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Nonmonotonic band gap evolution in bent phosphorene nanosheets
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Nonmonotonic bending-induced changes of fundamental band gaps and quasiparticle energies are observed
for realistic nanoscale phosphorene nanosheets. Calculations using stochastic many-body perturbation theory
show that even slight curvature causes significant changes in the electronic properties. For small bending radii
(<4 nm) the band gap changes from direct to indirect. The response of phosphorene to deformation is strongly
anisotropic (different for zigzag vs armchair bending) due to an interplay of exchange and correlation effects.
Overall, our results show that fundamental band gaps of phosphorene sheets can be manipulated by as much as
0.7 eV depending on the bending direction.
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I. INTRODUCTION

Since its discovery less than a decade ago [1–3], single
layer phosphorene attracted much attention due to its unique
electronic and mechanical properties. Its fundamental band
gap (Eg) can be tuned by increasing the number of stacked
monolayers [4–6] or by chemical doping [7], and spans a
wide range of values, from Eg = 1.88 eV in single layer phos-
phorene to Eg = 0.3 eV in the bulk. The unique mechanical
properties [8] along with high room temperature mobilities
(around 1000 cm2/s V) [3] make phosphorene a promising
candidate for fabrication of next generation flexible nano-
electronics [3,9–12] nanophotonics [13], and ultrasensitive
sensors [14,15].

Understanding the interplay between the electronic and
mechanical properties is central for future technological de-
velopments. Indeed, significant progress has been made in
describing the role of strain. Density functional theory (DFT)
calculations predict a decrease in the band gap as a result
of the application of uniaxial strain, which ultimately results
in a direct-to-indirect band gap transition [16,17]. However,
DFT is not a good proxy for quasiparticle energies [18,19].
The case of bent phosphorene is even more challenging,
since investigation of bending effects naturally precludes the
use of periodic boundary conditions. In practice, bending
along a single direction requires simulations of large finite
systems. Thus so far only small systems were simulated,
for example, narrow [quasi-one-dimensional (1D)] phospho-
rene nanoribbons [20] studied with DFT, indicating charge
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localization and formation of in-gap states for extreme bend-
ing conditions (radii R < 1.3 nm). These bending scenarios
are very challenging experimentally.

Ab initio many-body perturbation theory in the GW ap-
proximation [21–23] yields accurate predictions for quasipar-
ticle energies. Its cost was prohibitive, however, so GW was
only feasible for small and medium sized systems [24,25].
Luckily, the costs are drastically reduced by a new stochastic
approach to simulating GW , labeled StochasticGW or just
sGW [26–29], which is a part of a general stochastic paradigm
[30–35]. sGW is sufficiently efficient that it is less expensive
than the underlying DFT stage, and this makes it possible to
treat systems with thousands of electrons or more [27,29]. We
employ here sGW for calculating quasiparticle (QP) energies
for simply bent phosphorene; since a periodic boundary con-
dition cannot be applied, we consider a series of large phos-
phorene nanosheets (PNS) with dimensions of 2.9 × 4.3 nm.

The PNS are subject to bending with radii between 1 μm
and 2 nm—a range that can be realized experimentally
[36,37]. Thus it is possible to directly map the evolution of
band gaps with deformation of a 2D material. We discover
here that even a small sample curvature affects the QP en-
ergies and that DFT severely underestimates the response to
bending. Further, irrespective of the direction of bending, we
find an interesting crossing of the lowest unoccupied states
leading to a change of character of the gap for radii <4 nm.
The PNS response is strongly anisotropic and is governed by
nontrivial interplay of exchange and correlation effects. Our
results predict that, under realistic conditions, the QP gap can
be manipulated solely by deformation by as much as 0.7 eV.

II. THEORY AND METHODS

Fundamental band gaps are defined as differences between
ionization potential and electron affinity, which correspond to
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quasiparticle (QP) energies of the highest occupied (εQP
H ) and

lowest unoccupied states (εQP
L ), i.e.,

Eg = ε
QP
L − ε

QP
H . (1)

While density functional theory yields a set of eigenstates and
corresponding eigenvalues, those cannot be interpreted as QP
energies [18]. Indeed, DFT eigenvalue differences severely
underestimate true band gaps [19]. A solution is to calculate
εQP through many-body perturbation theory with Kohn-Sham
(KS) DFT as a starting point [22,23,38].

KS eigenvalues (εKS) contain contributions from kinetic
energy and Hartree, ionic, and a mean field exchange-
correlation (xc) potential energies. The QP energy is obtained
by replacing the xc term (vxc) by exchange (�X ) and polariza-
tion self-energies (�P):

εQP = εKS − vxc + �X + �P(εQP). (2)

The exchange contribution is

�X = −
Nocc∑

j

∫∫
φ(r)φ j (r)

1

|r − r′|φ j (r′)φ(r′)dr dr′, (3)

where φ is the orbital for which εQP is evaluated and the
sum extends over all Nocc occupied states. �P is a dynamical
quantity describing the polarization of the density due the
QP. Note that Eq. (2) is a fixed point equation, where �P is
evaluated at the frequency corresponding to εQP.

The self-energy terms are computed using sGW , which, as
mentioned, scales nearly linearly with the number of electrons
and allows one to compute � for extremely large systems
with thousands of atoms [29]. While the GW approximation
should in theory be solved by a self-consistent set of Hedin’s
equations [21], it is common practice to use a one-shot
correction (G0W0), in which the self-energy is based on the
underlying KS Hamiltonian. This is, however, insufficient in
many cases [19]. We thus rely on a partially self-consistent
�̄GW0 approach [39] which is a simple postprocessing step
on top of G0W0 and yields band gaps in excellent agreement
with experiment [39].

III. RESULTS

We investigated the effects of bending on a set of phos-
phorene nanosheets derived from the experimental structure
of bulk black phosphorus [40]. PNS were constructed from
a 10 × 10 single sheet supercell passivated with hydrogen
atoms. We relaxed the interatomic positions using a reactive
force field developed for low dimensional phosphorene sys-
tems [41]. First principles geometry minimization, e.g., with
DFT, is too expensive due to the size of the system. The
relaxation was performed such that the phosphorus atoms that
are on the straight edge were fixed and the structure optimized
within the LAMMPS code [42,43].

A ground state DFT calculation was performed using a
real-space grid representation, ensuring (through the Martyna-
Tuckerman approach [44]) that the potentials are not peri-
odic. The exchange-correlation interaction was described by
the local density approximation (LDA) [45] with Troullier-
Martins pseudopotentials [46]. With a kinetic energy cutoff

FIG. 1. Phosphorene is characterized by puckered honeycomb
lattice with ridges along the armchair (x) axis. Two nearest neighbor
distances are denoted in the left panel (d1 and d2). Bending of PNS
is illustrated on the right for bending radius R = 5 nm; PNS bent
along zigzag and armchair axes are on the top denoted as (a) and
(b), respectively. Note that a plane separating the “inner” and “outer”
phosphorus atoms is on the surface of a cylinder with radius R.

of 26Eh and 0.6a0 real-space grids spacing the Kohn-Sham
eigenvalues were converged to <10 meV.

Many-body calculations were performed using the
StochasticGW code [47] with 40 000 fragmented stochastic
bases. Only quasiparticle energies were computed, while we
kept the DFT orbitals unchanged. The dynamical part of the
self-energy was computed using eight stochastic orbitals in
each stochastic sampling of �P using the random-phase ap-
proximation (i.e., time-dependent Hartree) and with a propa-
gation time of 100 atomic units. The total number of stochastic
samples was varied to reach a statistical error of �0.02 eV for
the QP energies (typically 1200 samples).

A. Planar phosphorene nanosheet

Ideal phosphorene has a puckered honeycomb structure
with two distinct in-plane directions: armchair (x) and zigzag
(y) as shown in Fig. 1. The characteristic ridges in the structure
are along the zigzag direction. Each phosphorus atom has two
nearest neighbor distances d1 and d2 constituting a ridge. In
two extreme scenarios, the bending axis is either along the
x (armchair) or y (zigzag) directions (Fig. 1), resulting in
nonuniform interatomic distances.

To focus our investigation purely on the effect of PNS
bending, we first construct an ideal phosphorene monolayer
with dimensions 4.3 × 2.9 nm along the armchair and zigzag
directions with 1,958 valence electrons. The arrangement of
the P atoms is identical to a layer of the periodic P crystal [40]
and thus our results can be compared to previous calculations
for infinite 2D systems.

We find that for a planar PNS, one-shot G0W0 predicts
a quasiparticle band gap of Eg = 2.23 ± 0.04 eV. This is
larger by ∼0.2 eV than Eg for bulk systems [4,5,48]. Self-
consistency (�̄GW0) further increases the fundamental band
gap to Eg = 2.47 ± 0.04 eV. Our �̄GW0 result overlaps a
previous study of infinite 2D sheets of phosphorene at the
G1W1 level (obtained in first iteration to self-consistency) [4]
but is larger by 0.17 eV than a similar self-consistent treatment
(GW0) for bulk [49]. The larger fundamental gap indicates
that the large PNS considered here is still slightly influenced
by quantum confinement, but to a much smaller degree than
several small systems that were previously studied by DFT
[20,50]. This shows the strength of sGW , which provides
reliable results for quasiparticle energies of extended systems.
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FIG. 2. Orbital character for the band-edge states. Simplified
overlaps of two nearest neighbors with interatomic distances d1 and
d2 are depicted separately for clarity. Identical colors in the p-orbital
lobes correspond to a bonding overlap; distinct colors depict an
antibonding overlap. The rightmost column shows details of the
orbital isosurfaces. The character of the HOMO state does not change
with bending. LUMO1 is the lowest unoccupied state for radii R �
4 nm. LUMO2 (see text for reference) has either an antibonding
px character (for R < 4 nm in zigzag bending) or mixed px + pz

character (for R < 4 nm in armchair bending).

By inspecting the nature of individual states (Fig. 2), we
find that the valence band maxima and the conduction band
minima have a pz orbital character. In a simplified picture, the
p orbitals are centered on each P atom and their hybridization
forms bonding and antibonding states. This is qualitatively
shown in the HOMO and LUMO in Fig. 2. Since bending
(discussed later) changes the orbital ordering, we denote the
lowest unoccupied state in a planar system as LUMO1, for
clarity.

Both HOMO and LUMO1 states are strongly delocalized
around the center of the PNS and extend to the edges along the
armchair (x) direction (see the left isosurfaces in Figs. 3 and
4, in the limit R → ∞). The delocalization along the armchair
direction is associated with an effective mass that is seven
times lower along the armchair direction compared to the
zigzag direction [17]. The orientation and phase of the orbitals
do not change markedly when translating by a unit-cell vector
along x or y direction. This indicates that both HOMO and
LUMO1 are in phase, consistent with previous calculations
for bulk [16,17,50], supporting a direct band-gap material.

The calculations above were done for ideal sheet geome-
tries. We also studied phosphorene nanosheets with a reactive
force field which was tuned to reproduce the elastic properties
of phosphorene [41]. Relaxation affects mainly atoms at the
edge and shortens the d2 distance by 0.03 Å. As a result,
the d1 and d2 bond lengths are almost identical, leading to

FIG. 3. Top: orbital isosurfaces for bending along the zigzag
axis; the phase of the wave function is distinguished by its color.
Bottom: QP energies in zigzag bending obtained by LDA (squares)
and �̄GW0 (circles). The stochastic error of �̄GW0 for each point
is smaller than the symbol size. The HOMO state is shown in red,
LUMO1 (denoted L1) in blue, and LUMO2 (denoted L2) in black.
For simplicity, we do not distinguish LUMO1 and LUMO2 in the
DFT results, which always refer to the lowest unoccupied state. The
fundamental band gap Eg is shown for R = 2 nm and the specific
values are reproduced in Table I. Note that LUMO2 is identified for
R = 5 as the fifth state above LUMO1 (for clarity we do not depict
intermediate states). The solid lines are linear fits of the changes
of the QP energies in Table III; the dotted lines show the exchange
contribution to the changes of the QP energies. These are described
by Eq. (4) and the coefficients given in Table II.

stabilization of the px character at the expense of pz states
[5,6,16,17], signifying that the particular ordering of elec-
tronic states in phosphorene is very sensitive to the geometry.
In the next subsection, we illustrate however that while the
quasiparticle band gaps change dramatically and qualitatively
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FIG. 4. Top: orbital isosurfaces for bending along the armchair
axis. Bottom: QP energies for PNS bent along the armchair direction
obtained by LDA (squares) and �̄GW0 (circles). We only show the
lowest energy LUMO in the DFT results.

by bending, these gaps do not depend on the precise geometry
of the monolayer.

B. Bent phosphorene nanosheet

Most of the bending studies below were done with ideally
bent sheets; specifically the sheet was bent by placing it on a
surface of a cylinder with radius R as illustrated in Fig. 1. The
plane separating the “inner” and “outer” phosphorus atoms
(along the z axis) is positioned on a surface of the cylinder. In
the latter part of this section we discuss bent sheets that are
relaxed by force fields, where again the effects of the force-
field relaxation are not large.

1. Zigzag bending

Even the slightest deformation along the zigzag direction
(the y axis of the sheet is bent; see Fig. 1) results in changes

FIG. 5. Eigenvalue and fundamental band gaps (Eg) of phos-
phorene sheets bent along the armchair (black) and zigzag (red)
directions. Bent structures for R = 2 nm are illustrated in the insets:
top for armchair bending and bottom for zigzag. Error bars show the
stochastic errors. The lines are guides for the eye.

in quasiparticle energies (Fig. 3). For large bending radii
between 1 μm and 100 nm (see inset in the bottom panel
of Fig. 3) the HOMO energy increases and the LUMO1

energy decreases with bending radius. The fundamental band
gap consequently drops by 0.10 ± 0.04 eV; this is clearly
seen in Fig. 5 which shows the evolution of Eg with 1/R.
In DFT, a qualitatively similar effect is observed though its
magnitude is ∼50% smaller. Note that for such large R the
change in the atomic positions is rather small, <0.2%. This
drop in Eg is accompanied by left-right symmetry breaking
(along the y axis) that allows the HOMO and LUMO1 or-
bitals to shift towards the edges, as discussed in the next
section.

If the bending radius is further decreased (100 nm > R >

4 nm), the HOMO and LUMO1 states gradually shift even
more towards opposite edges parallel to the bending axis but
remain extended along the armchair direction (Fig. 3). The
energies of both states depend nearly linearly on the inverse
bending radius as shown in the bottom panel of Fig. 3. The
HOMO QP energy decreases with a slope of −0.71 eV nm,
but LUMO1 increases with a slope of 1.05 eV nm. As a result,
the fundamental band gap opens up with decreasing bending
radius. For R = 4 nm the band gap rises to 2.82 ± 0.02 eV,
significantly larger than the band gap for planar PNS (2.47 ±
0.04 eV), as shown in Fig. 5.

DFT gaps also depend on the bending radius, but to a
smaller degree. For HOMO and LUMO1 the slopes are only
−0.14 eV nm and 0.65 eV nm. The first number is five
times smaller than the associated �̄GW0 slope. Together, for
intermediate R the DFT eigenvalue gap changes three times
less than in �̄GW0.

For very small bending radii (<4 nm), we observe a transi-
tion in the order of LUMO1 and LUMO2. The latter is nearly
triply degenerate and becomes the lowest unoccupied orbital.
As a result, the band gap decreases with bending radius and
for R = 2 nm the band gap is Eg = 2.37 ± 0.04 eV, i.e., even
lower than the bulk value (cf. Fig. 5). By R = 2 nm, for both
DFT and �̄GW0, the zigzag-bending gap closes back to its
planar value, due to the state crossing of the LUMOs (see
Fig. 3), although the overall change of the DFT eigenvalues
as R is decreased is smaller than that of the many-body
calculation (see Fig. 5).
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At any bending radius, both HOMO and LUMO1 retain
their pz character. Similarly, LUMO2, which is triply degener-
ate, has a px character (and, as mentioned, dips below LUMO1

when the bending radius is smaller than 4 nm).
LUMO2 is characteristically delocalized over the ridges

(i.e., along the zigzag direction). Some examples of orbital
isosurfaces (including one of the three LUMO2 states) are
shown in Fig. 3. Specifically, for the outer (dilated) surface
of the phosphorene nanosheet, the neighboring P atoms ex-
hibit antibonding px overlap. In contrast, for atoms on the
inner (contracted) surface the overlap has a bonding char-
acter. LUMO2 is localized on every other ridge along the
armchair direction, i.e., it has periodicity twice as long as
that of HOMO. This indicates that the fundamental band gap
becomes indirect. The preceding discussion and the plot in
Fig. 3 were for one of the LUMO2 states, but the two other
LUMO2 states behave similarly.

2. Armchair bending

The PNS is also sensitive to bending along the armchair
direction, as summarized in Fig. 4, but the overall trends
are quite different. Now, both HOMO and LUMO1 shift
negligibly towards the armchair edges. Unlike zigzag bending,
Eg remains practically constant till R is lower than 100 nm and
increases when the system is further bent. This is quantita-
tively shown in Fig. 5. The underlying DFT gap again slightly
decreases (by 0.04 eV).

The increase in the fundamental gap for R < 100 nm is
mainly due to a shift of the HOMO QP energy that decreases
linearly with a slope of −1.05 eV nm. In contrast, the slope
of the LDA HOMO eigenvalue is lower by ∼30%. For radii
<4 nm, we also observe a crossing of the two unoccupied
states, as was the case for zigzag bending. The shape of
LUMO2 in this armchair bending case is, however, quite
different. LUMO2 has now a mixed pz and px character and its
phase is roughly four times larger than a single unit cell, while
HOMO and LUMO1 have the same spatial periodicity as the
ionic structure. This suggests that, for highly bent systems,
the band gap is indirect. We further observe that the LUMO2

decreases slowly: �̄GW0 yields a slope of −0.66 eV nm,
which is very similar to the LDA slope of −0.71 eV nm.

For small R, Eg opens with a mild positive slope of
0.39 eV nm, mainly due to the steep decrease of the HOMO
QP energy. In contrast, the DFT eigenvalue gap remains
practically constant because both the HOMO and LUMO
eigenvalues shift nearly identically with 1/R.

Note that, for R = 2 nm, �̄GW0 yields Eg = 3.08 ±
0.02 eV, which is 0.7 eV larger than for similar zigzag bending
and 0.6 eV larger than for a planar phosphorene. For DFT, the
armchair-zigzag difference at R = 2 nm is smaller, 0.43 eV.
The QP band gaps are shown in Fig. 5 and, for selected radii,
in Table I.

3. Force-field-optimized bent structures

We have also computed band gaps for relaxed phospho-
rene nanosheets with R = 4 and 2 nm. The geometries were
relaxed, keeping fixed the positions of the edge P atoms.
As mentioned earlier, with force-fields relaxation even for
a planar (R → ∞) structure the lowest LUMO has a px

TABLE I. Fundamental band gaps for ideally planar (R → ∞)
PNS and two bent systems with radii R = 4 and 2 nm along the
zigzag and armchair axes. The stochastic error is 0.04 eV in all cases.

R → ∞ R = 4 nm R = 2 nm
LDA �̄GW0 LDA �̄GW0 LDA �̄GW0

Zigzag 0.70 2.47 0.85 2.82 0.56 2.37
Armchair 0.70 2.47 0.97 2.84 0.99 3.07

character, and bending along the zigzag direction does not
lead to state crossing. The LUMO keeps a px character, and
its energy decreases with bending radius.

In contrast, when a force-field relaxed structure is bent
along the armchair direction, the pz-type orbital becomes a
tiny bit more stable than the px one. The difference is so small
that both LUMO states are practically degenerate.

In spite of the difference in state character between the
idealized and force-field optimized structures, they both show
the same difference (0.7 eV) between the QP band gaps of
zigzag and armchair bent structure at R = 2 nm. Therefore,
the precise state ordering depends on geometrical details, but
the overall response to bending is highly anisotropic.

IV. DISCUSSION

A. Small curvatures

We now turn to analyze the results, and start with large
R. Here, the behavior described in the previous section is
remarkable. Recall that upon a tiny change of curvature in the
zigzag direction (from R → ∞ to R � 100 nm), the band gap
decreases by about 0.1 eV (Fig. 5). This is not a big change
compared with the changes at R ∼ 2–4 nm, but it occurs with
only a tiny modification of geometry.

To understand this zigzag induced 0.1 eV change, we need
to first recall that the system is highly anisotropic. Figure 3
shows that HOMO and LUMO1 are strongly confined only
along the armchair direction. This is consistent with the
highly anisotropic effective masses of electrons and holes
(0.16/0.15me and 1.24/4.92me along the armchair and zigzag
directions, respectively, for electrons/holes [17]). Even for
tiny bending (i.e., at any finite R), the HOMO and LUMO1

can easily migrate to the sides along the zigzag direction, as
shown in Fig. 3. The energy required to localize the orbitals
along the y axis is negligible due to the large effective mass
along the zigzag direction.

The DFT gap also decreases initially, but by a small
amount, which is independent of bending direction (unlike
�̄GW0 where the initial decrease is direction dependent, al-
though the decrease is quite small so that it could be meddled
due to statistical error effects). Note that the initial DFT de-
crease (at small curvatures) happens for quite a small strain—
for R = 100 nm the strain is at most 0.02%. This suggests
even a small curvature of real finite samples can somewhat
change the fundamental gaps. The system size is important
here, since previous calculations on periodic systems [17]
required a large amount of strain (higher than 1%) to achieve
a similar band gap modification.
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TABLE II. Parameters O1 and O2 extracted from a fit of ��X

to changes of the interatomic distances [Eq. (4)]; errors of the fit are
estimated from the standard deviations of �X from the linear fit.

O1 (eV nm) O2 (eV nm)

HOMO 3.22 ± 0.03 −4.63 ± 0.01
LUMO1 −4.22 ± 0.01 5.03 ± 0.01
LUMO2 (px) 2.94 ± 0.01

Big changes in the gap only occur (in both DFT and
�̄GW0) for large curvatures, discussed next.

B. Large curvatures

We now turn to large-curvature bending, with R between
100 nm and 2 nm.

The QP gaps for selected radii are shown in Table I.
The variation of Eg stems from two contributions: exchange
(�X ) and polarization (�P). The latter term contains all elec-
tronic correlation including the electrodynamic (Coulomb-
hole) term. Owing to the nature of the direct stochastic sam-
pling of �P, individual contributions to the polarization part
cannot be simply disentangled. In the rest of the discussion,
we thus distinguish only between exchange and (overall)
polarization.

Exchange is in general larger, but we find many cases
where the polarization is almost as big in magnitude. To
analyze the size of the two terms, we fit the exchange-only
contribution by a tight-binding-like expression:

�(�X ) � O1�

(
1

d1

)
+ O2�

(
1

d2

)
. (4)

Here, O1 and O2 are fitted parameters, while d1 and d2 are
the average interatomic distances and � refers to the change
relative to the planar structure.

Due to the finite thickness of a single PNS, atoms on the
“outside” and “inside” experience slightly different curvature
and hence the interatomic distances vary. This is reflected in
Eq. (4) by considering an average interatomic distance. Upon
bending, the average distances increase as the dilatation of the
outer-surface distances is larger than the compression of the
inner surface ones, so 1/d decreases. For armchair bending
both d1 and d2 change (the former about 10 times as much as
the latter); for the zigzag bending only d1 changes [51].

In our model [Eq. (4)], the bonding orbitals stabilize �X :
they have a negative value of O1,2 and upon shortening of
interatomic distances [i.e., when �(1/d1,2) > 0] the exchange
self-energy becomes more negative [i.e., �(�X ) < 0]. In con-
trast, the antibonding orbitals destabilize the QP energy as the
atoms become closer, i.e., they are associated with positive
values of O1,2.

Table II contains the fitted O1,2 coefficients for the HOMO,
LUMO1 and LUMO2 (the latter for zigzag bending during
which LUMO2 has a px character). Note the reverse signs of
O1 and O2 for HOMO and LUMO1 (first two rows of Table II).
The opposite signs indicate distinct bonding/antibonding
characters along d1 and d2 for the two band-edge states. As
mentioned in the previous paragraph, bending causes (on

TABLE III. Selected slopes (with respect to 1/R) of the QP
energies for several band-edge states; errors are estimated from
the standard deviations of εQP from the linear fit. Slopes of the
exchange self-energy are calculated from Eq. (4) using parameters
from Table II.

��X
�(1/R) (eV nm) �εQP

�(1/R) (eV nm)
Zigzag Armchair Zigzag Armchair

HOMO −1.67 −1.24 −0.71 ± 0.02 −1.05 ± 0.05
LUMO1 2.07 1.20 1.05 ± 0.06 0.40 ± 0.10
LUMO2 (px) −1.54 −2.91 ± 0.07
LUMO2 (px+z) −0.66 ± 0.03

average) d1 to increase much more than d2, i.e., the O2

contribution results in smaller quantitative changes.
During bending along both directions, HOMO becomes

less destabilized by the “antibonding interaction” along d1 (O1

term in Table II) and its energy decreases. In contrast, the
energy of LUMO1 increases since the “bonding interaction”
(characterized by O1) is getting smaller.

In bending along the armchair direction, this
decrease/increase of the HOMO/LUMO1 energy is
counteracted by contributions from O2. However, zigzag
bending does not affect d2, so ��X shows much higher
slopes for both HOMO and LUMO1.

The overall change of the QP energy (�εQP) with the
curvature (1/R) is smaller than the change of �X as shown
in Table III and illustrated in Figs. 3 and 4. This is because of
partial cancellation of ��X by the changes in �P, which in
all cases studied raises the QP energy [52].

A similar consideration applies also to the LUMO2 states
which have distinct character for bending along the zigzag
and armchair axes. In the first case, LUMO2 has an overall
antibonding px character [53], but we note that ��X /�( 1

R )
significantly underestimates the variation of εQP (by ∼50%
as shown in Table III and Figs. 3 and 4). The remaining part
stems from the changes in the Hartree and external potential
energies.

For bending along the armchair direction, LUMO2 has a
mixed pz and px bonding character. Due to an increase of
d1 and d2 with 1/R, �X increases (i.e., destabilizes LUMO2)
with a slope of 0.12 eV nm. This is similar to what happens
with LUMO1 (but the change is much smaller). This exchange
effect is counterbalanced by large changes in �P and the
electrostatic potential. The LUMO2 QP energy thus slightly
decreases with energy.

Hence the behavior of the LUMO2 states for bending along
the zigzag and armchair axes has a different origin. While
in the first case (zigzag bending), it is qualitatively given
by variation of �X , the response to bending in the armchair
direction is governed by correlations and electrostatic effects.
Combined, this leads to a very anisotropic response of the QP
energies (and fundamental gaps) to bending.

V. CONCLUSIONS

Ab initio many-body perturbation theory was used here to
study bending-induced changes of εQP and band gaps in PNS.
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Extremely large PNSs containing 1958 valence electrons were
studied for bending radii ranging between 1 μm and 2 nm
along the armchair and zigzag directions. LDA-based DFT
has a weaker response to bending than many-body perturba-
tion theory, mostly due to the different response of the LUMO
states to curvature.

Bending along the zigzag direction shows changes in the
QP energies even for very small curvatures (which correspond
to strains �1%) and a band gap decrease for R > 100 nm.
This effect was not observed in the armchair direction (or
is below the resolution of the stochastic method). Sample
roughness leading to slight distortion would thus explain
variation in experimental Eg as well as apparent in-gap states
and peaks in scanning tunneling data [48].

Bending PNS to smaller radii R < 100 nm opens the
fundamental band gap, regardless of the bending direction.
Below R ∼ 4 nm the unoccupied states reorder—for zigzag
(but not for armchair) bending the gap starts closing. This
effect is seen in both the DFT and many-body simulations,
but is stronger by 50% in the latter. The gap changes depend
on both the amount of bending and its direction. For the same
material, we predict up to a 0.7 eV difference between the
gaps at the same curvature but different bending directions.

We explained the emergence of the different response
to bending by analyzing the individual energy contributions
to the QP levels. The overall trends in the LUMOs stabil-
ity were mostly due to the static exchange terms, which
were dominated by the bonding or antibonding character
of the nearest-neighbor orbital overlaps. However, dynami-
cal screening dominates the changes in the gaps along the
armchair direction. For large zigzag deformations, the first

unoccupied state has a px antibonding character. Its energy
quickly decreases with further bending leading to a drop of Eg.
For the same bending radii along the armchair direction, the
first unoccupied state is a hybridized bonding combination of
pz and px. Due to competing exchange-correlation effects this
hybridized state only weakly depends on curvature. Therefore,
Eg keeps increasing with 1/R even for R < 4 nm for armchair
bending.

Results for relaxed bent phosphorene nanosheets corrob-
orate our prediction of LUMO reordering and strong Eg

variation depending on the bending direction. Hence bending
appears as a very efficient way to manipulate band gaps
and orbital characters in phosphorene. Due to changes in the
orbital shape and distribution, such modification could be very
useful in understanding and developing optoelectronics and
valleytronics devices [54].
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