1− f) ln (1− f)). The ex-
pectation value of another observable, the density of



4

states ρs (E) =
∑
n δ (E − εn) can also be written as a

trace [59]:

ρs (ε) = π−1 lim
η→0

Im Tr
[
(εS − F − iηS)

−1
S
]
, (13)

= π−1Im Tr
[
g
(
S−1F ; ε

)]
where g (ε′; ε) = limη→0

1
ε−ε′−iη .

Since the density matrix is an operator in the present
approach, the trace in Eq. (9) can be evaluated by in-

troducing the unit column vectors u(α′) (α′ = 1, . . . ,K)
and operating with P on them, and the trace becomes:〈

Ô
〉

= 2

K∑
α,α′=1

(
Pu(α′)

)
α
Oαα′ . (14)

Evaluating this equation requires quadratic-scaling com-
putational complexity since it involves K applications of

P to unit vectors u(α′) . One important use of Eq. (9) is
to compute the electron density at spatial point r:

n (r) = 2Tr [PN (r)] , (15)

where Nαα′ (r) = φα (r)φα′ (r) is the overlap distribu-
tion matrix, leading to the expression

n (r) = 2

K∑
α,α′=1

(
Pu(α′)

)
α
φα (r)φα′ (r) . (16)

Here, given r, only a finite (system-size independent)
number of α and α′ pairs must be summed over. Hence,
the calculation of the density at just this point involves a
linear-scaling effort because of the need to apply P to a

finite number of u(α′)’s. It follows, that the density func-
tion n (r) on the entire grid can be obtained in quadratic
scaling effort [60]. This allows us to change the SCF
schema of Eq. (4) to:

· · · −→ n (r) −→ {vH [n] (r) , vxc [n] (r)} −→ (17)

−→ F
O(K2)
−−−−→ n (r) −→ . . . ,

where the quadratic step is marked O
(
K2
)
.

Summarizing, we have shown an alternative trace-
based formulation of Kohn Sham theory which focuses
on the ability to apply the DM to vectors in a linear-
scaling way, without actually calculating the matrix P
itself. This leads to a deterministic implementation of
KS-DFT theory of quadratic scaling complexity.

C. Basis-set stochastic density functional theory
with linear-scaling

The first report of linear-scaling stochastic DFT
(sDFT) [38] used a grid-based implementation and fo-
cused on the standard deviation error. Other develop-
ments of sDFT included implementation of a stochastic

approach to exact exchange in range-separated hybrid
functionals [42] and periodic plane-waves applications to
warm dense matter [41] and materials science [61]. These
developments were all done using orthogonal or grid rep-
resentations and included limited discussions of the sta-
tistical errors.

Here, sDFT is presented in a general way (subsec-
tion II C 1), applicable to any basis, orthogonal or not.
We then present a theoretical investigation of the vari-
ance (subsection II C 3) and bias (subsection II C 4) er-
rors, and using our Gaussian-type basis code, bsInbar,
we actually calculate these SEs in water clusters [62] (by
direct comparison to the deterministic results) and study
their behavior with sampling and system size. Finally, in
subsection II C 5 we discuss the scaling and the scalability
of the method.

1. sDFT formulation

Having described the quadratic scaling in the previous
section, we are but a step away from understanding the
way sDFT works. The basic idea is to evaluate the trace
expressions (Eqs. (9)-(16)) using the stochastic trace for-
mula [63]:

Tr [M ] = E

{
K∑
αα′

χαMαα′χα′

}
≡ E

{
χTMχ

}
, (18)

where M is an arbitrary matrix, χα are K random vari-
ables taking the values ±1 and E

{
χTMχ

}
symbolizes

the statistical expected value of the functional χTMχ.
One should notice that Eq. (18) is an identity, since we
actually take the expected value. However, in practice we
must take a finite sample of only I independent random
vectors χ’s. This gives an approximate practical way of
calculating the trace of M :

Tr [M ] ≈ TrI [M ] ≡ 1

I

I∑
i=1

(
χi
)T
Mχi. (19)

From the central limit theorem, this trace evaluation in-
troduces a fluctuation error equal to

Var (TrI [M ]) =
Σ2
M

I
, (20)

where Σ2
M = Var (Tr1 [M ]) is the variance of∑K

αα′ χαMαα′χα′ (discussed in detail in below). This
allows to balance between statistical fluctuations and nu-
merical effort, a trade-off which we exploit in sDFT.

With this stochastic technique, the expectation value
of an operator Ô becomes (c.f. Eq. (14)):〈

Ô
〉

= 2E
{

(Pχ)
T

(Oχ)
}
, (21)
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where the application of P to the random vector χ is
performed in the same manner as described above for u
(see the text immediately after Eq. (8)). This gives the
electronic density (see Eq. (16)):

n (r) = 2E {ψPχ (r)ψχ (r)} , (22)

yielding a vector (called a grid-vector) of density val-
ues n (r) at each grid-point. This involves producing
two grid-vectors, ψχ (r) = χαφα (r) and ψPχ (r) =
(Pχ)α′ φα′ (r) and then multiplying them point by point
and averaging on the I random vectors.

2. sDFT calculation detail in the basis-set formalism

It is perhaps worthwhile discussing one trick-of-the-
trade allowing the efficient calculation of expectation val-
ues of some observables, such as Ne, Eorb, ΣF and ρs, see
Eqs. (10) - (13). These are all expressed as traces over a
function z (ε), respectively f(ε), εf (ε), σF (ε) and ρe (ε).
As a result, all calculations of such expectation values can
be expressed as

Tr
[
z
(
FS−1

)]
=

NC∑
l=0

alml, (23)

where al are the Chebyshev expansion coefficients (de-
fined above, in subsection II B), easily calculable, depend-
ing on the function z and:

ml = Tr
[
χTTlχ

]
= E

{
χTTlχ

}
, (24)

are the Chebyshev moments [46], where Tl is the l’th
Chebyshev polynomial. The computationally expensive
part of the calculation, evaluating the moments ml, is
done once and then used repeatedly for all relevant expec-
tation values. One frequent use of this moments method
involves repeated evaluation of the number of electrons
Ne until the proper value of the chemical potential is
determined.

We should note that many types of expectation values
cannot be calculated directly from the moments ml. For
example, the density, the kinetic and potential energies.
For these a full stochastic evaluation is needed.

Let us digress a little to explain how we make the calcu-
lations, presented in this review, that enable us to study
the properties of sDFT and compare them to determinis-
tic calculations. The code we have written for that pur-
pose is called bs-Inbar [65], and implements both the de-
terministic Kohn-Sham DFT approach described in the
present and previous sections as well as the stochastic
DFT to be discussed below. Following previous works
[23, 66], we use an auxiliary equally-spaced (grid spacing
∆x = 0.5a0) Cartesian grid for calculating the electron-
nuclear interaction integrals V enαα′ , the Coulomb repulsion
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Figure 1. The DOS as a function of energy for a hydrogen-
saturated silicon cluster (Si87H76) calculated using the all-
electron Q-CHEM [64] and the the bs-Inbar codes. Compar-
ison is made for three standard Gaussian basis-sets as indi-
cated in the panels. We used the local density approximation
(LDA) for the exchange-correlation energy. Both calculations
plot the DOS of Eq. (13) using kBT = 0.01Eh.

integrals Jαα′ , built from the grid vector representing
the density n (r) using fast Fourier transform techniques,
and the exchange correlation integrals V xcαα′ . This is the
n (r)→ {vH [n] (r) , vxc [n] (r)} → F step of Eq. (4). We
developed efficient methods to represent the basis func-
tions on the grid to quickly generate molecular orbitals
of the type of Eq. (1) on the grid. These techniques are
necessary for the step F → n (r) of Eq. (17) for generat-
ing the density n(r) from the DM Eq. (16). There are
some technical details, such as the effects of core elec-
trons, which cannot be treated efficiently on the grid,
and thus are taken into account using norm-conserving
pseudopotentials techniques [67, 68], and the deleterious
Coulomb/Ewald images which are screened out using the
method of Ref. 69. Additional technical elements con-
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cerning the bs-Inbar implementation will be presented
elsewhere. In Fig. 1 we demonstrate the validity of the
deterministic bs-Inbar implementation by comparing its
Si87H76 DOS function to that obtained from the eigenval-
ues of an all-electron calculation within the same basis-
set (using the Q-CHEM program [64]). For the largest
basis-set (triple zeta 6-311G) the two codes produce al-
most identical DOS (with small difference at high ener-
gies), while for the smallest basis (STO-3G) the all elec-
tron result shifts strongly to higher energies. Clearly, the
bs-Inbar results are less sensitive to the basis-set, likely
due to the use of pseudopotentials instead of treating core
electrons explicitly.

Having demonstrated the validity of our deterministic
numerical implementation by comparing to deterministic
DFT results of Q-CHEM, let us now turn our attention to
demonstrating the validity of the sDFT calculation when
comparing it to deterministic calculation under the same
conditions. In Fig. 2 (top panel) where we plot, for water
clusters of three indicated sizes, the energy per electron as
a function of 1/I, where I is the number of random vector
χ′s used for the stochastic trace formulas (Eq. (22)-(24)).
As the the number of random vectors I grows (and 1/I
drops) the results converge to the deterministic values
(shown in the figure as stars at 1/I = 0). We repeated
the calculations 10 times with different random number
generator seeds and used the scatter of results for esti-
mating the standard deviation σ and the expected value
µ (these are represented, respectively, as error bars and
their midpoints in the figure). It is seen that the standard
deviation in the energy per particle drops as I increases
and in Fig. 3 it is demonstrated that the standard devia-
tion drops as I−1/2, in accordance with the central limit
theorem. The average values of the energy per particle in
Fig. 2 drop steadily towards the converged deterministic
values (stars). The fact that the average is always larger
than the exact energy, as opposed to fluctuating around
it, is a manifestation of a bias δE in the method. When
δE is larger than σ it drops in proportion to I−1. In sub-
sections (II C 3)-(II C 4) we will discuss and explain this
behavior.
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Figure 2. Top panel: The estimate of energy per electron as
a function of the inverse number of random vectors (1/I) for
water molecule clusters of indicated sizes, without fragments
(/f0) and with fragments (discussed in section (III)) of single
H2O molecules (/f1). The dotted lines are linear fit to the
data (weighted by the inverse error bar length). The deter-
ministic results are represented at 1/I = 0 by star symbols.
Bottom panel: a zoomed view of the /f1 results. These re-
sults were calculated using the STO-3G basis-set within the
LDA.
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Figure 3. The standard deviation (σ,circles) and errors (δE,
squares) of the stochastic estimate of the energy per electron
as a function of the number of random vectors (I) in (H2O)237
without fragments (/f0, blue) and with H2O fragments (/f1,
yellow, discussed in section (III)) . The dashed lines are best
fit functions αI−nto the data, where n = 1/2 for fitting the
standard deviations and n = 1 for the bias. These results
were calculated using the STO-3G basis-set within the LDA.



7

3. Statistical fluctuations

It is straightforward to show that the variance of the
trace formula Eq. (18) is:

Σ2
M ≡ Var

{
K∑
αα′

χαMαα′χα′

}
(25)

=
1

2

K∑
α6=α′

(Mαα′ +Mα′α)
2

= (sym) 2

K∑
α6=α′

M2
αα′ , (26)

where (sym) marks an equality when M is a symmetric
matrix. Therefore, from Eq. (15) the variance in the
density n̂ (r) is

VarI {n̂ (r)} =
8

I

K∑
α6=α′

 K∑
β

Pαβφβ (r)φα′ (r)

2

. (27)

The quantity inside the square brackets involves a lim-
ited number, independent of system size, of α′-β index
pairs [(PS)αα′ ]

2
and since tr [PS] = Ne we can assume

that the magnitude of the brackets squared is O
(
Ne

K

)2
,

i.e. independent of system size. Summing over α intro-
duces a system size dependence, hence we conclude that
VarI {n̂ (r)} has magnitude of O

(
Ne

I

)
. When the system

is large enough P becomes sparse and then VarI (n (r))
will tend to become of the magnitude O

(
1
I

)
, i.e. system-

size independent. The same kind of analysis applies to
any single electron observable Ô with sparse matrix rep-
resentation:

VarI

{
Ô
}
∝ Ne

I
. (28)

and independent of system size once P localizes. Since
intensive properties are obtained by dividing the related
extensive properties by Ne, the standard deviation per
electron of intensive properties will evaluate as:

σintensive ∝
√

VarI {n̂ (r)}
Ne

∝ 1√
INe

. (29)

The decay of the sDFT fluctuations with system size, first
pointed out in Ref. 38, is compatible with the fact that
fluctuations in intensive variables decay to zero in the
thermodynamic limit [70]. For non-metallic systems P
becomes sparse as system size grows. Once this sparsity

kicks in, σintensive is expected to decay as 1/
(√

INe

)
. A

numerical demonstration of Eq. (29) is given in Fig. 4, for
systems of varying numbers Nwaters of water molecules
(all using I = 100 random vectors χ), where the standard
deviation σ in the energy per particle (blue triangles)

indeed drops with system size roughly as N
−1/2
water.
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Figure 4. The standard deviation (σ, triangles) and er-
rors (δE squares) of the stochastic estimate of the energy
per electron as a function of the number of water molecules
Nwater using no fragments (/f0, blue markers) and single wa-
ter molecule fragments (/f1, yellow markers). The dotted
lines are 1/

√
Nwater fits to the σ values. These results were

calculated using the STO-3G basis-set within the LDA and
employed I = 100 random vectors.

4. Bias due to nonlinearities

In sDFT, the Hamiltonian H = S−1F is estimated
using a random density, and therefore it too, is a ran-
dom variable with an expected value H̄ = E {H} and
a fluctuation due to the a covariance matrix σ2

ij;kl =

E {HijHkl} − H̄kl. Consider an observable Ô with an

exact expectation value
〈
Ô
〉
H̄

= Tr
(
f
(
H̄;T, µ

)
S−1O

)
(Eqs. (8) and (21)). We note, that even when H̄ is the ex-
act (deterministic) Hamiltonian, the expectation values〈
Ô
〉
H

will not average to the exact value
〈
Ô
〉
H̄

, simply

because the function of the average of a random vari-
able is distinct or “biased” from the average of the func-

tion: E
{〈
Ô
〉
H

}
6=
〈
Ô
〉
H̄

. Clearly, the extent of this

bias stems from the how E {f (H;T, µ)} deviates from
f (E {H} ;T, µ) and using Taylor’s theorem this can be
estimated as

E {f (H;T, µ)} − f
(
H̄;T, µ

)
= (30)

1

2

∑
i,j,k,l

σ2
ij;kl

∂

∂Hij

∂

∂Hkl
f
(
H̄;T, µ

)
.

There are three lessons from this analysis: 1) all expecta-

tion values
〈
Ô
〉

based on I random vectors in the sDFT

method suffer a bias δ
〈
Ô
〉
∝ coVarI {H} ∝ VarI

{
Ô
}

;

2) from Eq. (28) this bias in the intensive value
〈
Ô
〉
/Ne

is proportional to I−1 but independent from system size;
and lastly: the double derivative of f on the right hand
side of Eq. (30) (called the “Hessian”) is related in a com-
plicated way to the curvature f ′′ (ε;T, µ) of the Fermi-
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Dirac function. This curvature is practically zero for al-
most all ε except near ε ≈ µ ± kBT , and for sufficiently
small temperatures, the large Fermi-Dirac curvature re-
gions are safely tucked into the HOMO-LUMO gap, so
that indeed the bias can be small.

Summarizing, we find the following trends in the SEs
of intensive quantities:

σintensive ∝
(

1

NeI

)1/2

, (31)

δintensive ∝
1

I
. (32)

Numerical demonstrations of Eq. (32) are given in
Fig. 3 (blue squares) where the bias δE/Ne is seen to
drop as I−1 and in Fig. 4 (blue squares) where the bias
is seen to be independent of the system size.

5. Scaling and scalability

In the left panel of Fig. 5 we show, using a series
of water clusters how wall times scale as a function
of system size for the sDFT calculation. Because the
evaluation of the Hartree potential is made with fast
Fourier transforms, the effort is expected to scale as
x = N logN where N indicates the number of water
molecules. When considering a single SCF iteration we
find this near-linear-scaling as expected. When consider-
ing the entire calculation until SCF convergence (which
is achieved when the change in the total energy per elec-
tron is smaller than 10−5Eh), we find the number of SCF
iterations growing gently with system size and the scaling
seems to be near O

(
x1.16

)
.

As demonstrated in Fig. 6, we see excellent scalability
with number of processors with a mere 8% decrease from
the ideal speedup when the number of cores was increased
by a factor of 8. This is a result of assigning to each
thread a smaller number of random vectors. Ideal wall
times are achieved when the there is but one stochastic
orbital per thread [71]. For the systems studied Fig. 5 it
is an hour for a full SCF calculation of the water 1100
system (ca. 9000 electrons, 13000 orbitals).

Under these conditions, the sDFT wall-times can be
significantly lower than those of “conventional” basis-set
DFT calculations, as shown in the right panel of Fig. 5.
This happens despite the fact that the program used, Q-
CHEM, was remarkably still showing quadratic scaling
since the cubic scaling component was not yet dominant.

III. EMBEDDED FRAGMENTS METHOD

A. Theory

The notion of fragments, developed first in Ref. 39
was to break up the system into disjoint pieces called

fragments labeled by the index f , and for each fragment
compute a DM P f , such that to a good approximation
we can write:

P ≈
∑
f

P f . (33)

Clearly, the coherences between different fragments are
also missing from

∑
f P

f and these too are assumed
small but not totally negligible. From Eq. (9), the ex-
pectation value of an arbitrary one-electron operator
Ô can be expressed as a contribution of two terms,〈
Ô
〉

= 2Tr
[∑

f P
fO
]

+ 2Tr
[(
P −

∑
f P

f
)
O
]
, where

the first is the “fragment expected value” and the second
is a correction, expressed as a small trace to be evaluated
using the stochastic trace formula. Applying the stochas-
tic trace formula to just a small trace obviously lowers
the SEs when compared to using it for a full trace.

Ref. 39 considered two types of fragmentation proce-
dures. The first was to used natural fragments which
could just be considered separately, for example, a single
water molecule in a water cluster or a single C60 molecule
in a cluster of C60’s. Since the molecules are not cova-
lently bonded they are weakly interacting and Eq. (33)
is expected to be satisfied to a good degree (however, ad-
jacent water molecules can interact via hydrogen bonds
and this may reduce the efficacy of the single-molecule
fragments, as discussed below).

The efficiency of the fragments depends entirely on the
closeness of the approximation in Eq. (33) and therefore
significant effort has to go to developing techniques for
constructing fragments. One can probably make good
use of the experience gained by the biological and mate-
rials embedding methods [72–78].

The notion of saturated fragments was developed fur-
ther in Ref. 40 and used in silicon clusters where covalent
bonds were cut when forming the bare fragment. The
dangling bonds on the surface of the bare fragments were
then saturated with foreign H or Si atoms. This produced
a saturated fragment (see Fig. 7) and a special algebraic
technique was developed for carving out the bare frag-
ment DM P f . The results facilitated what seems to be
nearly unbiased force evaluations for the atoms in large
nanocrystals, with the structure studied using Langevin
molecular dynamics.

B. Efficiency of the embedded fragments

To asses the utility of fragments that do not strictly
require saturation, such as water fragments in water clus-
ters, consider first Fig. 2, where we compare the energy
per particle of (H2O)n, with n = 100, 237 and 471, esti-
mated using sDFT with no fragments (denoted /f0) and
using fragments of just one water molecule (/f1). It is
seen that there is a dramatic decrease in the the stan-
dard deviation and in the bias. In Fig. 3 we study in
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Figure 5. The timing of DFT calculations of (H2O)N water clusters using the 6-31G basis-set within the LDA. Left panel:
The sDFT wall time as function of x = N logN normalized to one random orbital per thread for a full SCF calculation (blue
symbols) and for a single SCF cycle (orange symbols). Dashed lines are functions t = Axn, where n is best-fitted to the data
and shown in the legend. Right panel: Wall time of a conventional SCF calculation (using Q-CHEM [64]), performed on a
single node, as a function of N for a full SCF calculation (blue symbols) and for a single SCF cycle (orange symbols). The
Calculations were run on an Intel Xeon CPU E3-1230 v5 @ 3.40GHz 64 GB RAM (without Infiniband networking). Each
processor supports 8 threads. The sDFT results were calculated with 800 random vectors and fragments of a representative
size of 128 water molecules (denoted /f128).
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Figure 6. Scalability plot of the calculation, showing the
speedup as a function of the number of threads used when
calculating a SCF iteration of (H2O)1120 (at the 6-31G basis-
set level within LDA) using a total of 2400 random vectors.
Calculations were performed on several 2.30GHz Intel Xeon
E5-2650 v3 with 252 GB and Infiniband networking.

more detail (H2O)n, finding that with no fragments we
are in a bias dominated regime while the use of fragments
allows us to move to a regime controlled by fluctuations.
Evidently, in the latter case, the large fluctuations mask
the linear decrease of the bias with 1/I, which was so
clearly visible in the former one. In Fig. 4, we study the
SEs as a function of system size N , comparing the calcu-
lations with and without fragments. We see that while
fragments help reducing SEs, they do not change the fact
that the bias is largely independent of N .
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Figure 7. A schematic depiction of a bare fragment (blue re-
gion) as a localized set of atoms or molecules within the large
system. The fragment is first saturated by coating it with cap-
ping atoms (red region), its saturated-DM is calculated using
a deterministic DFT calculation, from which a bare DM P f

is is “carved” out by an algebraic procedure.

The use of fragments greatly benefits other types of
sDFT observables. Consider, for example, the density of
states function ρe (E) of water [39]. In the left panels of
Fig. 8 we plot the DOS for a (H2O)1120 cluster described
using the 6-31G basis-set comparing to the deterministic
result under an identical setup. We see in the top left
panel, that by using I = 400 random vectors and small
single-molecule fragments (/f1), the sDFT DOS gener-
ally follows that of the exact calculation quite closely.
However, a zoom into the frontier orbital gap shows, that
even though the stochastic-based calculation exhibits, as
it should, a very low DOS in the frontier gap region, there
is clearly room for further improvement, since the gap is
not sufficiently-well described. Increasing the number of
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Figure 8. Left panels: The LDA DOS of a cluster of 1120 water molecules using the 6-31G basis-set computed with I = 400
and I = 1600 random vectors and using single-molecule fragments (/f1 top panel) and 128 molecule fragments (/f128 bottom
left panel). The insets zoom on the region of the band gap. Right panels: The LDA DOS of Si705H300, a hydrogen-terminated
silicon nanocrystal, using the STO-3G basis-set computed with I = 400 and I = 1600 random vectors and using no fragments
(/f0 top panel) and 16 atom fragments (/f16 bottom panel). In all panels the results are compared to deterministic calculations
under the same conditions.

random vectors used from I = 400 to I = 1600 improves
the overall accuracy but increasing the fragment size to
128 water molecules (/f128) is even more advantageous,
as can be seen in the lower left panel of the figure. It
is evident from this description that it is crucial to de-
velop methods that enable better fragments (in the sense
that the approximation in Eq. (33) is as tight as pos-
sible). Despite the obvious utility of the fragments for
the water cluster systems, there is a need to reach quite
large fragments for high accuracy. Perhaps this is due
to the fact that we do not saturate the bare fragments
with their neighboring molecules, as first suggested in
recent unpublished work [61]. Future work will test this
hypothesis.

Finally we also show in Fig. 8 (right panels) the effect
of fragments on the DOS of a large silicon cluster. Here,
we must use saturated fragments, as was done in Ref. 40.
The density of states, compared to a deterministic calcu-
lation is again greatly improved when fragments of size
16 silicon atoms are used (bottom left panel).

C. Localized energy changes

So far, we have dealt with two types of observables: in-
tensive properties (such as energy per electron) which is
a highly averaged quantity, and density of states which,
due to the tall number of levels in large systems can be
smeared, i.e. locally average, with little loss of essen-
tial accuracy. We now demonstrate the possibility of
calculating forces on a small atom or molecule within
the large system, using stochastic DFT. Previous works
concerning this issue [38, 40] demonstrated that the
Hellman-Feynman force F a = −

∫
n (r) ∂

∂Ra veN (r) dr +∑
a6=a

ZaZa′(Ra−Rb)
|Ra−Rb|3 involves a controlled variance and

small bias.

Here we consider a related but different question, the
possibility of systematically reducing the bias in forces on
nuclei within a localized region of interest in a large sys-
tem. This is useful when modeling reactions in biomolec-
ular systems, as often done using the QM/MM approach,
where quantum chemistry forces are used for simulating
chemical reactions and other electronic processes (charge
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transfer or excitation) while force fields are used for the
rest of the system [72–74, 79–82].

For this, we take a fragment which encapsulates the
region of interest and “embed” it into the system us-
ing sDFT. We study such a process in Fig. 9 where the
force F exerted on a certain, marked, water molecule
in a larger (H2O)237 cluster is calculated, first by deter-
ministic DFT (shown as a dashed red line in the figure)
and then by sDFT as a function of the number of ran-
dom vectors I (F (I)), using two types of fragment sizes:
12-molecule fragments (/f12), on the left, and larger 32-
molecule fragments (/f32) on the right. We note, that
F (I = 0) is the deterministic force felt by the molecule
in its parent fragment. In the right panel we show the
case of a parent fragment which fully encloses the marked
molecule. At I = 0 the force is already very close to the
deterministic value, indicating

∑
f Pf is an excellent ap-

proximation for P . When embedded by I > 0 stochastic
iterations, we find that fluctuations are introduced, but
the error bars (marking 95% chance that E {F (I)} al-
ways include the exact value) indicate a small bias (such
that the error is not dominated by the bias). If we re-
peat this calculation, but use small fragments which do
not encapsulate the marked molecule, the F (I = 0) is
very different from the deterministic exact force (

∑
f Pf

is a deficient approximation for P ). When embedded by
I > 0 stochastic iterations, the bias is gradually removed
as I grows, in accordance with the steady diminishing of
the bias discussed in subsection II C 4.

We may conclude from this computational experiment
that sDFT may be especially useful for studying chemical
processes in small subsystems which can be encapsulated
in fragments. Without using fragments, this is also pos-
sible an increase in the number of samplings I needs to
be employed in order to remove the bias.

IV. SUMMARY AND DISCUSSION

The sDFT approach has been used in various means
and for a selection of applications [38–42, 61]. The com-
mon thread for all the previous sDFT works was its
formulation using an orthogonal basis (grids or plane-
waves representation). In this review, we have focused
on studying sDFT in the perspective of a local non-
orthogonal basis-set. One advantage of the localized
basis-set method is that even for large systems the de-
terministic calculation can still be performed allowing to
study in detail errors and their dependence on system
size.

The sDFT theory was described using three stages,
starting from the standard basis-set formulation of DFT,
leading to cubic scaling. Next, we developed a determin-
istic trace-based calculation, exploiting the sparsity of
the Fock and overlap matrices, which lead to a quadratic
approach but remained numerically accurate. Finally,

came the sDFT which uses stochastic sampling to eval-
uate the trace-based calculations, thereby lowering the
scaling to linear. The price to pay is the introduction
of statistical errors, which one can mitigate by increasing
the sampling rate. In order to study and demonstrate the
sDFT properties, we developed a basis-set DFT approach
using an auxiliary grid for constructing the Hartree and
exchange-correlation matrices. Based on this code we
also developed the stochastic sDFT implementation. We
also developed a basis-set-based fragment method and
tested its utility

Using the code, we analyzed the statistical errors asso-
ciated with the stochastic calculations and their depen-
dence on the number of stochastic samples I, the sys-
tem size, N (one can take the number of electrons Ne
or the basis-set size K as N), and the fragment size.
As in previous sDFT papers, the results demonstrated
a I−1/2 and N−1/2 dependence of the statistical fluctua-
tions. Furthermore, we were able to explore the nature of
the systematic errors in the sDFT calculation. The bias
errors in stochastic methods, have been discussed before
in [41, 83]. In sDFT we show that they do not grow with
system size and that they decay as I−1. We also devel-
oped an analytical model to explain these observations.

It has also been shown that using fragments the
noise in the results can be significantly reduced reach-
ing a regime where the statistical fluctuations are the
dominating contributions to the error (rather than the
bias). These conclusions are in line with previous stud-
ies [39, 40, 84], By implementing the fragments we were
able to calculate other observables (such as the density
of states, or forces) in a much more accurate fashion for
a very similar cost.

We demonstrated that our sDFT implementation dis-
plays system-size linear-scaling CPU time (Figure 5) and
that it is efficacious in parallel architectures (Figure 6).
Indeed, it seems to reach its full utility in CPU-abundant
architectures, suggesting it may be suitable for Exascale
computing.

Future work in the sDFT implementation is required
for speeding up the calculations on each node, this can be
achieved by shared-memory or GPU parallelization. Fur-
ther development is also needed for improved fragments
which will reduce the variance and bias errors as well as
reduce the number of SCF iterations. Finally, as men-
tioned above, using the sDFT code to drive a Langevin
sampling of the nuclear configurations [40] will allow us
to compute observables related to the thermal-nuclear
structure of the molecular systems.
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Figure 9. The force on a marked water molecule in (H2O)237 (red dashed line is the deterministic DFT value) calculated as
−δE/δx where δE is the energy difference between two positions of the molecule displaced by a distance δx = 0.05a0. On the
left (right) panel we present /f12 (/f32) results. The arrow points to the force F (I = 0) (the deterministic force on the molecule
when in the parent fragment). The “error bars” are 95% confidence intervals for E {F (I)}. These results were calculated using
the STO-3G basis-set within the LDA.

Basic Energy Sciences of the United States Department
of Energy under Contract No. DE-AC02-05CH11232.

∗ These authors contributed equally
† eran.rabani@berkeley.edu
‡ dxn@ucla.edu
§ roi.baer@huji.ac.il

[1] L. Ratcliff, Optical absorption spectra calculated using
linear-scaling density-functional theory (Springer Heidel-
berg, 2013).

[2] T. Tsuneda, Density functional theory in quantum chem-
istry (Springer, 2014).

[3] J. Morin and J. M. Pelletier, Density Functional The-
ory: Principles, Applications and Analysis (Nova Science
Publishers, Incorporated, 2013).

[4] E. Engel and R. M. Dreizler, Density functional theory:
an advanced course (Springer Science & Business Media,
2011).

[5] F. Graziani, M. P. Desjarlais, R. Redmer, and S. B.
Trickey, Frontiers and Challenges in Warm Dense Mat-
ter, Vol. 96 (Springer Science & Business, 2014).

[6] W. T. Yang, Phys. Rev. Lett. 66, 1438 (1991).
[7] X. Li, W. Nunes, and D. Vanderbilt, Phys. Rev. B 47,

10891 (1993).
[8] P. Ordejon, D. A. Drabold, M. P. Grumbach, and R. M.

Martin, Physical Review B-Condensed Matter 48, 14646
(1993).

[9] S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122
(1994).

[10] R. W. Nunes and D. Vanderbilt, Physical Review B-
Condensed Matter 50, 17611 (1994).

[11] Y. Wang, G. M. Stocks, W. A. Shelton, D. M. C. Nichol-
son, Z. Szotek, and W. M. Temmerman, Phys. Rev. Lett.
75, 2867 (1995).

[12] E. Hernandez and M. J. Gillan, Physical Review B-
Condensed Matter 51, 10157 (1995).

[13] S. Goedecker, Journal of Computational Physics 118, 261
(1995).

[14] P. Ordejon, E. Artacho, and J. M. Soler, Physical Review
B-Condensed Matter 53, 10441 (1996).

[15] D. R. Bowler, M. Aoki, C. M. Goringe, A. P. Horsfield,
and D. G. Pettifor, Modell. Simul. Mater. Sci. Eng. 5,
199 (1997).

[16] R. Baer and M. Head-Gordon, Phys. Rev. Lett. 79, 3962
(1997).

[17] R. Baer and M. Head-Gordon, J. Chem. Phys. 107, 10003
(1997).

[18] A. H. R. Palser and D. E. Manolopoulos, Physical Review
B-Condensed Matter 58, 12704 (1998).

[19] S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
[20] G. E. Scuseria, J. Phys. Chem. A 103, 4782 (1999).
[21] G. Galli, Physica Status Solidi B-Basic Research 217,

231 (2000).
[22] S. Adhikari and R. Baer, J. Chem. Phys. 115, 11 (2001).
[23] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-

quera, P. Ordejon, and D. Sanchez-Portal, J. Phys. C
14, 2745 (2002).

[24] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C.
Payne, J. Chem. Phys. 122, 084119 (2005).

[25] M. J. Gillan, D. R. Bowler, A. S. Torralba, and
T. Miyazaki, Comput. Phys. Commun. 177, 14 (2007).

[26] C. Ochsenfeld, J. Kussmann, and D. S. Lambrecht,
“Linear-scaling methods in quantum chemistry,” in Re-
views in Computational Chemistry (Wiley-Blackwell,
2007) Chap. 1, pp. 1–82.

[27] V. Havu, V. Blum, P. Havu, and M. Scheffler, Journal
of Computational Physics 228, 8367 (2009).

[28] L. Lin, J. Lu, L. Ying, and E. Weinan, Chinese Annals
of Mathematics, Series B 30, 729 (2009).

[29] T. Ozaki, Phys. Rev. B 82, 075131 (2010).
[30] D. Bowler and T. Miyazaki, Reports on Progress in

Physics 75, 036503 (2012).



13

[31] J. E. Moussa, J. Chem. Phys. 145, 164108 (2016).
[32] L. E. Ratcliff, S. Mohr, G. Huhs, T. Deutsch, M. Masella,

and L. Genovese, Wiley Interdisciplinary Reviews: Com-
putational Molecular Science 7, e1290 (2017).

[33] W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
[34] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner,

M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert,
Physical Review B 58, 7260 (1998).

[35] B. Aradi, B. Hourahine, and T. Frauenheim, The Jour-
nal of Physical Chemistry A 111, 5678 (2007).

[36] V. V. Karasiev and S. B. Trickey, in Advances in Quan-
tum Chemistry, Vol. 71 (Elsevier, 2015) pp. 221–245.

[37] W. C. Witt, G. Beatriz, J. M. Dieterich, and E. A.
Carter, Journal of Materials Research 33, 777 (2018).

[38] R. Baer, D. Neuhauser, and E. Rabani, Phys. Rev. Lett.
111, 106402 (2013).

[39] D. Neuhauser, R. Baer, and E. Rabani, J. Chem. Phys.
141, 041102 (2014).

[40] E. Arnon, E. Rabani, D. Neuhauser, and R. Baer, J.
Chem. Phys. 146, 224111 (2017).

[41] Y. Cytter, E. Rabani, D. Neuhauser, and R. Baer, Phys.
Rev. B 97, 115207 (2018).

[42] D. Neuhauser, E. Rabani, Y. Cytter, and R. Baer, J.
Phys. Chem. A 120, 3071 (2015).

[43] D. A. Drabold and O. F. Sankey, Phys. Rev. Lett. 70,
3631 (1993).

[44] O. F. Sankey, D. A. Drabold, and A. Gibson, Phys. Rev.
B 50, 1376 (1994).

[45] L.-W. Wang, Physical Review B 49, 10154 (1994).
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