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Efficient plane-wave approach to generalized Kohn-Sham density functional theory of solids
with mixed deterministic and stochastic exchange
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An efficient mixed deterministic and sparse-stochastic plane-wave approach is developed for periodic
generalized-Kohn-Sham density functional theory band-structure calculations with extensive k-point sampling,
for any hybrid-exchange density functional. The method works for very large elementary cells over many k
points, and we benchmark it on covalently bonded solids and molecular crystals with nonbonded interactions,
for systems of up to 33 000 atoms. Memory and CPU requirements scale quasilinearly with the number of atoms.
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I. INTRODUCTION

Generalized Kohn-Sham density functional theory (GKS-
DFT), i.e., DFT with hybrid exchange-correlation (XC)
functionals that include exact exchange, is now a cornerstone
of electronic structure methods as such functionals reduce
the self-interaction error of local and semilocal DFT for
both solids and molecules [1–3]. These functionals, partic-
ularly screened hybrids that separate short- and long-range
exchange [4], capture the fundamental physics in both classes
of systems [5–7]. Tuned hybrids control the balance between
short- and long-range exchange through a range-separation
parameter γ , which is commonly obtained through either
empirical fitting or first-principles calculation, e.g., by enforc-
ing Koopmans’ theorem [8]. For solids, short-range screened
hybrids such as the Heyd-Scuseria-Ernzerhof (HSE06) hy-
brid functional produce lattice constants in good agreement
with experiment for both semiconductors and insulators,
while also yielding reliable band gaps for semiconductors
[9–12]. Another commonly used functional, the Perdew-
Burke-Ernzerhof (PBE0) global hybrid, uses a fixed fraction
of exact exchange chosen based on perturbation theory ar-
guments [13,14]. For molecules, long-range corrected (LC)
hybrids enable proper description of charge-transfer and
excitonic effects [4,15]. Additionally, dielectric-dependent
hybrids have been successfully applied [16–21].

Exact exchange scales usually quadratically with the num-
ber of k points Nk . Many approaches have been developed to
reduce the cost of evaluating exact exchange in both finite
and extended systems [22–28]. However, efficient treatment
of global and long-range hybrids that include a G = 0 sin-
gular part of the exchange kernel remains a challenge as a
larger k-point mesh is required to converge observables to the
thermodynamic limit.

In this article, we develop an efficient reciprocal-space
plane-wave (PW) implementation of GKS-DFT. A cheap and
accurate construction of the k-dependent exchange matrix is
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achieved for both small and very large unit cells. We intro-
duce a general fitting procedure that uses the (semi)local-DFT
wave functions sampled at the Brillouin zone center (k = 0,
the � point) as a basis for the true k-dependent molecular
orbitals (MOs) required for evaluating exact exchange. Then,
to enable GKS-DFT calculations with dense k-point sampling
we implement a mixed deterministic and sparse-stochastic
approach, splitting the exchange kernel into low- and high-
momentum components [29].

The starting point is a GKS-Hamiltonian

H = K + VeN + vH + X + vxc, (1)

with the usual kinetic, nuclear, and Hartree terms; X is the
Fock operator under a general explicit exchange kernel v,

X (r, r′) = −ρ(r, r′)v(r − r′), (2)

and vxc(r) is a (semi)local-DFT XC potential for a short-
ranged kernel |r − r′|−1 − v(r − r′). The explicit exchange
kernel is usually made from short- and long-range parts [1,4],

v(r − r′) = α + β erf(γ |r − r′|)
|r − r′| . (3)

The fraction of explicit exchange employed is dictated by
the α and β parameters, where at small interelectronic dis-
tances, i.e., r → r′, v(r − r′) = α|r − r′|−1, and at large
distances, i.e., |r − r′| → ∞, v(r − r′) = (α + β )|r − r′|−1.
Most standard hybrid functionals are available by appropri-
ate combinations of the α, β, and γ parameters. Various
functionals are used here, including global Becke-type and
range-separated hybrids that employ Fock exchange at short
range, long range, or a mixture of both (see Table I).

The sampling approach of the present work exploits the
differing numerical weights of the long-range (low-G) and
short-range (high-G) components of the overall Coulomb ker-
nel, |r − r′|−1. This is illustrated for the explicit exchange,
Eq. (3), by working in Fourier space,

v(G) = 4π

G2
(α + βe−G2/4γ 2

), (4)
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TABLE I. Hybrid exchange parameters per Eq. (3).

Functional α β γ (bohr−1)

BNL 0 1 0.11
CL (CAM-LDA0) 0.19 0.46 0.33
HSE06 0.25 −0.25 0.11
PBE0 0.25 0 0

where G denotes a reciprocal lattice vector. The long-
wavelength, low-G contributions carry a large numerical
weight and should be treated exactly, while the high-G parts
can become quite small and are amenable to data compression
techniques.

II. THEORY

The periodic near-gap formalism starts analogously to the
nonperiodic approach described in Refs. [29,30]. Here, low-
ercase functions and coordinates refer to the supercells, and
uppercase ones are used within a single unit (elementary)
cell. The initial step is a cheap local density approximation
(LDA) (or a general DFT for local or semilocal functional)
calculation for periodic systems on a supercell with Nk

unit cells, which yields k-space zero-order periodic MOs,
labeled |�pk〉.

The global Bloch states, φnk (r) = 1√
Nk

eikr�nk (r), are or-
thogonal on the supercell:

〈φnk|φn′k′ 〉 ≡
∫

supercell
φ∗

nk (r)φn′k′ (r)dr = δkk′δnn′ . (5)

For the same k, the periodic part of the Bloch states is ex-
panded in terms of plane waves, �nk (R) = ∑

G �nk (G)eiGR.
These uppercase functions are orthogonal within a single unit
cell,

〈�nk|�n′k〉 ≡
∫

elem. cell
�∗

nk (R)�n′k (R)dR = δnn′ . (6)

A “band” of active orbitals near the Fermi level is then
taken, and labeled as “near-gap” states. Specifically, for each
k point we divide the states into several types: Ncore (lower
valence) states [which are of course above the inner-core
states that are part of the norm-conserving pseudopotential
(NCPP)]; Nv = Nocc − Ncore upper valence; and Nc low-lying
conduction states.

The M ≡ Nv + Nc near-gap orbitals are labeled as the
MO-active space. Further, we introduce a subspace A ⊆ M,
with A ≡ Av + Ac, and Av (�Nv ) and Ac(�Nc) valence and
conduction MOs, for which exchange is calculated explicitly.
A is labeled as the exchange-active space. The effect of the
core states on the exchange is approximated as a perturbative
scissor correction, discussed later.

The GKS eigenstates on the supercell are then expanded in
terms of zero-order MOs from the same k point,

|ψik〉 =
∑

j

Ck
ji|φ jk〉, (7)

where most integer indices extend over the M active orbitals,
with a similar |�ik〉 = ∑

j Ck
ji|� jk〉 relation for a single unit

cell.
For each k, Ck is an eigenvector matrix of the k-dependent

Hamiltonian matrix,

Hk
jl ≡ 〈φ jk|H |φlk〉 ≡ hk

jl + X k
jl , (8)

where, as usual,

hk
jl = 〈� jk| (k + Ĝ)2

2
+ VeN + vH + vxc|�lk〉. (9)

Further,

X (r, r′) = −
∑
mk̄

fmk̄ψmk̄ (r)v(r − r′)ψ∗
mk̄ (r′), (10)

where the orbital occupations are introduced. The exchange
matrix elements are then in real space,

X k
jl = 〈φ jk|X |φlk〉 = −

∑
mk̄

fmk̄

∫∫
drdr′

× φ∗
jk (r)ψmk̄ (r)v(r − r′)ψ∗

mk̄ (r′)φlk (r′), (11)

where the volume integrals extend over the supercell.
For the purpose of the exchange matrix elements only, we

expand the k-dependent elementary functions in terms of the
�-point functions (see also Ref. [31])

|� jk〉 �
∑

j′
Bk

j′ j |� j′ 〉, (12)

where Bk
j′ j = 〈φ j′ |φ jk〉 and |� j′ 〉 ≡ |� j′,k=0〉. Note that not

all φ jk can be described properly, so for those that cannot
be properly accounted for, i.e., those outside the exchange-
active region, we write Bk

j′ j = δ j′ j . See Supplemental Material
(SM) [32] for further details on the basis-set expansion.

Thus, when used in the exchange part,

|� jk〉 �
∑

j′
Dk

j′ j |� j′ 〉, (13)

where Dk = CkBk . Thus, X k = (Bk )†Y kBk , where the matrix
element of Y k is

Y k
jl = − 1

N2
k

∑
mk̄m′m′′

fmkDk̄
mm′Dk̄,∗

mm′′

∫∫
drdr′

× � j (r)�m′ (r)e−i(k−k̄)(r−r′ )v(r − r′)�m′′ (r′)�l (r
′),
(14)

where the �-point wave functions are real valued. Upon
Fourier transform, the exchange matrix in the reciprocal space
reads

Y k
jl = − 1

Vs

∑
mk̄m′m′′

fmkDk̄
mm′Dk̄,∗

mm′′

×
∑

G

〈� j�m′ |G〉v(G + k − k̄)〈G|�m′′�l〉, (15)

where Vs is the supercell volume. The momentum-space rep-
resentation is readily shown to be

Y k
jl = −

∑
ik̄G

z∗
jGik̄zlGik̄v(G + k − k̄), (16)
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with rotated pair densities

zlGik̄ =
√

fik̄

Vs

∑
t

〈G|�l�t 〉Dk̄,∗
t i , (17)

and projections

〈G|�l�t 〉 ≡
∫

elem. cell
�l (R)�t (R)e−iGRdR, (18)

and the exchange kernel is

v(G + k − k̄) ≡
∫

supercell
v(r)e−i(G+k−k̄)rdr. (19)

For G → 0, v in Eq.(19) could be singular, so we use
a variant of the well-known Brillouin-supercell averaging
[33,34]. For small arguments, we replace v(G + k − k̄) with a
modified potential:

v̄(G + k − k̄) =
∫

θb(p)v(G + k − k̄ + p)d p∫
θb(p)d p

, (20)

where θb(p) is the Brillouin θ function, for an orthorhombic
lattice with a cell size of Lx · Ly · Lz:

θb(p) = θ

(
π

Lx
− |px|

)
θ

(
π

Ly
− |py|

)
θ

(
π

Lz
− |pz|

)
. (21)

The integral is obtained via a Monte Carlo procedure, for
smaller |G + k − k̄|, more sampling points are used. For all
simulations, 2 million Monte Carlo points are used, and we
could easily use more points to reduce the stochastic error
further.

Next, we split the summation over reciprocal lattice vectors
to two parts, low and high: Y k

pq = Y L,k
pq + Y H,k

pq . The numerical
parameter separating low from high momenta, labeled G0, is
later varied to ensure convergence. For low G, the summation
is evaluated by explicitly applying Eq. (16) with |G| < G0.
For high |G|, we approximate

v(G + k − k̄) � v(G), |G| > G0. (22)

Then Y H,k
jl � Y H

jl , i.e., independent of wave vector k. This can
be written as

Y H
jl � − 1

Vs

∑
i,k̄,t,s,|G|>G0

〈� j�t |G〉〈G|�s�l〉Dk̄∗
si Dk̄

t iv(G).

(23)
This approximation removes the need to Fourier transform
v(r) for all possible combinations of (k, k̄) per Eq. (19) in
the high-G space.

The next step is the fragmented-stochastic-exchange for-
mulation of Ref. [29],∑

G

|G〉v(G)〈G| = 1

Nξ

∑
ξ

|ξ 〉〈ξ |, (24)

where ξ is a fragmented-stochastic basis, here made of a
set of Nξ short random vectors in the high-G space. We
define a projection P(G) that randomly falls on a strip of
the high-G grid, which is randomly positive or negative
within the strip and zero elsewhere. Combining the projector
with the Coulomb kernel yields the basis vectors, 〈G|ξ 〉 =
±

√
N
L v(G)P(G), where N is the length of the reciprocal-space

FIG. 1. Unit cells for systems studied.

grid being sampled and L ∼ O(N/Nξ ) is the length of the
random vector.

The stochastic resolution of the identity above is formally
exact only in the limit Nξ → ∞, but in practice, the results
converge rapidly, so Nξ ∼ 500 is generally sufficient. Equa-
tion (24) yields

Y H
jl � −

∑
ik̄ξ

u∗
jξ ik̄ulξ ik̄, (25)

with

ulξ ik̄ =
√

fik̄

∑
t

〈ξ |φlφt 〉Dk̄,∗
t i . (26)

Note that Y L scales quadratically with the number of k
points, while Y H scales only linearly. It is therefore beneficial
numerically to use a lower G0, so that only a few G vectors
contribute to Y L. We show later that the value of G0 can be
quite small, so that most G vectors can be represented stochas-
tically with the Nξ auxiliary basis, which does not grow with
elementary cell size or number of k-points.

Equations (11)–(26) give the complete expressions for the
X matrix. A technical point is that due to linear dependence
considerations, the B matrix is not square; only � jk orbitals
in the small exchange-active space A are expanded, while
their basis set, i.e., � j′ orbitals [Eq. (12)], encompasses the
full active space M. For orbitals outside the exchange-active
region, we could use a scissorslike expression,

X k
jl = δ jlX

k
j̄ j̄, (27)

for j and l in the lower Nv − Av space, where j̄ is the lowest
orbital in the exchange-active region A, and analogously for
orbitals in the Nc − Ac space. An alternative would be to
include the contribution of orbitals outside the A subspace
stochastically [35].

III. RESULTS AND DISCUSSION

The hybrid-exchange approach presented here is bench-
marked on various orthorhombic lattices, including traditional
covalently bonded diamond and silicon (Si), and molecular
crystals with π -π interactions: urea and 1,4-bis-(2-methyl-
phenyl)-benzene (C20H18) [36–38]. The C20H18 unit cell
consists of π -stacked layers of benzene rings arranged in a
staggered geometry (see Fig. 1).
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TABLE II. Band gaps (eV) for Si lattices as a function of the
k-point grid size for several functionals.

k-point sampling BNL CL HSE06 PBE0

1 × 1 × 1 3.73 4.87 1.77 2.50
2 × 2 × 2 3.64 4.69 1.78 2.46
3 × 3 × 3 3.88 4.58 1.84 2.57
4 × 4 × 4 3.51 4.00 1.69 2.29
5 × 5 × 5 3.79 4.18 1.74 2.48
6 × 6 × 6 3.58 3.89 1.70 2.40
8 × 8 × 8 3.61 3.78 1.73 2.44
10 × 10 × 10 3.56 3.72 1.72 2.45

LDA-DFT calculations on uniform k grids are performed
using Troullier-Martins NCPPs and a kinetic-energy cutoff of
25 a.u. [39,40]. These LDA simulations provide k-dependent
energies (converged to 10−8 a.u.) and one-electron wave
functions � jk that serve as the initial basis. To ensure basis-
set convergence, the LDA-DFT calculations use at least five
times more conduction than valence bands. All calculations
are performed on standard 128-core AMD Rome processors.
LDA simulations are parallelized over grid points, while the
present method is parallelized over both grid points and wave
functions.

Electronic band gaps, i.e., the difference between the
conduction-band minimum (CBM) and valence-band max-
imum (VBM), are calculated with several hybrid func-
tionals: the Baer-Neuhauser-Livshits (BNL) functional [15],
Coulomb-attenuated method-local density approximation
(CAM-LDA0) (CL) [41], HSE06, and PBE0. Table I shows
the standard tabulated range-separation parameters used for
CAM-LDA0 and HSE06. We use here the HSE06 value of
γ = 0.11 bohr−1 for the BNL long-range hybrid. The choice
of hybrid functional will affect the rate of band-gap con-
vergence with respect to the number of k points. The BNL
and CAM-LDA0 range-separated hybrids are long ranged and
exhibit slow convergence due to the G � 0 components of
the exchange kernel. In contrast, HSE06 is short ranged and
exhibits a faster rate of convergence.

We first show results for small cell-size systems, specif-
ically Si (additional data for diamond and urea is given in
the SM [32]). For small systems, the exchange-active space A
includes all valence orbitals and a large number of conduction
orbitals. The cutoff parameter G0 is converged so that for all
functionals, the band gaps agree within 10 meV with a fully
deterministic calculation; G0 = 3 a.u. is found sufficient for
Si and diamond, and G0 = 2 a.u. for urea. These are small
values, so the number of G vectors that need to be treated
exactly per Eq. (16) is only 6.1%, 1.8%, and 1.7% of the
respective G spaces.

Table II shows band gaps for Si, and as is well known,
for global and long-range functionals, a large number of k
points is needed for convergence. Figure 2(a) shows the band
structure of Si on a 10 × 10 × 10 k grid with the long-range
BNL XC functional. Band structures for other systems as well
as comparisons to traditional nonstochastic methods [42] are
provided in the SM (see also Refs. [43,44] therein) [32].

FIG. 2. Band structures of (a) Si on a 10 × 10 × 10 k grid and
(b) C20H18 on a 6 × 6 × 6 k grid via the BNL functional. Special
symmetry points are based on an orthorhombic lattice.

We next move to a larger system, C20H18, with 152 atoms
within a single unit cell. Figure 1 shows the unit cell, and Fig-
ure 2(b) provides the band structure including 32 832 atoms
using the BNL long-range hybrid. Table III provides band
gaps for various functionals as a function of the number of
k points. Due to the system’s size, the molecular-orbital and
exchange-active spaces are reduced to only include bands
nearest to the Fermi level: Nv = 100, Nc = 200, Av = 50, and
Ac = 100. Selecting Nv, Av < Nocc (where Nocc is the number
of occupied valence bands) gives an error in the band gap
of roughly 200 meV; this could be remedied by a stochastic
inclusion of the lower valence states, as in Ref. [35]. The
results are mostly insensitive to Ac, the number of exchange-
active conduction bands, as long as a sufficiently large Nc

is used. Further, G0 = 1 a.u. here, so only 0.2% of the G
vectors are treated deterministically in the low-G space while
the remaining high-G vectors are stochastically sampled with
Nξ = 5000 sparse-stochastic vectors.

We now move to discuss the computational cost of the
new approach. Figure 3(a) shows the CPU scaling with the
number of k points for urea using the PBE0 hybrid. The
scaling with Nk remains quadratic for the fully deterministic
calculation (blue line), while the mixed deterministic and
sparse-stochastic (red line) approach scales subquadratically
with a much smaller prefactor. For example, the stochastic
approach requires just 1 core hour per SCF iteration for a

TABLE III. Band gaps (eV) for C20H18 (152-atom unit cell) for
various functionals as a function of the number of k points.

k-point sampling BNL CL HSE06 PBE0

1 × 1 × 1 6.68 7.65 4.75 5.49
2 × 2 × 2 6.31 6.90 4.37 5.04
3 × 3 × 3 6.13 6.52 4.18 4.81
4 × 4 × 4 5.91 6.38 4.15 4.75
5 × 5 × 5 5.86 6.45 4.30 4.86
6 × 6 × 6 5.74 6.32 4.22 4.78
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FIG. 3. CPU core hours per SCF vs number of k points (Nk) on a
logarithmic scale for (a) urea and (b) C20H18. For C20H18, maximum
RAM usage is shown as a function of Nk .

10 × 10 × 10 k grid, whereas a deterministic calculation de-
mands approximately 2000 core hours per SCF.

Figure 3(b) shows the effective scaling of the method for
C20H18. In addition to CPU scaling, the maximum RAM re-
quired is provided. The linear scaling of RAM requirements
with the number of k points is substantially lower than a
conventional PW implementation of general hybrid exchange.

Figure 4 shows the exponential convergence of the band
gaps with the cubed root of the number of k points (N1/3

k ) for
urea and C20H18, respectively. This allows us to extrapolate to
the thermodynamic limit, i.e., Nk → ∞, with modest compu-
tational resources.

The stochastic error associated with sampling the high-G
exchange (i.e., Y H ) was studied for urea using the CAM-
LDA0 and PBE0 hybrid functionals. With Nξ = 5000, the
sample standard deviation of the �-point band gap is small,
below 10 meV. The error becomes less than 2 meV for band
gaps calculated on larger k grids. The size of the sparse-
stochastic basis could be reduced to even Nξ = 500, as the
(tiny) stochastic error stems primarily from the Monte Carlo
sampling of the G � 0 parts of the exchange kernel.

IV. CONCLUSIONS

In conclusion, we developed and benchmarked a grid-
based PW implementation of GKS-DFT for periodic systems.
The method scales gently with k points and provides
significant speedups to deterministic calculations. This ap-
proach enables extensive k-point sampling for DFT with any
hybrid-exchange functional, including long-range hybrids.
The GKS-DFT energies converge with less than ten SCF

FIG. 4. Single-exponential fits of band gaps against the cubed
root of the number of k points (N1/3

k ) for (a) urea and (b) C20H18.

iterations. This makes the present method appealing for band-
structure calculations and post-DFT excited-state approaches
that require GKS energies and wave functions as inputs.

Future work will extend the static periodic GKS-DFT for-
malism to linear-response time-dependent density functional
theory (TD-DFT) for the optical absorption spectra of solids.
In the solid state, inclusion of a long-range Coulomb tail
in the exchange kernel is required to produce excitonic ef-
fects and spectra in good agreement with experiment [45,46].
In addition, this approach would be used to solve the GW-
Bethe-Salpeter equation in extended systems where extensive
k-point sampling is essential for accurate prediction of exciton
binding energies [47].
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