Lecture Notes for Chem 110A
Daniel Neuhauser, UCLA

First Part:

Chemical Thermodynamics:
Introduction and Summary

The final goals of Chemical Thermodynamics are:

When several substances mix and/or react, what general rules can we place on their (i)
concentrations, and (ii) the amount of energy that can be extracted from their reaction,
or, alternately, is needed to derive their reaction.

The whole course and these lecture notes (based mostly on Chapters 1-7, 9, 12 in the book of Ira
Levine, Physical Chemistry) develop the theory leading to these results, and its interpretation.
(With a few extra lectures on Statistical Mechanics, in the much-shorter 2" part of these
notes.)

The development must proceed slowly, going from simplified to more complicated systems. We
could have gone faster, but then we would be “stamp-collecting”, not studying. Do not let the
details, however, divert you from the main goals!

In Chapter 1 we establish the basis, by considering equations of state for the simplest system: a
single component in a single phase (typically gas). We also develop a mathematical foundation,
which will become very important later.

Chapter 2 discusses the implication of the conservation of energy, U. Two form of energy
transfer are introduced: work (ordered transfer) w and heat (disordered transfer) g. The
conservation of energy law (1% law),

U=q+w

with dwpecn = —PdV, is then elucidated in numerous examples, which have two main
purposes: (i) Demonstrate that while energy is a state function (path independent), w and q
separately are path-dependent; (ii) and show that one can, using laboratory measurements,
extract U and the enthalpy, H = U + PV.

The partial derivatives introduced in Chapter 1 are then shown to have physical meanings — the
heat capacities, which are the amounts of heat a body absorbs for a 1K (Kelvin) rise in T under
different constraints, are shown to be the partial derivatives of H and U.

The conservation of energy is one of the two foundations of thermodynamics. It is supplemented
in Chapter 3 by the second law, which generalizes a simple observation: disorder always
increases in nature. The disorder is labeled as “entropy”, S, which is a state function. We write
the second law as



d
dSworld = % =0

where Sy 0114 18 the total world entropy.

We divide the “world” to system + environment. Only S,o1q must increase or at least non-
decrease. Thus, for a given system, the entropy of the system, S, may decrease if Sepvironment
increases sufficiently.

In Chapter 3 we study this law and show how S can be estimated in different circumstances.
This will also lead to the understating of the efficiency and performance of engines and air-
conditions and heat-pumps.

For example, we’ll understand how a heat pump can input SkW (kilo-Watt) to a room while only
taking 1kW from an electrical outlet, by removing 4kW from the cold ground and depositing that
to the (hotter) room.

The formal connection between thermodynamics and chemistry is outlined in Chapter 4. A few
simple mathematical manipulations convert the second law (dSy,or1q = 0) to an equation for the

system variables only, dS > d?q, which yields a rule:

The Gibbs Free energy, G = H — ST, will be at a minimum for systems at constant T and
P if no electrical energy is given or taken.

Then we use this rule to derive a very powerful theorem:

For a fixed T and P, a substance is in equilibrium between two phases (say gas and
liquid) if, and only if, the chemical potential of the substance in one phase is the same as
in the other phase, 1; = u,, where the chemical potential i is defined in Chapter 4 in
terms of the Gibbs Free energy,
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This statement is then extended by a more general statement which is valid for a reacting system
in equilibrium, ¥, v;u; = 0, where “J” stands for each product or reactant species, and v; are the
stoichiometric coefficients (positive for products, negative for reactants).

U

Together, these two statements conclude the first half of the course, the “physical
thermodynamics” part.

In the 2" part, Chapter 5 and beyond, we study the implications and applications of these rules.

Chapter 5 is essentially a “list of definitions” chapter with a short review of familiar concepts,
like enthalpy of reaction and enthalpy of formation, concepts which intimately tie to measurable
quantities.

Chapter 6 derives the simple pressure dependence of the chemical potential and uses the
relation };; v;u; = 0, to derive the equilibrium constant for a reacting ideal gas (which you
learned without proof in first-year chem.). The temperature dependence of the chemical
potential is then used to derive the corresponding dependence of the equilibrium constant on T.

We’ll then understand qualitatively the trends of the partial pressures (and densities) with
changing total pressure or changing temperature, using:

LeChatelier’s principle — a system partially fights any changes induced externally.

Chapter 7 starts tackling the problem of several phases at once.



(1) Based on the concept of chemical potential as introduced in Chapter 4, we find
what is the number of “independent variables” that can be changed without
changes the number of phases

E.g., when there’s equilibrium between vapor and liquid water — such as when
we put some water in a closed rigid water bottle with room for vapor — then
when we change one variable, e.g., the temperature, the rest (in this case the
pressure of the vapor) is automatically changing.

We will elucidate the relation between the number of “intensive variables” (composition
in each phase, as well as pressure and temperature) and the number of phases.

(i)  We then turn from the general case to study phase equilibrium for a single species
(one-component) system and find the shape of the P(T') phase boundary line,
for, e.g., the vapor-liquid and liquid-solid separating lines; again, this will be
simply based on the equality of the chemical potential.

Chapter 9 continues elucidating the several-phases case, but now we consider the chemically
important problem of mixed liquids. The mixing increases the disorder, thereby stabilizing the
mixture (formally: decreasing the chemical potential).

We also introduce concepts (partial molar volumes) that are important for the next chapter.

Chapter 12 concludes our study of multi-phase systems, in a few parts (presented in a different
order from the book):

First, we continue with our discussion from Chapter 9 and derive, for two ideal liquids, the
phase diagram, with two-phase and single-phase regions. We will also briefly study non-
ideal liquids, including partially immiscible liquids. As usual, all our discussion will be
obtainable or expressed in terms of the chemical potential.

Then we’ll review a part which in the book is in Chapter 9. Specifically, to obtain
quantitative results on the chemical potential, at least for ideal liquids, we do a trick: we
first consider mixed liquids in equilibrium with their vapors, then use the chemical potentials

of the vapors to infer the chemical potential for the liquids, and then change the pressure so
only liquids remain!

Finally we derive, analytically, colligative properties (properties that depend only on the
presence of a solute and not on its exact identity — beyond some general features); using
again the concept of chemical potential, these colligative properties lead to an increased
stability of the liquid if the solute has a low vapor pressure (e.g., for a solute like salt, or
sugar) — e.g., boiling point increase, lower freezing temperature, and osmotic pressure.

To conclude: by the end of this first (and main) part of the course you should be able to
understand general laws on how compounds mix and react based on a simple concept, the
chemical potential. All of chemistry — organic reactions, biochemistry, geochemistry, etc.— can
then be understood based on this basis.

Note: these notes should only supplement your reading and class attendance, not replace them!



Chemical Thermodynamics in half a page:

e [’law: dU = dq + dw, AWmech = —P dV
State functions vs. path dependent functions.

e 2" ]aw: disorder increases, dSy,;y = 0. S: state function. Efficiency and coefficient-of
performance (c.0.p.)

o dSuniv=0=4dS — dT—q - G = H — ST not-increasing for fixed P, T. Further:

—AG = maximum work out (for fixed P, T).

aG
anA‘]

e Substance A in two coexisting phases I Il pa; = pay, Has =

AGO

®  [gas = Hgas + RTIn (%) 2> K(T) =e rT

e Thephaserule: f =2+ c —p.

e Raul’slaw: Py, = x,(1)P; (“*” means pure). Henry’s law.

Pa
Py

e Solutions u, = u4(T) + RT In—= -> colligative properties,

ac° i P_:’ (gases)
RT = ot .=
€ a4 @ x; (solute,solvent,ideal solution)
1 (solids)
(with the caveat that for a non — ideal solute the reference G is changed)

Greek letters

a: alpha

[: beta

y, [': gamma

0, A: delta

€, € : epsilon

¢, @, ®:phi

n: eta. (do not confuse with n)

K: kappa.

A: lambda

W: mu

v : nu (do not confuse with v, i.e., v)
Y, W: psi

0: omicron, used to label°C degree.
m, I1: pi

0: theta

w: omega (don’t confuse with w)
¢&: xi (do not confuse with ().

(: zeta (do not confuse with J).



I. Warmup, math

1.1) Preliminaries

Thermodynamics: deals with macroscopic systems in equilibrium or near-equilibrium. A single
species in a single phase (gas, liquid, solid) is characterized by

P, TV, n= N
Navogadro
where
Navogadro~6 * 107,
Of these:

e P, T are intensive: e.g., when we double the system in size (and double the particle
number) then P, T are unchanged.
e V,n are extensive, i.e., proportional to the system size. We therefore often use the molar

Voo ) :
volume, 1}, = —, an intensive quantity.

1.2) Units

Usually MKS: Joule, m, K, etc. (note that occasionally we’ll use cm, and for volume we’ll
usually use L = 1073m3).

It’s useful to know that

N J ]
0 — — 105 — 105 —— — 105 —_ —
P” = 1bar = 10° pascal = 10° — = 10> — 100E

and P® ~ P, ., (at sealeavel) = 1 atm =~ 1.02bar

We’ll usually round P® =~ 1 bar, i.e., round 1atm = 1 bar.

The temperature T is always measured in Kelvin: T(K) = T(°C) + 273.15.
Room temperature (25°C=298.15K) will be usually rounded to T oom =300K

1.3) Equation of state

For every specific system there is an equation of state relating (in our case) P, T,V and n (or if
you prefer: P, T and V).

Example: ideal gases law
J

PV = nRT R ~ 8.31 :
n K mol

Note: PV = nRT is valid only for rarified gases. This gas law can be derived if we assume that
gas particles are very small, and do not interact (and you may have seen the derivation in
14B/20B).
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Shortcuts: Henceforth we’ll approximate RT,,om = 8.31 ool 300K = 2493ﬁ as

J
RTroom == ZSOOM
Ea UO\J[\‘CW) Q Crte
o aoo"

Example for using the gas law: molar volume of air at room pressure and temperature.

Recall that we approximate always room pressure as 1bar=100 %

Therefore, the molar volume of an ideal gas is:

J
vV _ RTwoom _ 2500551 L
= —= - -
n pe 100% mol

So a mole of an ideal gas (i.e., any rarefied gas) occupies 25 Liter at room temperature and
pressure, regardless of the gas identity.

The molar density (note that for us density refers to the number of moles per volume, not the
mass per volume) is

n 1 1 mol_004 m01_40m01

vV v, 25L L = md
One note on ideal gases: a feature of them is that the energy depends only on the temperature,
U = U(T) (for ideal gases), since it depends only on the velocity and internal energy of each
molecule. Whether molecules are closer or further apart does not matter in an ideal gas, since
they do not interact.

Word of caution: I reemphasize that you should never apply the ideal gas law to anything but
rarified gases. It is not valid for liquids, nor solids, and is only qualitative, not quantitative,
for highly compressed gasses (tens of bars and especially hundreds of bars or more).



1.4) Deviations from Ideal gas behavior

A
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In practice there are small deviations from the ideal gas law already at room pressure for gases.
These deviations, as we mentioned, get worse at higher pressures.

These deviations from the ideal-gas law are often quantified by a quantity labeled Z, defined as
7 = ﬂ
nRT
(Word of caution: we don’t have enough letters. So in statistical mechanics we use the same

symbol, Z, for something completeley different, the partition function).

For an ideal gas, Z would be 1, but in real life it deviates from 1, as the figure here! shows — it
shows Z for different gases, all at room temperature, as a function of pressure.

The behavior of Z relates to two aspects we ignored in the discussion of ideal gas: the attraction
of molecules when they are fairly close; and their strong repulsion if they are “touching”, i.e.,
too close. This is shown in the figure?

Pauli repulsion

o

Potential energy, V

Dipole-dipole attraction

Distance between atoms, r

Back to the plot of Z. Note that for H,, Z just rises with pressure. This is because there is very
little attraction between different H, molecules. The dominant effect is repulsion; and repulsion

! https://courses.lumenlearning.com/chemistryformajors/chapter/non-ideal-gas-behavior/
2 https://glossary.periodni.com/glossary.php?en=Lennard-Jones+potential
7



tends to increase the volume and pressure since molecules want to stay away from each
other.

Put differently:

Pressure is, fundamentally, how much force (per unit area) the molecules exert on a
container they are in, so:

The more repulsion there is, the more they will try to move away from each other, i.e.,
they will try to get to the container walls, i.e., repulsion increases the pressure.

On the other hand, consider CO,. Here, van der Waals attractions are strong. Attractions bring
molecule together, reducing the overall volume they occupy; they are less likely to collide
strongly with the container walls, so the pressure decreases.

So attraction reduces Z. And indeed, at 50-100 bar the pressure in COz is strongly reduced
compared with the ideal-gas law, so Z ~ 0.5.

Only at pressures of 500 bars and above (for room temperature) are the molecules in CO2 so
close that repulsion dominates, and Z > 1.

1.5) van-der-Waals (vdW) equation of state.

In the 19" century Johannes Diderik van der Waals (vdW for us) tried to come forward with a
mathematical equation that incorporates repulsion and attraction.

His final equation, “derived” below, has some useful features that are reminiscent of the
transition between gases and liquids, but it also has a non-physical feature which we’ll point
out (and “correct”).

nRT  RT . )
— =, Then he made modifications.

m

vdW started from the ideal gas equation, P =

First, gases are really not point particles — they have finite extent. Think of molecules as being
“billiard balls”, and label the volume of a mole of such “balls” as b. This “b” should essentially
be the molar volume of a liquid (see the figure).

S e. e (s3I

Origin of V,, — b in the vdW equation

Left: Molar volume of molecules, V,,. The
molecules have a finite size; the molar size,
labeled b is essentially the volume of the liquid
(right). So in the left picture the free volume
(total minus “red” molecular volume) is 1},, — b.

So the first thing vdW did was write

RT

pP=
V. —b

(first modification, due to repulson)



The second step was that he realized that the pressure would be reduced by attraction
between gas molecules. At a given molar volume, molecules tend, due to attraction, to cluster
together, and not to hit the wall as hard as they would have done without the attraction.

vdW assumed a specific density dependent factor for the reduction of pressure due to attraction:

- Viz , where a is a material-specific constant. Obviously for a weakly attracting molecule
m

a will be tiny.

Comment: to understand the form, let’s start from the sign. Attraction reduces
pressure; therefore the sign is negative.

Now to understand the dependence on V,;%: the lower the volume, the more the
particles will be in the vicinity of each other, and the more the attraction will be
important.

Specifically, if we were to reduce the volume by a factor of, say, 3, then the
molar density would rise by a factor of 3.

l.e., there will be 3 times as many particles in a volume, and each of them will
“collide” and attract 3 times as many particles as before, so the attraction effect

will be 3*3=9 times higher — exactly as the % form predicts (since if 1, is 3 times

smaller, iz is 9 times higher),
Vm

So the final vdW equation is

p= M@ final vdW equati
U =b 2 (final vdW equation)
which we can write in terms of V = nlj, also as
_ nRT an?
V-nb V%'

In practice, for room pressure the a and b corrections are typically tiny. They become important
only at high pressures. To see how small they are, consider the following example:

Example:
2 moles of air (essentially N,) in a closed chamber, at T;.4om, and volume 100L.
Calculate the pressure inside using:

e The ideal gas equation
e The vdW equation, where the parameters for N, (don’t use these parameters for other
molecules!) are

2

=14b
a ar

L
b=0.04—
mol

Answer: (note that our answer is not exactly accurate since we use a rounded-number
for R, but that’s OK).
From the ideal gas law, as we derived:



J

_ RTyom _ 2900057 ]

P = A =—100L —SOE—O.SOOObar.
2mol
The vdW equation gives
2500 1.4 bar—

_ _RT a _ mol T Al ol?
“Vp—-b V2 g L oo L L 2

m M 50— 0.04 (50m)

P = (50.04 — 0.06)% = 49.98% = 0.4998 bar

Thus the overall vdW correction in this case was only 0.0002bar, i.e., just 0.04% of the
total pressure.

Interestingly, the repulsion increased the pressure here by 0.0004 bar but the attraction
negated it by 0.0006 bar, leading to the final smaller correction. So the effects of
attraction and repulsion almost canceled each other in this case.

Since the vdW corrections are small, for “usual” gases (at room pressure, etc.) we can ignore
these corrections and assume that the gases are ideal.

1.6) Plotting the vdW picture — physical and unphysical features.

Below we show a plot® of the vdW equation and using parameters for CO,:

2
a = 3.6 bar

mol?

L
b =0.043—
mol

The plot (next page shows isotherms, i.e., lines that are each at a (different) fixed temperature.
The axes are P vs. V (really V).
The first thing to note is the weird blue line, i.e., the isotherm at 10°C. It has an unphysical

3 3
region between about V,, = 1 * 107*m3 to about I},, = 1.8 x 10~*m3 (i.e., 100;101 - 400;101 ).
In that range the vdW equation predicts that when the volume decreases the pressure

decreases too. And that’s unphysical (consider pushing a balloon — lowering the volume must
lead to a higher pressure)

A way to “fix” the incorrect region (devised by the great 19" century British scientist, Maxwell)
is to replace a portion of the blue line between points A and B, by a straight line (dashed). Then
the behavior is physical:

e For 10°C, when we start from very large molar volume, the pressure is low and the
material is all gas. The material is then compressed until we get to the volume at point B.

3 https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Van_der Waals_equation.html
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At that point, as we compress the gas even lower, the isotherm goes along the dashed
line, i.e., the volume is shrinking but the pressure does not.

Note: we will see later that that’s the correct physical behavior. What happens is
that the system will be then, in between points B and A, in a 2-phase region —
where a gas (represented by the volume at point B) coexists with a liquid
(represented by the volume at point A).

Van der Waais curves CQO,

Different isotherms (curves of constant temperature) obeying the van der Waals
equation of state, with parameters adjusted to approximately fit COx.

e Above the critical temperature (31 °C) the behavior of P vs. V is
monotonic, like an ideal gas.

e Looking at a lower temperature (10 °C), the dashed line from A to B is
drawn to replace the physically incorrect portion of the curve where as V
decreases P also decreases. This dashed line represent the liquid-vapor
transition.

e As we compress the system even further, the volume reaches that of point A, and the
system is then purely a liquid. To reach below that volume we’ll need to apply stronger
and stronger pressures.

This 2-phase behavior (same pressure over a range of volumes) is physical, that’s what
happens in reality, but of course the numbers predicted by the vdW equations, even when
we used optimal parameters a, b, will not exactly match experiment — that’s since the
vdW equation is an approximate one.

e Next, let’s talk about the behavior of the pink (magenta) line. That, at a high
temperature, looks similar to the ideal-gas equation — it is monotonic, i.e., lowering the
volume is accompanied by increased pressure (at fixed 7). In that case the transition
from “gas” to “liquid” is continuous.

11



1.7)

The most interesting case is then of the green line, which is at 31°C, which is the “critical
temperature” for COz2 for these parameters. It separates the temperatures where there’s a
liquid-vapor transition, from temperatures where the transition is continuous.

These a, b parameters that we wrote above were chosen to reproduce the
experimental critical temperature of CO,, which is experimentally indeed 31°C.

Above the critical temperature the behavior of P vs. V is monotonic (see the light-blue
and magenta lines), i.e., the gas turns continuously to liquid and there’s no pressure at
which the two phases coexist;

While for all temperatures below the critical temperature there will be a range (like the
dashed line drawn here) where liquid and gas coexist.

For water, the critical temperature is 375°C (647 K). (Much higher than for CO,,
since the attractions in water are much stronger).

What this means is that as we compress water above that temperature there will
never be a pressure where we’ll see a dense phase “liquid” and a lesser dense
“vapor” coexisting.

Below that critical temperature we’ll see vaporization, e.g., at 1bar for 100°C, at
2bar for about 120°C, and at about 210bar for temperature just below the
critical temperatures, i.e., around 373°C

We’'ll cover this in greater detail around chapter 7.

Summary of the vdW equation of state — it is useful since:

It shows you that the ideal gas law is just one of many possible eq. of states.

It is more correct at high P than the ideal gas law, but even though it is still not perfect
and not the “truth”

It shows, once we “correct” for the unphysical wiggle (in which, when P increases, V
also increases), that at high densities a liquid may form, so that liquids and gases are
really interconnected. We’ll discuss this at the end of the quarter.

It describes qualitatively the liquid-to-gas phase transition (boiling) and the fact that at
very high temperatures (above 31°C for COz, above 374°C for water) there is no
vaporization transition — when raising the pressure the vapor goes continuously to liquid.

1.8) Mathematical prelude

We’ll use a few concepts from calculus. A refresher:

Log / Ln:

For us, log will mean In, i.e., logarithm in base “e” (while log in base 10 will be denoted as

logyo

)

Integration of simple functions (of one variable)

Indefinite integrals: We’ll use

12



x? 1
fdxzx, fxdx=7, Jx‘zdxz——

x
and in general

xn+1
jx”dxz forn = —1.
n+1

Also (generally, y refers to a constant here)
J ! dx =1
. x = In(x)
f 1
e¥*dx =—e?
14

flnx dx = xIn(x) — x.

We’ll prove below the last relation.

Definite integrals: similar. E.g.,

b*> a?

b1 b
f Zdx=(nx)2 =Inb—1Ina =ln<—)
a X a

Jb y xzb
x4dx = — .
a Za 2 2

Differentiation of one-dimensional functions.

You know that:
d
e — n—1
I X nx
L o¥X — VX
I e ye
d In = 1
dx nx= X

: . d
Exercise: what is - In(yx), y const.? Answer: %

You need to remember:

d(fg) _ df . dg
dx _gdx dx

Example — use this relation to prove the expression for the integral of In x above:

dixInx —x) dx dinx dx 1
————=—1Inx+x ——=1'Inx+x-——1=Inx Q.E.D.
dx dx dx dx X

Differentials:

Say we have a function of x, labeled f(x). Often we vary the value of x by a little bit (Ax) and
want to find out what is the change of the value of f, i.e., whatis Af = f(x + Ax) — f(x).

13



If Ax is small we can use

d
Af zd—iAx

ar . o . -

where é is the derivative of f, evaluated at the “original value” (x) which we often can
calculate from other means. If Ax is tiny, this equation above is very accurate; but even if it is
just small and not tiny we can still apply it without too much error.

Example: Question — what’s the variation of pressure in a piston full of one mole of air, when,
at room temperature, the volume is varied by 20% from V = 25L to V = 20L, i.e., AV = —5L.

Exact answer

Just apply the ideal gas law for the pressures: old (labeled P) and new (labeled P, ).

NRT.oom _ 1 mol - 2500L

mol _ l_
v oL =100 [ = 1bar

P =

1 mol - ZSOOLl ]
Prow = oL mo’ _ 125 = 1.25 bar

i.e.,
AP = 0.25 bar

Alternate approach: let’s use the formula we just learned to get an approximate answer for the
change in pressure:

AP ap AV
Ay
Now evaluate the derivative, 3—5, from the ideal gas law (remembering that T = T, o, i held
fixed, so here P is a function of a single variable, V).
nRT 1
d (—) d (—) NRTrom  2500] J bar
S__\V) = nRT V/_ _ = — =—4==-0.04—
dv dv dv V2 (25L)2 12 L
(where we used 1% = 0.01 bar). Therefore
8P~ pv = 00422 51y = 021
= AV = 0.04— = 0.2 bar.

This is fairly close to the exact AP = 0.25bar value. The values are not extremely close since
the variation AV is here quite large, 20% of the initial volume. If AVV was smaller then the two
AP values would have been much closer.

Derivatives of functions of 2 (or more) variables

Very similar to what we had before. Say we have a function of two variables, z(x, y). Then the

. .. oz| . : . . L . :

partial derivative é is obtained by fixing y, and then differentiating z with respect to x as if y
y

is constant.

Formally:

14



ox y - Ax—0 Ax

0z o z(x + Ax,y) — z(x,y)
lim .

Example:
3
z = (x° + y?)2.

In this case:

0z 3 1

= = E(x5 + y?)2 - 5x*
y

0z 3 1

7y =E(x5+y2)2'2y
X

Relations among derivatives

In the example above, we could treat y as a function of x and z.

2
y = 73 — x5

or similarly treat x as a function of y, z:

We can get therefore

dy dy

ozl,’ oxl,
and also

0x 0x

ozl,’ ayl,

Thus, there are 6 partial derivatives (for three variables). But only 2 are independent, because of
the following relations (which I presume you have seen in Calculus):

o _ L
oxl, = 0x
ayl,
with two similar relations,
x| 1 % _ 1
ozl, g_)ZC ) ayl, g_)zl )

15



and in addition, the cyclic chain rule:

0x
, 0z

0z
y 0y

dy
dx

X
Note: the factor of -1 is non-intuitive in the last equation, so you need to
remember it.

Therefore, there are 4 relations constraining 6 partial derivatives, and therefore only 2 partial
derivatives are independent.

Exercise: verify that these general relations are fulfilled for the example above.

The relations among the derivatives are very useful when measuring equations of state, say of a
one-component one-phase substance P = P(V,T) (we’ll fix n for the moment).

Of all 6 possible partial derivatives, only 2 are independent, as mentioned. Traditionally, one
measures these two.

First: the thermal expansion coefficient:

10V
Thermal expansion coefficient: &« = =— units: K1
VoTlp
Formally, a equals the relative change in V per a change of 1K in the temperature T at fixed
pressure.

Example, if for some substance IV was initially 20 L and changes by 0.04 L when

. . . A 04L
the temperature rises 5K (while the pressure stays fixed), then 7V =204

20L
0.002 (i.e., 0.2%) so

_Av _avo1 oo 100004 4-107*
CEVAaT TV AT 5K K K

For an ideal gas, the thermal expansion coefficient is:

nRT
_ 1oV _16(—p) _1nR 1
“Tvorl, v er | VP T

P

So for room temperature a = ﬁ ~0.0033K™? (ideal gas only!). For solids and liquids

however, a is very small (our body does not change its volume significantly when we have a
fever!)

Second coefficient: compressibility
In addition to the thermal expansion coefficient, there’s an analogous coefficient:

C ibili fficient LoV its: bar~! or atm™! < N ) 1
ompressibility coefficient: Kk = —=— units: bar™" oratm™ or (—

. v VaPl, m3
which is minus the relative change in V per a change in pressure, at fixed temperature T.

Note that k is always positive -- when the pressure rises the volume decreases,
so the derivative is negative, so with the minus in front it becomes positive.
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For an ideal gas the compressibility is:

1
1oV nRT 0p nRT( 1)_nRT 1
=Tyorl, T TV ap| Ty - P

i.e., for an ideal gas at room pressure:

K (ideal gas, room pressure)

- 1 bar

while liquids and solids: are hard to compress so the compressibility is much smaller
(k < 1bar™1).

Example: when we dive into a pool the pressure rises significantly (about 0.1bar per meter). But
our volume does not change appreciably!

Example: using the relations between partial derivatives — application for
thermodynamics.

Let’s exemplify how the relations among derivatives help us to get potentially important
quantities that are difficult to measure, in terms of a, Kk which are fairly easy to measure.

Specifically: find Z—I; . in terms of @, k.

Answer: use the cyclic chain rule | 0% 92| — _q1 |n terms of the three variables here, it
Oxlz 0zly oyl
reads
oP| oT| av|
aTl, avl, oPl;
So the desired derivative is
apP _ 1
arl, = ~ar vy
avi, aP|,
And using the first rule of partial derivatives, ﬁ = g—¥| , gives
2= P
avip
v 1ov
apP aT|, VoT|,
arl, = "av] T _Iav
oP|, VaP|,

where we divided the numerator and denominator by V. Therefore:

apP
oT

a

174 K

This relation is valid for every equation of state, be it ideal gas, the van der Waals equation of
state, or any other equation of state.
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Example for the validify of the relation above g—; = %: let’s check it for an ideal gas.
4

In an ideal gas

1
a T P
~ = % =7 (ideal gas only — don’t apply to other substances)
P
while
nRT
aP _6(—V) _nR P (ideal )
aTl, = ar =, =7 (idealgasonly
14

So the two expressions match, as promised.

Note: in the HW you will be asked to use these relations for a vdW gas

a

Epilogue: the relation we derived, z—: == is highly useful for any substance regardless of
4

. . . . . aP
whether it is an ideal gas or not. This is because it may be very hard to directly measure P for
14

solids or liquids where it is hard to keep V constant when T changes, while it is easy to measure
a and k.

Differential of a 2-D function

We learned that if x is varied by a small Ax, then the variation in the value of a function f(x) is
approximately the derivative of f times the change in x, Af = %Ax.

Similarly, for a 2D function z(x, y), the differential is defined as
Az = z(x + Ax,y + Ay) — z(x, y),

and it is related to the partial derivatives as

A 0z
Z_c')x

0z
Ax + —

y ayx

Ay

We are not going to prove it; you probably saw this relation in calculus but if not then just accept
it.

This expression is important because often we can determine (or measure) the
derivatives, and then when we need to calculate the change in z for an arbitrary
(but small) change in x and y we don’t have to “remeasure” z.

Example: consider P(V,T), for a fixed amount, n = 2mol or air — assumed again to be an ideal
gas.

e [Initially: V = 25L, T = 300K
e Finally: Veww = 23L, Thew = 310K, i.e., AV = =21, AT = 10K

Question: calculate the change in pressure both exactly (using the ideal gas law) and using the
concept of a differential, and compare the results

18



Answer: First use the differential formula

NnRT nRT
ap = 9P av 9P AT—a V AV+6 V_[ AT
~ovly aTl, oV T
T P
i.e.,
AP nRT AV + nk AT
-y 4

i.c.. using RTygom = 2500 -

0 831
AP = —2mol ——29 (—2L) + 2mol ———2% (10K)

(25L)% 25L
i.e.,
AP =~ 16l+ 6.7l = 23.7l =0.237 bar
L L L

Next, compare this to the exact answer:

AP = Byeyw — P
Initially we are at room temperature, so
J
nRT 2500 Rmol ]
P =—=2mol—1% = 200-=2b
vy T oMY sL Lo

To determine the exact final pressure, P, o\, We can do a shortcut. The temperature went up by a
factor 310/300, while the volume changed (was lowered) by a factor of 23/25, so the final

. . T .
pressure, being proportional to > for an ideal gas, becomes

310

Poow = %ﬁp = 1.123 - 2bar = 2.246 bar

25
l.e., AP = Byeyy — P = 0.246 bar.

w

We see that the differential result (0.237 bar) agrees reasonably well (to within 4%) with the
exact result (0.246 bar).

1.9) Conclusions — Chapter I

e P, T:intensive, V,n: extensive
e Units: P° = 1Atm = 1bar = 105~ = 1052 = 100
m m L

e Molar volume and density

Examples of equations of states:
e Ideal gas law PV = nRT (appropriate below ~ 100 bar, depending on the substance).
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2
e vdW equation: PV = Vn_RnTb —a (3) . Small correction to ideal-gas-law until pressures of

hundreds of bars. Has an unphysical region (at temperatures below the critical
temperature, there will be a portion in an isotherm where, as V lowered, P is lowered too
— and that’s unphysical), but at least, once we “correct” this unphysical “wiggle”, the
vdW equation displays qualitatively the gas-liquid transition and critical temperature.

Mathematical prelude-Conclusions

e Integration of a few simple functions, differentiations.
e Differentials:, Af = %Ax.

. . .. 0z 0z
e Partial differentiation: z = z(x,y), —| ,—
ox y ay x
. 0 1 . 5} ox| 0z
e Relations: 22| = 5= » and chain rule 2022 22 = 1. (Note the —1).
dxly, 2x Oxlz 0zly oyl,
ayl,
. . 19V
e General definitions: thermal expansion coeff. a = v
P
. 19V
e Compression coeff. Kk = —=—
VoPlr

Ay

e Differentials of a 2D function: Az = E| Ax + 9z
dx y ay x
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I1. The First Law

2.1) Overview

Motto: energy is conserved, but can be transferred in different ways.

Concepts: preview

e Work: ordered energy transfer, dwy,ecn = —PdV. Heat: disordered energy transfer (dq)
e First law: energy change= dU = dq + dw; q,w: both path dependent; U isn’t.

e Reversible and irreversible processes.

e Examples: gases in piston (isobaric, isochoric, isothermal expansions)

e Heat capacity: dq = C,dT ordq = CpdT.

e Properties of Cp, Cy,.

e Enthalpy (“trick”) H = U + PV, dH = dq + VdP + dwyon_mech

e Examples of using enthalpy

e Adiabatic expansion (difficult!)

2.2) Work and Heat

Energy can be transferred by work or heat.

Work refers to: ordered motion (see figure). Work can be mechanical (i.e., pushing), or also
electrical.

The amount of mechanical work can be derived by considering a piston, of area A, moving in the
x direction.

Mechanical work M o
X8
= hand pushes
dw=-FPay
e ——
Rr rRyeehl
rroa,y_.l“
A= 4;')‘ ”
ay - v u’nn‘u//!
oW

=0

(07 fes;

Cut separator,
gas flows in

We know that the amount of energy given to the system is force*distance. So when the piston
moves, the work done on it (more formally, the energy given to it in the form of work) is:
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dw = —Fdx

The reason for the minus: we measure energy for the system, which is here the gas in the piston.
So if dx is negative, i.e., the piston is compressed, then it is being “pushed” by the environment,
i.e., energy is given to the system in the form of work so dw should be positive.

But since the force is pressure*area, F = PA, then
dw = —PAdx = —PdV
where we used dV = A dx as the change of the volume of the gas in the piston.

Note that this work is mechanical, so we should have labeled it as wy,ecn. We will
abbreviate wyecp @s W in this chapter, but remember that we could have also electrical
work (e.g., electrons coming from an outlet) — we won’t discuss electrical work in this
chapter but will incorporate it in Chapter 4.

The dw = —PdV relation was derived for a tiny change. For a big change we need to sum the
small changes, i.e., integrate

W=—deV

Reversible and Irreversible processes

A note on reversible work. Strictly, dw = —PdV is only valid for reversible processes, i.c.,
processes that with a little change can be reversed at any stage. In our case this means that the
pressure inside and outside almost match, so that a tiny raise or decrease of the outside pressure
will cause compression or expansion. H g °+

An example of an irreversible work
is puncturing a hole (small or large,
doesn’t matter) in a separation in a
container, in which one side is full of

gas and the other is in vacuum. Then % im"hqlb " j
the gas expands from one chamber to cold. “8” 4/ A 9e8 fofen
the other, without doing work, since (/no/eu

there was no counter force. See
figure in the previous page.

b §on ener |
Ypn Kuq‘,,? W/V)

Note that if the hole is small we can Energy transfer depends on system's definition.

stop the process by a tiny change, but
we still can’t reverse it by a tiny
change.

Next: heat.

Heat.

gas: worked on (w_mechanical)

Transfer by heat means obtaining .

- X compressor+gas: worked on
energy by disordered motion. (w_electric)
Colloquially we’ll say we give heat to
the system, but remember that the (o)
formal definition (transfer by heat)
is the true one. ( @

See figure above.
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2.3) The first law:

The change in energy = amount transferred by ordered motion+ amount transferred by
disordered motion.

If the amounts transferred are tiny, we write
dU = dq + dw.
If we sum up many changes, then:
AU =q+w
where AU is the total change in energy.
Note that when heat only (no work) is given to the system, the energy rises, and T rises.
Careful — this isn’t necessarily true when work is involved.

Example: If dg = 10] but dw = —30], i.e., we extract work while giving heat,
then dU = —20] < 0 and the system’s temperature will decrease while the heat
input is positive!

Important: we can get from one initial condition to another using different
amounts of g, w (but the same q + w., i.e., AU).

Example: paths in P, V diagram

We will exemplify using a piston with :
one mole of monoatomic gas (He, Ne, @
etc.) P ' A
Before starting, we need now to know the @ A
energy of the gas. We learned that for all

ideal gases, the energy depends only on : @
the temperature U = U(T). (In an ideal
gas it does not matter to the energy if the £y @ -
volume is doubled or otherwise changed,
since the molecules are so far away they [
don’t interact).

This is true for all ideal gases, i.e., gases

where the molecules are far enough from ' D
each other. In fact, that’s the definition of C}éch C: ‘
an ideal gas (gas where U = U(T) only). Q@ 1T W)

But for monoatomic gases we can know Al =0, b ' —£D
more than that. We’ll assume, without i+¥o
proof, that for monoatomic gases the (_-1 =9, +9, -9 - iiv)
energy is

WIZFO,

U= EnRT monoatomic gases

You may have seen a proof of it in 1% -year chemistry.
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BTW, the “3” in the expression above is because a particle can move in 3
dimensions — x,y,z. In some electronic devices we can make a layer where
electrons behave as if they were in a 2D ideal gas, so that they are constrained to
move as if on a map, i.e., they float freely in the x-y plane but are held to a
specific z point (not exactly, but close). Then the “3” is replaced by “2”.

Separately, back to regular 3D space: non-monoatomic gases (e.g., N,, CO,) will
have the same overall kinetic energy associated with movement of their center-
of-mass, but in addition will have an additional energy associated with
intramolecular vibration and rotation, so their energy will be higher.

For the process indicated in the figure below, involving a mole of monoatomic gas, and where
we start from P; = 1bar, V; = 25bar and end up at Py = 3bar, V; = 50bar, we indicated two
paths.

e The first path is i + ii, i.e., first raise the pressure at fixed volume, and then increase the
volume at fixed pressure;
e The 2" path is iii + iv in the figure.

Question: Calculate: g, w for each of these two paths. Show that g, w are path dependent, while
AU is not.

Answer: First, the initial and final temperatures. The initial T is:

_ PV, 1bar25L _100% 25 L

T.
' nR

=~ 300K

B ) J

i.e., room temperature.

We don’t have to do the calculation above for T¢; just notice that when going from the initial to

the final point, the pressure increases threefold, and the volume twofold, and since T < PV,
T rises sixfold, i.e., T = 1800K.

Now let’s calculate the energies.

Since the energy depends linearly on the temperature,
3
U; =3 1mol - R - 300K
We noticed earlier that 1mol - R - 300K = 2500], so

3
U = - 2500] = 3750]

Since U is a constant times T (true only for a monoatomic ideal gas) and the final temperature
is 6 times higher than the initial one, then

so the energy difference is

AU = Uy — U; = 22500] — 3750 ] = 18750 .

Now consider path i + ii. In segment i, the volume is fixed, so the work is O:
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w; = —deV =0 (V fixed).
i
In segment ii the pressure is fixed, so it comes out of the work integral
Wi = —JP dv = -3 barf dV = —3 bar - (Vf - Vi) =-3- 100%' (50L — 25L) = —7500]
ii ii

1

Therefore, by the first law gives:
q(pathi+ii) = AU — (w; + w;;) = 18750] — (=7500]) = 26250 ].

Similarly, for path iii + iv, w;;, = 0 (volume fixed throughout segment iv), while

Wi = — fﬂPdV = —1bar- (V; - V;) = —100% - (50L — 25L) = —2500]
l

127

Since the work is less negative by 5000] then in the i + ii path, the heat will be 5000J smaller
(since the sum of the work and the heat is fixed, i.e., it is AU).

Therefore:
Qiti+iv = 21250]
So, the amount of heat and amount of work are path dependent.

Circular paths

To understand what we do better, consider a circular clock-wise path (bottom part of figure
two pages ago) i.c., starting from P;, V;, then going in steps i, ii (i.e., first raising pressure; then
raising volume); then going backwards along step iv (lowering pressure), finally backwards
along step iii (lowering volume).

We’ll label this circular path i, ii, —iv, —iii (“minus” denotes backward).
Since at the end of the path we’re back where we started, AU = 0.
But the net heat and work are not 0!
For the work,
w=w;+w; —wy —w; =0+ (=7500]) — 0 — (—2500]) = —5000]

i.e., a net amount of 5000 J was done by the system on the environment.

This is clear — within a cycle the system (the gas in the piston) pushed against a
high pressure, doing a lot of work (in part ii) and was pushed back at low
pressure (part -iii), where much less work was done on it.

Similarly, the net amount of heat is non-zero; the first law states AU = q + w, i.e., in our case
0=gq+ (—5000]) — g =5000]

This cycle is actually our first example of an engine. We’ll talk later about engines, but
essentially, they are circular devices so that in_each cycle a net amount of work is done by the
system (the piston), and that net work equals minus the net amount of heat given to the system;
after each cycle the engine is back to where it was.

Work as area
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You learned in calculus that if we plot a function of x (f (x) vs. x), then the integral
f;b f(x)dx equals the area under the curve limited by x, < x < x;,.

Similarly, the enclosed area of a closed curve is the net clockwise integral, fenclose  f(0)dx.

As an example, the net work in the example above,

Wnet = _J PdV
enclosed

is simply (minus) the area of the curve, i.e., in this simple rectangle case
Wpet = —(50L — 25L) - (3bar — 1bar) = —50 L bar = —5000]
as we got earlier.

Caution: be very careful when applying this rule. We need the net area, which is
the area within clockwise-turning regions minus anticlockwise. So unless you
have a very simple curve, | advise to calculate the work by an actual integral

Next, to consider the first law from another angle, we’ll now study:

2.4) Isothermal expansion of gases in a piston

For us all gases are ideal gases (unless stated otherwise), so P = g, So P is proportional to %
for a fixed T.

Common mistake: thinking that since T = fixed, ¢ = 0! Wrong!!

Physically, when a gas expands it does work on the environment, i.e., it spends energy. So for
the energy to be conserved (and therefore for T to be conserved) heat needs to be constantly put
in.

Analogy — a runner that tries NOT to lose weight while running — so continuously drinks
chocolate shakes during the run, to compensate the loss of energy and fluids due to the run. (Not
recommended in real life, you may get a stomachache...)

Another way to see it is to consider an infinitesimal (i.e., small) change in isothermal expansion,
and break it in our minds into two

small substages (see figure): a3—-‘/50 n s o‘”g,m [ pansion
e First expanding the
volume (i.e., perforrping } Vil T ;D:,
work) without heat input -y adiabitic (uar N
(so T falls). & : L —_—
3 L, T Tk
e And then, at the new NS

volume, not expanding but /’%j ) Volvwe ), XY

pumping heat to the =y \/-\‘(;\/l '& o o VidY/

system so T rises again.

<

So say we start from P;, V; and expand isothermally (T=fixed throughout) to to P, Vs. (Since T is
fixed, we need to have P¢Vy = P;V;, as both products equal nRT).
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The total work done in going from P;, V; to Py, Vf in an isothermal route (i.e., keeping the
temperature fixed throughout the expansion) is then

= deV— f rr RdeV— RT(InV; —InV;) = —nRT1 Y
w = = nRT 4= -7 T2 nVy—InV;) = -n nVi
(we took the T out of the integral since it is fixed). Similarly,

Vr Vy
q=AU-w=0-— (—nRTln—) = nRT In—
Vi Vi
where we used the fact that U depends only on T, so it doesn’t change in an isothermal expansion
(so AU = 0).
Exercise: initially P; = 1bar, V; = 1L. We double the volume, halving the pressure, and we do

this in an isothermal process. What will be w, q?

Answer: Is othe rma]  Ex pawrsion

s
w=-nRTIn= = —P;V;In2
Vi KA

= —1lbar-1L-In2 p

=-100]:-In2 =—-69] - \
And g = 69]. (Note that instead of calculating “l
nRT, I got its value using the ideal gas law,

Again I caution — this result for w is only true if W < o.
the WHOLE process is isothermal, i.e., T is kept

fixed throughout the expansion.

The figure on the right shows two paths: an

isothermal route and another path where there’s

almost no work (think on why w = 0 for that

2" path on the right). weol

2.5) Heat Capacity

So far we understood dU = dw, followed what
q & w mean, and quantified dw = —PdV.

Now we’ll quantify dq. A general quantification is difficult at this stage — wait till next chapter.
But already now, for different physical circumstances we can quantify the relation between dq
and dT.

This is important since it is usually easy to measure how much heat is input to a system, i.e.,
what’s dq, and also easy to measure dT.

In the first two cases we’ll quantify, dq is proportional to dT

1) When we do experiments where V is strictly constant (hard to realize exactly for
solids and liquids), we’ll label by C;, the proportionality constant between dq and
dT:

d
o = ﬁ for fixed V
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1.e., dq = Cy dT at fixed volume. Cy, is labeled as the heat capacity at constant volume,
and we define also the molar heat capacity at constant volume as

C =
Vm n

i) Similarly, when P is fixed (much easier to do in the lab), we’ll define the heat capacity
at const. pressure as dq = Cp dT, i.c.,

co =2 ¢ fived P
p = forfixe

iii) However, there’s no heat capacity associated with isothermal processes (where dT=0)
— where we saw earlier that dqg # 0. So we CAN’T write then dq = C;dT WRONG!

Later we’ll see that even though q is not a state-function (i.e.., it depends on
history, not just on the present state), dq is RELATED to a change of a state
function, labeled the entropy, S; specifically dqg = T dS.

Cy : general relation

First, let’s establish a simple relation between Cy, and the energy.

The first law says dq = dU — dw. But for fixed volume process dw = 0, so
dq = dU (for V fixed).

Therefore,
aq . . auv
Cy = aT (V fixed) = T (V fixed)

i.e., mathematically the heat capacity at fixed volume is the partial derivative of the energy
w.r.t. temperature at fixed volume

ou

Cy=—
Yoty

generally.

This expression above simplifies for ideal gases, where the energy depends only on temperature,

(U = U(T) for ideal gases), since for those the partial derivative becomes a regular derivative
du

Cy = ar for ideal gases (only!).

Further, for the simplest ideal gases, i.e., monoatomic ideal gases (He, Ne, Ar, ...), we can easily
calculate Cy; recall that U = ;nRT for monoatomic ideal-gases, and therefore

d %nRT 3
Cy = = —nR for monoatomic ideal gases.

dT 2
i.e., the molar heat capacity is simply 1.5R for monoatomic ideal gases

G
Cym = XV =3 for monoatomic ideal gases.

We need to wait to Statistical Mechanics to prove this; but we can understand this physically- --
as we raise the temperature each “degree of freedom” (i.e., the kinetic energy associated with
moving in the x, y or z direction) gets more energy.
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Cy and degrees-of-freedom

What happens when we go to diatomics, triatomics, and bigger and bigger molecules? Then Cy,
rises, because, when we raise the temperature by 1K, we NOT ONLY raise the kinetic energy,
but also raise the intermolecular rotational and vibrational energy.

Cy will approximately fulfill:
R
Cym = B (Number of active DOF )

(DOF means Degrees of Freedom). Basically, the bigger the molecule the more degrees of
freedom it has, so Cy, rises. This relation above is qualitatively valid for gases, liquids, and
solids. Its meaning is made more precise and it is proved in Stat. Mech.

Example: Diatomic gases: (e.g., H,, 0,,NO, N,, Cl,).
Quite interesting! — see Cy, for H, below.*
i I I 1
%0 in

HE ] 0

iy YWilsranicsn

a
=

H.l- Li-d

Ciped |/l RS

Iriis lagiiog

] | T | | |
Kl ) Wl LNl M LRI L slHML QU TR

lempeature ()

Here, at low temperatures, Cy, is only 3R/2, like a monoatoic gas. That’s because at low T, H,
does not have enough energy even to rotate, so only its center-of-mass kinetic motion is “active”.

This will be true up to a temperature-range around a temperature that we label Ty (the subscript
“R” refers to “rotation”, and is unrelated to the gas constant “R”).

As you see from the figure Ty is around 100K for H,.

For O, or other heavy diatomics Ty is much lower, around 15K or lower. So 0,
can rotate freely already above 15K-20K. This is because it is more classical due
to the higher masses. This is covered in 110B

Above Ty (i.e., from way below room temperatures to much beyond it) the diatomic molecule
can rotate -- so then 5 degrees of freedom are active (3 center-of-mass, 2 rotations for this linear

5
molecule — see class), so Gy, = ER'

4 https://www.miniphysics.com/uy 1-crisis-for-equipartition-theorem.html
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At very high temperatures the molecules can start vibrating. This happens around T,,;;, =~1000-
2000K for H, (and a similar temperature for O,, N,, NO, or other light, fairly rigid diatomics; for
floppier diatomics such as I,, T,,;;, would be only a few hundred Kelvin).

Note: Ty, Will approximately fulfill kBTvib~§ hv,i, where v,;;, is the vibrational
frequency of the diatomic bond which is around 20-100 THz; here kg =
= 138%10723 1,

Avogadro K

Boltzman'’s constant =

If T < Tyjp then only the ground vibrational state is populated, but starting at T ~ Ty, more
states are “active”.

One complication is that each “active” vibration gives two DOF (one associated with the kinetic
energy and one with the potential energy).

Thus at high temperature Cy~ %R for diatomics (3 kinetic DOF, 2 rotational, and 2 vibrational).

Cp

Cp is almost always larger than C;,. Physically that’s because when we raise the temperature at a
fixed pressure, a substance will almost always also increase its volume.

A famous exception is water shrinking between 0 and 4°C due to breaking of H
bonds; but the effect is really tiny.

So in the typical case, when we give heat to a substance at a fixed pressure, part of each amount
of heat we give needs to also go to “pushing” the environment as it expands, i.e., to work.

Example:

Say that for a certain amount of a certain gas we need to give dq = 500 J to raise its
500 ]

temperature by 5K at a fixed volume. So C, = =K = 100%for this gas.

At fixed volume all that dg = 500] goes to raise the energy.

But when we the give the same amount dgq at a fixed pressure, the gas expands, doing

work of, say, 100J on the environment, so dw = —100],
i.e., dU will now be only dqg + dw = 500 — 100 = 400], i.e., 80% of what is was
earlier.

Therefore, since the energy and temperature change are proportional, the temperature
change in the second, fixed-pressure case will be 80% of what it was at fixed volume:

ATixeap = 80% * dTpefore = 0.8 x 5K = 4K
and therefore

_dq_500]_125] > C —100]
Podr 4k - KT VT TTK
We’ll soon see that for gases, Cp,, = Cyyp, + R, while for liquids/solids Cp,,, = Cypy; 1.€., for
condensed phases — liquids and solids -- Cp,, is only a tiny bit slightly larger (or, rarely,
slightly smaller) than Cyy,.
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2.6) Enthalpy

. . o ou
We related earlier Cy to a partial derivative, C;, =

arl,
Now let’s do the same for Cp!

Recall first that the 1% law, when written with both forms of the work, mechanical and
electronic, explicitly, is

dU =dq +dw = dq + dWpecn + dWelec
ie.
dU = dq — PdV + dwgec
(we usually ignore dwyge. but it is time to introduce it again, at least temporarily).
To “get rid” of the —PdV term, define the enthalpy:
H=U+PV

Calculus Insert: we know that for any two functions f, g

d(fg) _ dg  df
dx dx gdx

Multiply by dx, to get

d(fg) = fdg + gdf
Now apply it on the “PV” tern to get

d(PV) = PdV + dP

Therefore:
dH = dU + d(PV) = dU + PdV + VdP

1.e.,
dH = (dq — PAV + dwgec) + PAV + VdP

The terms in red cancel each other, so

dH = dq + VdP + dwgec
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In the remainder of this chapter dwgje. = 0, as before. Then

dH = dq + VdP
W e Caf ac ;’Jﬁa

So, for processes where the pressure is fixed:

dH = dq (P fixed, dwgjec = 0)

which we also write (the “P” subscript

means: P is fixed) " & %%__‘ = sl B
R 7
dH = dqgp W\P"ﬂ'

Therefore, for heat transfer at fixed pressure:

dH == dqp == CPdT

ie. 2 f,-er)_
o) o
ar dT/pfixea OTlp
Therefore: If Cp is constant in a given range . -

of temepratures (for a fixed P) then H rises
linearly with T (at that P):

H(T;,P) — H(T;,P) = f dH = f CpdT = Cp - (Tf — T))

See figure above.

Another more general observation is that since it is easy to measure heat-input,
and since we usually do chemistry reaction experiments at a fixed pressure, the
relation dH = dqp implies that it is easy to measure fixed pressure enthalpy
differences. Therefore, Tables of Reaction will always show the enthalpies of
chemical substances, rather than the energies, since enthalpies are easier to
measure.

Example for getting C,, from H

Say we know
H = anTP? + n(bT + BP)3
(some crazy function I invented). Then
U = anTP? + n(bT + BP)® — PV
Question: determine Cp, Cy,.

The first is easy:

0H

Cp=—
P arl,

= anP? + 3nb(bT + BP)?

oH . . . . .
But Cy = 57|, cannot yet be determined since we can’t differentiate the terms in U at fixed
14

volume! For example, let’s try differentiating the first term:
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0aTP?| _ ., 0P
aT V_a o

P
= aP? 4+ 2aTP —

=7
, arl,

. .. opP
and we can’t determine it since we don’t know yet what’s 5| .
14

End of example.

2.7) Relation between Cp and Cy for ideal gases
For ideal gases, the partial derivatives simplify.
As we mentioned C, becomes a regular derivative since U depends only on T,

U=U(T); so

Cy = i ideal |
V=7 (ideal gases only)
Similarly, for ideal gases the PV term only depends on temerpatuee, so

H=U+ PV =U(T) +nRT, i.e., for ideal gases H = H(T), so Cp becomes a regular

derivative, Cp = Z—: (ideal gases only).

Therefore:
Cp—Cy = Z—I; - Z—? = d(Z,IRiT) (ideal gases only)
1e.,
Cp — C, = nR (ideal gases only!)
or

Cpm — Cym = R (ideal gases only).
This is true for any ideal gas.

Cp for monoatomic gases:

We know that for monoatomic gases Cy, = ;R, soCp = SR (He, Ne, etc.)

Example: How much heat do we need to give to a 1 kg of Helium to raise it from —20°C
to +100°C at room pressure. And what’s the energy difference.

Answer: 1kg=1,000g, so it contains n = 250mol of He. So

5 5 J J
Cp = ETLR = E - 250mol - 831m = S,ZOOE

(Note: that’s ignoring the heat capacity of the container, which may or may not be
justified — you need to check that depending on the container mass and heat-capacity.)

So

q = CpAT = 5,200%- 120K = 624,000] = 624k]

And that’s of course also the enthalpy difference, AH = 624K].
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The energy difference is

3 3 3 J

Note that the same energy difference would have been obtained if we wrote

f Fdu f 3
AU=f dU=J —dT=J CydT = Cy AT = =nR AT

You are most likely confused on how come we use Cy here for the energy
calculation, when the volume is not fixed. The answer is that for ideal gases,

since U depends only on T, the derivative Z_: is independent of what is fixed —

volume, pressure, etc., so we can apply it in any circumstance.

l.e.,

e To MEASURE 3—: we may do an experiment where V is fixed, measure
the heat input per dT, then obtaining it as Cy ,

dau av .
e Butonce we measure C, = - Wwecan apply - ho matter what Cy is!

This will be crucial later when we talk about adiabatic expansions.

Cp for diatomic gases:

We know that or diatomics Cy,,, varies with temperatre;
and since at any temperature Cp = Cy, + R, then Cp_varies similarly to Cy,, as shown in the
graph on the next page.

Ct’m WM& Cvm ﬁgr\

8%&1’&] Dia{’om{c 350 (Tyfjaal)

Cp , Cy for solids and liquids

For condensed phases (solids, liquids), U and H are very close, since their difference (PV) is tiny
relative to either of them (as the volume of condensed phases is really small).

Further, the properties of condensed phases depend mostly on the temperature unless the
pressure is very high.
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Therefore, C;, = g—: and Cp = g—: are very similar for condensed phases, and will be, like we
14 P

mentioned, Cy,~(# of active DOF) - g, and Cp~Cy for conndeed phases.

Example: Cp(H,0) in different phases.
J

K mol

o C(Cpplice) = Cy,p,(ice) = 37

amount of around 9 degrees of freedom; we can qualitatively guess that these

R . .
=~ 9. 5 e, each ice molecule has a net

could be three vibrations of the center of mass for this triatomic molecule,
contributing 3 * 2 = 6 DOFs, as well as another three associated with shared
hydrogen bonds.

e Cpm(water) = Cyp,(water) = 75 KILO] = 18-

So water has a huge heat capacity, twice that of ice. Explanation:

o Each water molecule has many neighbors that it can share its hydrogen
bonds with.

o Also, a water molecule can “librate” (i.e., rotate somewhat back and
forth).

o Further, its O-H bonds somewhat vibrate one relative to each otherin a
“bending” mode similar to a butterfly motion (see class).

Finally:
) R .
e (p,,(water vapor) = 36m~8.5 5 e

J
K mol

R
Cym (water vapor) = Cp,,(water vapor) — R =~ 28 ~75 '3

i.e., each water vapor molecule has “7.5” active DOF — 3 from the kinetic motion of the
center-of-mass, 3 from rotation, and another “1.5” from the bending mode vibration
(recall that each vibration is associated with two DOF, one kinetic and one potential).
The precise value of heat-capacity changes of course with temperature, rising as the
temperature rises, since more vibrations are “active” at higher temperatures.

Some examples for using H:

Say we have a substance with:
Initially, P; = 1bar, V; = 3Liter, U; = 200].
Finally: P; = 3bar, V; = 2L, Ur = 300].
Question: what’s AH =?
Answer: AH = AU + A(PV). But
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A(PV) = P¢Vy — P;V; = 3bar - 2L — 1bar - 3L = 600 ] — 300 ] = 300]
So
AH = AU + A(PV) = 100] + 300] = 400]

Note that A(PV) # PAV + VAP . PAV as well as VAP are not even defined
here, since P in front of AV could mean the initial or the final value, and those
are very different.

2.8) Enthalpy associated with phase-change

When a phase change occurs at constant pressure, e.g., ice melting, or water boiling to make
vapor, heat is needed (as input). Since we assume that P is fixed, there is an enthalpy change
equaling to the heat input. We label it AH, and since usually the enthalpy change is at room
pressure we should label it AH® (but we often omit the “0” subscript).

Different phase-changes have specific names:

Solid-> Liquid: Heat of fusion. Example: AHg,s(H,0,0°C) = 6.00%

Liquid-> Vapor: Heat of vaporization. AHy,,(H,0,100°C) = 40.65 %

Example: (from Levine)

Part i: Calculate ¢ and AU for converting, at P = P°, 1kg of H, 0 ice from -50°C all the way to
vapor at 130°C.

Answer:

First, note that 1kg is 1;(;(102 = 55.5 mol of water.

mol

Next, refer to a schematic (not-to-scale) figure below, showing H vs. T at a fixed pressure

(1 bar). Note that H rises linearly with 7 since the derivative of H w.r.t. T, i.e., ?9_: (i.e., Cp), is
P

approximately constant for each phase.

I €el0)- AT = A9 witen)

106K

[se€alk

H(T) Ror Ho , £ = lboa. (i 5y
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However, at the phase transition points (0°C and 100°C for out 1bar pressure) you need to put in
heat to melt (or vaporize) the H, 0, so the enthalpy curve jumps.

For example, AH,,, is the amount of heat needed to vaporize a mole of water at 100°C, and is
very large, larger than all the other contribution to the change of enthalpy in our figure.

Thus, per mol:

q AH 0°C 100°C
—=—-= f Com(ice)dT + AHg,s(0°C)) + J Cpm(water)dT + AH,,;,(100°C)
—50°C 0°C
130°C
+ J Cpm (vapor)dT
100°C

And since the heat capacities are essentially constant as a function of temperature, we take them
out of the integral, e.g.,

0°C

0°C
J Cpm (ice)dT = Cpm(ice)J dT = Cppy,(ice) - 50K
-50°C -

50°C

Thus:
% = Cpm(ice) - 50K + AHf,s(0°C) + Cpm (water) - 100K + AH,,,(100°C) + Cppy (vapor) - 30K
1.e.,

14 _ BBL- 50K + 6OOOL+ 75 L 100K + 40650L

55.5 mol K mol mol K mol mol

+36 Kmol - 30K
1e.,
q ] K]
55.5mol UL mol 1/ mol

i.e.,

q = 3,170k = 3.17 M.

Note the two green-emphasized parts above. You see that out of the 57kJ/mol heat, over 70%
(i.e., 40.65 kJ/mol) was needed to vaporize the water. The rest was needed to melt the ice and to
raise the temperature in each phase.

Also, for AU:

AU = AH — A(PV) = q — (1bar - Vgug — 1bar - Vice)
The volume of ice is miniscule relative to the gas. So (since the volume of the gas is calculated
at 130°C=403K),

as =n-R-403K = 55.5 mol - 8.31% - 403K = 186K]

PV
mol

g9

AU = AH — P - Vgoo = (3170 — 186)k] = 2984k] = 2.98 M.

Next question: Similar to Part i, but now we add an additional step, Segment ii, whereby, after
Part 1, the vapor at 130°C is isothermally expanded to 0.5bar.

37



Question: what’s AH for the whole process (Part i + Segment ii), and what’s q.

Answer: The last segment is isothermal. The enthalpy of the gas depends only on its temperature
(since H = U(T) + PV = U(T) + nRT for ideal gases). So the overall AH = H; — H; did not

change.

But g changed — we learned earlier than in an isothermal expansion the heat input is Gsegmentii =
nRT ln? =nRTIn2 (i.e., the volume doubled). I.e.,
1

J
Gsegment i = 5.5 mol - 8.317—— - 403K In2 = 129 k]

So for the overall Part i + Segment ii:
AH = 3170K]
q(Parti+ Segmentii) = g(Parti) + q(Segmentii) = 3170Kk] + 129Kk] =~ 3350 K]
So note again: ¢ = AH automatically ONLY if the whole process was done at fixed pressure!

And note again that if we were to take a different path from the initial point
(T; =-50°C, P;=1bar) to the final point (Ty =130°C, P¢=0.5bar), then:
AH would not change, but g would change.

2.9) Enthalpy and reaction heat-capacity.
Let’s consider a “reaction”
A-B
We’ll assume also that the pressure is fixed, P = P°.
The heat of reaction is simply the heat needed for a mole of this reaction.
Hixn(T) = H(B,T) — H(A,T)

This reaction could be just a phase change, e.g., in this example we’ll assume that A4 is water
(liquid) and B water vapor. In this case AHyp, = AHy,p.

We wrote earlier the heat of reaction for the “reaction” (i.e., phase change), water=> water-vapor
at 100°C is AH.y,(100°C) =40.65 kJ.

We could calculate it also at other temperatures. This is important, for example when you
consider sweating at room temperature -- i.e., vaporization of water at 25°C.

To calculate note that the enthalpy rises with temperature linearly.
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Hy,(B,T)

M) —

H l ern(T) = H?n(BJT) - Hm (A'T)

40

T

Slope of Hw.r.t. T: Cp.
Slope of AH w.r.t. T: ACp (in this case negative!)

I.e., for the same phase

T
Hp(B,T) = Hp (B, Tp) +f Com(B)AT = Hyy(B,Ty) + Cpm (B)(T —Tp)

To
Similarly,

Hm(A: T) = Hm(A; To) + Cp,m(A)(T - To)
And therefore, when you subtract the two Egs.
H (B, T) = Hyy (A, T) = Hy(B,To) = Hin(4,T0) + (Com(B) = Com(A)) (T = Tp)
1.e. (see figure):
AH 3y (T) = AHyyn(To) + ACp pyn - (T — To)
where
ACp rxn = Cpyn(B) — Cpm(A)

is the reaction heat-capacity (that’s a historical name, it would have been better named as heat-
capacity-difference).

Later on in Chapter 5 we’ll see the extension of this to multicomponent reactions.

Example: (alluded to earlier) what’s the vaporization enthalpy of water at room temperature?

Answer: (recall that for us room temperature is 27°C, not 25°C):

AH,p (T = 27°C) = AH,4p(100°C) + ACp, 1y (27 — 100) - K

1e.,

oC) = J J J
AHyap(27°C) = 40650 — + (36 — 75) - —— (= 73K) = 43500 —

1.e., the heat needed for vaporizing one mol of water at room temperature is higher by about 7%
than at 100°C.

Now to the final (and difficult) part of this chapter.
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2.10) Adiabatic expansion of gases

Adiabatic: means no heat is input/outputted during the reaction. Note the difference from
isothermal, where expansion is accompanied by heat input.

Plan for deriving the results: We’ll consider a tiny expansion. Then, we’ll end up with a
mathematical expression that we’ll integrate.

When a gas expands adiabatically, it does work on the surrounding. Because of that (and since
there’s no heat input) its energy decreases.

Mathematically:
dU = —PdV
On the other hand, since we consider ideal gases, we can relate dU to the change in temperature:

du = v dT
T dT

But we know that for an ideal gas Z—: = Cy. Therefore:

dU = C, dT
And therefore
CydT = —PdV (= dU)

Side note: You are probably very confused. How come we use Cy here? The volume
changes, and Cy, is defined as the heat capacity at constant volume!

. d : . L
The answer is that we need d—:. For ideal gases, since U depends only on T, the derivative

v . . .
s will be the same regardless of whether we measure it in a process where V is fixed or

not.
So the trick is:
o If Z—: was measured in a process where V was fixed, then (and only then)

dw = 0 so for this fixed-V process dU = dq; and since then dq = C,dT,

we can say that for that fixed-volume process z—;} = Cy.
. au. . ..
e But since d—: is independent of process (and depends only on T) it is ok

to apply Z—lTI = Cy to other processes too, where V changes
Example:
Say that we take away a certain amount of energy of a certain gas in a piston.
And say that we had two alternative small steps

e Onein which V was fixed, so dw = 0, and we pulled out 5J from the
system dgq = —5]. Say in this process dT = —0.1K.

5]
-0.1K

= 501, and therefored—U = 50l
K dr K

So: Cy = % (V fixed) = —

e Alternatively, say dqg = 0, but that dw = —5]. What will be dT?
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Answer:

Well, in this process dU = —5] again, just like the first process, ie., dT
has to be the same as before, since the energy change correlates only to
the temperature change.

1

dT
So It has to be dT = —0.1K again.

Thus you see that it is OK to apply dU = —CydT regarless of whether V' is fixed or not.
(But dq = CydT is true ONLY if IV if fixed!)

Back to the math: since we have an ideal gas, the adiabatic expansion eq. from above becomes:
nRT
CVdT = —PdV = —TdV

and the trick to solve this equation is by isolating the temperature terms on one side, and the
volume terms on the other:

dl nRdV
T  C V
This is a differential relation, between dT and dV.

Now let’s integrate (i.e., sum over many such changes), over the path between an initial state
(Py, Vy, Tyy) and up to a given point (P, V,T), presuming of course that the expansion is adiabatic

throughout the path. Then:
ar

anV_ nR (dV
T Cy V

__C_V 7

where in the last equality we assumed that C;, does not change much during the expansion so we
can pull it out of the integral

Now remember your calculus refresher, which had:

*dx X
£-n()

Where T, and V,, refer to the initial temperature and volume.

So the eq. from above becomes

Now recall the logarithm property: a In(x) = In(x®), which gives, when applied to the RHS of
the yellow equation:

Move the RHS term to the left
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NnR
() +1o{ ()" ) =
n To n VO =

Using another logarithm gives rule: Inx + Iny = In(xy) givs

nR
| T(V)G —0
N1\ )~
So, since In(1) = 0,
nR

T(V)W_l
To\Vo)

Almost there, but we typically want to see a relation between the pressure and volume, not just
. T _ PV
the temperature and volume. So use the ideal gas law = 5 toget
0 ovVo

nR
PV (V)W _
PoVo \Vo/
i.e., if we define
=1+ nk

we get

Multiply by PV to get
PVY = PV
This is the key result of adiabatic expansion — during the expansion, PV? is unchanged.

To conclude, several more points:

e The light-blue eq. we have above, relating the temperature and volume, can be rewritten

nR nR

as TVEY = ToV ™, e,
TVY=1 =T,y ™

e Recall that we learned that Cp = €y, + nR. Therefore, y can be rewritteny = 1 + Z—R =
|4

M' ie.,
Cy
Cp
e Valuesofy:Sincey =1+ E, its maximum value will be when Cy, is minimal.

Cy
Monoatomic gases have the lowest heat capacity and as we learned, for them

Cy = %nR, so the largest value of y will be 1 + —;“Z =1+ %, i.e.,
°n
2

Ymax = ¥ (He, Ne, etc.) = 1.666
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e For light diatoms from 100-2000K we learned that there are 5 active degrees of freedom
(3 center-of-mass, 2 rotations perpendicular to the diatomic axis), so for them C, = gnR,
Le,y=1+ Sn—R, 1e.,

ETIR
y(H,, 0,,NO, ...at room temperture) = 1.4

e For bigger and bigger molecules y will decrease, but will always be bigger than 1.

Example: 20 moles of ideal gas expands adiabatically from V, = 100L, T, = 300K

Questions: what will be:

e The initial pressure

e The pressure and temperature after the volume doubles in an adiabatic
expansion, presuming the gas is monoatomic

e The same, for a typical diatom.

Answers:

e We calculated earlier that for one mole of an ideal gas at room temperature and

25 L, the pressure is 1bar. Comparing to our case, and noting that P = n;l,

where again T = T,yom butn is 20mol rather than 1, and V is 100L rather than
25L, then the initial pressure is

20
P, =7 1bar = 5 bar
(don’t confuse the symbol for the initial pressure, P, with the symbol for one
atmosphere -- or bar-- P°)
e Next, for monatomic gases, y = 1.666. So during the adiabatic expansion
PV1666 s fixed.

Thus when V rises by a factor of 2, P changes by a factor of 27166, ie.,
5

21666 = 516666 bar = 1.57 bar.

P=P0'

Further, since TVY~1 = TV 0666 stayes fixed, then upon volume doubling,

T, 300K
= 506666  20.6666

T = 189K

e [ will leave to you to show that if the gas was diatomic, with y = 1.4, then upon
volume doubling
P = 1.90bar

(i.e., higher than for monoatomic gas upon the same expansion) and T = 228K.
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The picture above shows P vs. V for isothermal and for adiabatic expansions of monatomic and
diatomic gases, starting from the same initial state.

Note how as the molecule gets heavier, its pressure upon expansion gets closer and closer to the
isothermal expansion case.

Physically, the reason is that monoatomic gases have very little energy in them, only due to the
kinetic energy of the center of mass. So when they expand a little adiabatically and lose an
amount of energy through work,

dU = dw = —PdV (without being compensated by heat), this leads (for monoatomic gases) to a
percentage-wise big loss of energy.

In contrast, consider an ideal gas of big molecules with many active vibrations and therefore a lot
of energy. Then the same loss, i.e., the same dU = dw = —PdV, will have little effect
percentage wise (since U is so much larger in this case).

To exemplify again, say two gases with same number of molecules have initially the
same pressure and temperature and volume. Both expand adiabatically by the same

volume change, so both do the same amount of work of, say, dw = —10]. So dU =
—10J for both.
o . . . du 10]
The first is a monoatomic gas which has U is, say, 200J. So o T 200 — 5%.
. . . au 10
The second is an ideal gas of a large molecule, with U = 800], so o= 00"

—1.25%. l.e. the relative energy change is much smaller for the second gas, so its
relative temperature change will be much smaller.

2.11) Chapter 2: Conclusions

e In this chapter you learned the concepts of heat and work (disordered and ordered transfer
of energy) and the conservation of energy rule, in either microscopic

dU = dq + dw

or macroscopic form
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AU =q+w

Examples showed that while g and w are path dependent, AU isn’t.

e You learned that for ideal gases U depends only on T,
U=U(T)

and for a monoatomic ideal gas U = %nRT.

* You learned about a new state function, enthalpy, H = U + PV, such that at “usual”
laboratory processes, where P is fixed, dH = dq, or, for large changes (with P fixed),

AH =gq.
e For general materials, you learned the concept of heat capacities, e.g., C, = ;—g and we
14
understood why that means that €}, = Z—:|
14
.. __dq _ 6_H
Similarly you saw that Cp = E|P equals Cp = or |
For an ideal gas U = U(T) where the partial derivatives can be replaced by total
derivatvies, this implied C, = Z—:, Cp = Z—I; = Cy + nR (but only for ideal gases!)

e dH = dq implied that for continuous changes at fixed pressure AH = [ CpdT (with
appropriate limits) while for phase change AH was labeled appropriately as AHgygion,
AHy,p, etc.

These concepts were exemplified through expansion of ideal gases, e.g., at

e Fixed volume dw = 0 - dU = dq
e Fixed pressure dH = dgq

e Isothermal expansion, where for ideal gases:
av Ve
dq+dw=0—>q=—w=deV=nRTj7=nRT1n(7),
i
e While for adiabatic expansions dq = 0 - dU = dw — C,dT = —PdV, which led to
PVY = const.
during the expansion, with
=14+4—=—
Y C Gy
These results will be very important later.
e You further learned that the heat capacity of an ideal MONOATOMIC gas is a constant,

3 5
Cy = EnR (so Cp = EnR ) He, Ne, ....
while for gases of DIATOMIC molecules at room temperatures,
5
CV = EnR Hz, 02, NO, Nz, etc.

e And in general (without proof):

R
Cy = no (active degree of freedom)
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II1 Entropy

3.1) Overview
Here we’ll define dq in terms of a state function, entropy, labeled S. So

— erev

ds
T

we’ll explain what d g, is below.

Reaction theory (chemical thermodynamics) would be developed in the following chapters based
on the 2" law of thermodynamics:

The total entropy of the world never decreases (is constant for reversible processes and rises for
irreversible processes).

We’ll then learn to:

e Use the 2™ law to derive the efficiency of engines and refrigerators (not really chemistry,
but important culturally).

e Evaluate AS = [ % in different constext. E.g.,

o For fixed P: AS = [ Cp T

o AS for an ideal gas expansion, isothermal and adiabatic.
o AS for a mixture of two different gases — very important, non- intuitive result.
e And conclude by the 3 1aw, § - 0 asT — 0.

3.2) Definition of Entropy

q is not a state function, as we saw. This implies that we can get from an initial state V;, Ty, P; to
another state V,, T,, P, using different routes with different q.

We’ll state without proof: There is a state function, RELATED to g, called entropy. This
function, labeled S, measures disorder!

I remind you what is a state function: a function, like V,T, P or U and H which is independent
of history. For example, a cold-water tea-cup has a temperature of, say, 10°C regardless of
whether it was previously hot or icy.

In the same way, the disorder in a room or the disorder in a molecule can have a value, say

50.3 8% (these are the units, energy per temperature) — regardless of its history.

This entropy function is extremely important, and is related to q in the following way:

_ drey
T

so in a macroscopic change between an initial state (“1”’) and a final state (“27)),

ds

dgrey

S(TZ’PZIVZ)_S(T]JPI'VZL) = AS =fd5 =f
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Here dq,ey 1s the amount of heat spent in any real or fictitious reversible path that connects
the initial and final states.

Important: if the actual path is irreversible, you cannot use it to calculate AS. You have

to find instead a reversible path that takes you from the initial to the final state, and use
it to calculate AS. We'll exemplify soon.

To understand the eq. above deeper, refer to the figure. Consider two reversible paths. The
claim that S is a state function is equivalent to saying that each of these paths (or any other
reversible path) will be sufficient for calculating S!

P ®

I/

'a__(,rmﬁ& A) F 9,(0u+& B)

Bt eiffer rorfe wal do for calohdio
As | :

_ a2 - 29
bs = Gg 5 @f T
_ﬁ bt o revercitfs, |

Formally this means (presuming the two paths are reversible) that in spite of the fact that the heat
is path-dependent

q(route A) # q(route B)

i.e., in spite of

f dq # f dq,
route A route B

we can still make the integrals agree if we divide dq by T:

foerT o™
route A T route B T

You may be frustrated to hear that we don’t define the entropy directly, only the
entropy difference. Later on | will show you the equivalent statistical mechanics
definition for entropy, which does not rely on differences, and we’ll see that it matches
the thermodynamic entropy.
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Example:

Let’s show that the entropy difference is path-independent for our previous very simple example
of 1 mole of a monoatomic gas, starting from T = 300K, V = 25L, and ending at 1800K and 25L
(see figure.)

®~> £ Ve

L | A
0 A

Stinat = Sinitat = AS; + ASy; = ASy; + ASy, @

2V @ 7

%
Cueli <.
ellc: |
_‘é_’— @ ~ 0
q(cycle) = q; + qi; — Giii — qiv # 0 h )

But
AS(CYCIE‘) = AS[ + ASH - AS“,- - &Siv =0

Take first the clockwise route i + ii.

The change in entropy throughout leg i (with fixed volume, and P rises 3-fold from 1bar
to 3bar, so T also rises from 300K to 900K) is dq = C,dT, so

AS—] dq_f CydT
l legi T legi T

. . 3 . : .
But since Cy, is constant (CV = EnR) we take it outside the integral so

dT T(endleg) <9OOK

T nT(begin leg) " " 300K> =G In®

ASizCVJ
legi

In the second leg the pressure is fixed, and the temperature doubles (900> 1800K)

AS f CpdT (1800
..o= = n
" g T P 900

) = CP ln 2
So adding gives
AS =CyIn3+ Cpln2

What about the other (counterclockwise) path, iii + iv? It is trivial to prove that leg iii
has the same entropy change as leg ii,

ASi;; = C f ar =Cpl (600) =Cpln2
L P leglll T P 300 P
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and leg iv has the same entropy change as leg i, so this finishes the demonstration that
AS is independent of path.

End of Example.

We’ll now go and try to understand the basic ingredients in the entropy definition:

3.3) Meaning of Reversible

We finessed so far the meaning of reversible. It just means that a very small change can reverse
the path (not just stop it, but actually reverse).

For example, the flow of heat between your body (at 37°C) and the room (at 25°C) is
irreversible (we can stop it for a while by wearing an isolating cloth, but no small change can
reverse it so the heat would I from the room to the body).

A slow isothermal or adiabatic expansion of an ideal gas in a piston is reversible. That’s
because a slow piston expansion (see figure) will be slow only if at any given moment the
“hand” holding the piston from the outside exerts almost the same external force as the
internal force of the gas, P - Area.

Therefore, by a slight raise/lowering of the external pressure we can reverse the direction of the
process (form expansion to compression or vice versa).

If the forces were not almost equal than, for example if the external force is much
weaker than the internal, the piston will rapidly expand, not slowly.

hand pushes

In a reverisble process,
the external force must
almost-match P*A at any
stage during the
expansion/compression

v

Important to reemphasize: If an expansion is irreversible, you should evaluate AS not by the
actual (irreversible) path but by (any) different, reversible path.

Example of entropy calculation for an irreversible process: ideal gas expansion to vacuum
(see figure below).

e First put a separation in a container, and fill up one half with a gas. The initial state of
the gas is denoted as Py, V;, T.
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Then pock a hole in the separation. No heat is input (dg = 0), and the gas will transfer
irreversibly filling up the entire volume. There’s no work (no opposing force) so the
energy is conserved, and since for an ideal gas U = U(T), this implies that T is conserved

(so by the ideal gas law P will halve). Thus the final state will be (P, = %, Vv, =2V, T)

S /%or 14%9-‘51’0 p)ta,m,'m {r,, Yacuum |

Actus
oc(;’a;og Vacom ? o ° : o @0 ’o
Croo o° © po ©0
'ffv:T T % 2V T

R«E‘\RBM& Q’U. (-fur anchﬂjﬁna S)

o 90
ooc
Uon ao

|°\-' l Vi
sa,m,w "

.. . dq , .
Because the transfer is irreversible, dS # 7q (since dq # dqrey), SO We can’t use the

actual path for calculating the entropy difference upon expansion.

Note that even if the hole is small the transfer through the hole will be
irreversible; we could seal the hole and stop the transfer, but we cannot reverse
it by a small change.

To calculate AS, consider a completely different path which would lead however from the
same starting point to the same final point. That simplest path we can choose would be in

our case an isothermal reversible (slow!) expansion. For such as path, as we learned,
dqrey = dU —dw = dU + PdV = 0 + PdV = PdV

SO

2d 2pdV (%1 nRT 2dv V.
AS=f rev _ —=f —-n—dvanf —=ann(—2)
. T . T 1 1V

i.e., in our case of volume doubling:

AS =nRIn2
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Note that the ENTROPY INCREASES when the VOLUME INCREASES (at fixed T).
This makes sense since a bigger volume means more disorder, the atoms have
more space to roam through.

erev
T .

The importance of % indS =

. 1. . .
Physically, the reason for - Is: entropy measures how disordered a system is.

Think of dqey as a measure of how much “mess” (or “dirt”) is put into a system.

But we know that for a “clean” system (low T, even a little dirt dq,.., Will make it look
disordered, i.e., raise its entropy a lot. And indeed mathematically, dividing dq.y by T whenT
is small will magnity the effect of d gy, leading to a large dS

In contrast, for a “disordered” system (i.e., at a high temperature), adding more mess will not
make it look much messier. Then indeed, dividing dq by the large T will reduce its effect,
leading to a smaller dS.

Note: in statistical mechanics the energy and entropy are the fundamental quantities;
there, the temperature is defined by the relation between the entropy and energy,

. du , . o . . .
i.e, T = e We’'ll also see this relation in a latter chapter in thermodynamics — where it

is more of a curiosity than an important relation.

The importance of entropy comes from:

3.4) The 2" law: the entropy of an isolated system never decreases
(and remains constant for reversible processes)

The 2™ law expresses the fact that disorder cannot decrease in nature. All chemical reaction
theory is based on this fact, as explained later.

This is an extremely important law.

For example, we all “know” that a falling glass will shatter to pieces. But the
process-run-in-reverse is impossible -- pieces of the shattered glass can’t
recombine spontaneously to form a glass cup.

The first law (energy conservation) alone allows such an absurdity — only the 2"
law lets us know that the pieces cannot recombine. The shattering increases the
entropy of the universe; spontaneous recombination would have decreased the
entropy of the world and is therefore not possible.

The 2™ law is so important that we would spend some time discussing its consequences for
ENGINES. This is part of physical thermodynamic rather than chemical thermodynamics, but it
is an important culture.
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3.5) Engines

An ideal engine is in thermodynamics a device which works in cycles; after each cycle, the
engine is back to where it was (it is unchanged), but in the cycle the engine does a net amount
of work on its environment,
Note: it is easy to get confused on whether a quantity should be negative or positive,
since this depends on the definition of what is a system

(Example -- when the system does a work of 10 J on the environment, the environment
does work of -10J on the system).

We will therefore label quantities by their absolute value, and attach a minus or plus
to the absolute value explicitly when we need to. You'll get used to it quickly

Heat engines (the only ones we consider) are very simple: in each cycle they

e Take heat |qy,| from a hot object,
e Produce a neat amount of work |w|,
e And, as we’ll see soon, they also need to throw heat somewhere colder, labeled |q.|.

At the end of each cycle they (the engines) come back to , @ > Ve
where they started from (so they are reusable). £ @’\
18
This does not sound like the engines we know from cars, @
it is al h hing.
but it is almost the same thing m @

We have already seen something very similar to
this type of engines when we considered a closed
square cycle in a P vs. V diagram (see figure,

reposted here). @,
Cﬁq]i(— : ]
That device (the bottom part of figure, labeled @] ’

“cyclic”) produced a net amount of work, and Au =0, bir o
obtained a net amount of heat from the outside 1+o
work. At the end of the cycle the piston was back (2= 9, +3; ~%u - %)
to where it started from. wo.

But the prime example of heat engines, the Carnot engine, is slightly different.

Carnot Engines

Again the system is gas in a piston, but this time it would do the following (see the T vs. V
diagram in the next page):

e Stage 1->2. The gas isothermally expands at a high temperature, labeled T}, (i.e., the
piston is attached to a large hot object while it slowly expands).

e Stage 2->3. The gas adiabatically expands. T is reduced from T}, to a colder
temperature, labeled T,. The piston does work but no heat is input into it.
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e Stage 3->4. Now the piston is attached to a cold object (at T,.), and is isothermally
compressed at T,. An amount |q.| is given from the piston to the cold object.

We can determine the efficiency of such an engine. But first we need to define the efficiency!

| Wkt o

T aé;‘al ifie
adlla HTO
q T(_ "3

jssthtnnd

122, 3y 13.{-/,%4
60 diddi

et
>|W\
8
@ej ] TdeoJ revers{ul Lrging,

il =(ayf 44 (1 )

& . g
% - \%__C.\_ (lé {aw) )

Coefficient of performance

We’ll define generally a coefficient of performance of a device, as

amount of desired output

C.0.p.=
p amount of resource needed

The numerator and denominator depend on what device we consider (either engines, or an AC,
or a heat pump, or a refrigerator)

For an engine, and only for an engine, the desired output is |w|, and the resource needed is the
heat produced by the hot object |qy,| (e.g., heat produced by burning oil).

Note that for engines |q.| is not a resource — we produce it and damp it, so it does not enter the
definition of the coefficient of performance c. o. p.
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Also, for engines (and only for engines) we relabel the coefficient of performance as
“efficiency”, and replace its abbreviation by ¢ rather than c.o.p.:

¢ = efficiency(engine only!) = —

The amazing thing is that we can calculate the efficiency without calculating the detailed steps
in the Carnot engines, as we’ll show now.

And let’s go a step further in simplifications, and use numbers instead of variables. It is much
more illuminating and then it will be trivial to get the general equations.

So let’s say in the Carnot engine, T, = 1000K and T, = 400K.

We input to the engine in its higher-temperature stage an amount of, say, 500J. L.e., in the
isothermal expansion stage q;, = 500]

Now physically we cannot convert all this heat to net work after one cycle. l.e., w < g, = 500].

That’s because after one cycle, the net entropy change of the world (which must be
nonnegative) is the change of the hot environment, the change of the cold environment, and the
change of the entropy of the engine:

ASworla = ASengine +AS, +AS. =20

Among the terms:

e The entropy of the hot object decreased
500 ]

1000k K

Note the minus sign --- the entropy of the hot object decreases since it gives heat (or, as we
should say, energy in the form of heat) to the system

ASh =

¢ The entropy of the engine is unchanged (the engine is where it was after one cycle) so
ASsystem =0

e So we need to have AS. > +0. 5% since otherwise the entropy change of the world

would have been negative. And therefore:

e = T,AS, > 400K - (+0.5%) = 200]

1.e., we need to damp at least 40% of qj, to the cold environment, leaving at most 60% available
to work (i.e., i.e., w <300J). Le.,
£<0.6

In the general case, the expression is

<1--=
€ T

h

Proof: let’s repeat the previous derivation, replacing the values for T,, T}, etc. by variables. The
change of entropy of the world after one cycle is

lanl 14|

0 S ASWOI‘ld = ASengine + ASh + ASC = 0 — T_h _|_ TC
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1.e.,

T,
|CIC| = Ith T_’C1
So
T T,
wl = 1au] = lacl < lanl = laal -7 = (1=77) 1l
i.e.,
|l T

as we stipulated.

Example for Carnot Engines

Take a reversible Carnot engine, full of ideal gas (air), with
V, =1L, T, = 1000K, P, = 10P°
V, =2L, sameT), (so P, = 5P?)
T, = 300K

Question: Determine its:

e Efficiency
e Total work obtained
o P, Vs,
o P,V
Answer:
o £=1-Tc=0.7
Th

e w =g ¢ and we learned that in an isothermal expansion:

£
qn =nRTIn—=nRTIn2
Vi

Since nRT = P;V; = 10 - 100%- 1L = 1000 J, it follows that

qn = 1000 - 0.693 = 693 ]
So
wW=gq, -€=693]-0.7=485]

e The 223 stage is adiabatic, so
T3V3y—1 — TZVZ}/—l
Divide by T;
T.
-1 2 -1
A (T_s) v
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Take to the power y—il, to get

1 1 5
T,\7—1 1000\ (723 10y2
vi=(z) ve=(3a0) Y 2= (3) - s0eL

7 o
where we used y = s for air, i.e., N, and O,.

Note how huge this volume V5 is — we need to expand the initial volume in this adiabatic
expansion, V5, by a huge factor, 20.3 (from 2L to 40.6L) to lower the temperature by a
factor of 300/1000=0.3!

Similarly, we can use the adiabatic expansion relation between P,V to get
P3V3y — PZVZV

which yields

7

P.=P (VZ)Y—OSP" ( 2 )§—00074b
3= 2\y,) T 206) ar
0.0074

1.e., a ratio of = (0.0148 compared with P,, i.e., almost 70 times lower!

P4, V4: We proved that the V5 is 20.3 times larger than V,, and this is after reducing the
temperature from 1000 to 300K. The transition from stage 4 to 1 is also adiabatic, and the
low/high temperatures are the same as in the transition from stage 2 to 3, so they also
obey the same relations, i.e. V, will be 20.3 times bigger than in stage 1, and P, will be
0.0148 times Py,

i.e., inour case (as V; = 1L,P; = P°): V4, =20.3L,P, = 0.0148 P°

3.6) Heat pumps, Refrigerators, and Air conditions.

Let’s run a Carnot engine backward!

Formally: take heat from a cold place, add some work, and throw the combined energy as heat
into a hotter place.

This is the principle of heat pump, refrigerators, and air conditions: taking heat from a cold
place (i.e., taking energy in the form of heat from a cold place) adding some work (i.e.,
electrical power from an outlet) and putting it to a hotter place.

The mechanism is the same for all these devices, though the purpose is different:

Refrigerator: remove heat from the inside of the refrigerator, damp it to the room
AC: removes heat from the room and puts it into the (hotter) outside

Heat pump (in practice often an AC running “in winter mode”) removes heat from the
cold ground, and puts it to a room.

Example: Heat pump. say the ground is at 280K (about 7°C) and the room is at
300K. We remove g, = 1000J from the ground in a cycle

Question: how much electricity we need to damp as much as possible heat from
the ground to the room?
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Answer: The entropy loss from the ground is (note the minus, since we remove
heat from the ground):

lq.| 1000] J
AS, = — =— =—-3.57=
¢ T, 280K K
Since AS,ump=0 after one cycle, this negative entropy change has to be offset by

an entropy gain in the room (the hot environment), i.e., we need to have

J lanl  lqnl
3.57= < AS), = o =
F3o7 = 8o =17 =300k

lgn] = 3.57 K 300% =1071]

So at least w =71 J must come from the outlet, since, |q,| = |q.| + [w]

Next, the coefficient of performance is defined here, as always, as c.o0.p.=
valuable output

resource used

Since we want as high a |qy,| as possible (high heat in the room) and the resource
is the work from the outlet, we get in this ideal case (where |g,| = 1071, |w| =

71])
c.0.p. (heat pump) = %
So in our case
_ 1071] _1s
Cc.0.p.= 1] =

i.e., for every 1 Joule we put in from the outlet, we get 15 Joules in the room.

Note: contrast this with an electrical space-heater, where we would need w =1071J
from the heater to produce 1071J of heat.

A heat-pump requires in our case 15 times less energy-from-an-outlet (w) to produce
the same heat in the room (gp,).

That’s because a heat-pump also transports lots of heat from the ground to the room,
i.e., |w| is small since |g.| can be quite large;

while a space heater can only produce as much heat as |w|.

We can now derive the coefficient of performance for a general case as following; NOTE THE
SIGNS!

We throw heat on the hot environment (so +), and take heat from the cold (so -).

|qn | _ lqc| _ lqn | _ lqn| — |w|
Ty T, T, T,

0 < ASyorq = AS + AS, + AS, = 0 +

1e.,

57



(nl = W] < qnl 2
dn lw| < |qp T,
1e.,
@l (1-77) <
dn T, < |w|

i.e., the coefficient of performance (in this case only!)

_lanl 1 Ta
|W| _1_£ Th_Tc
Th

C.0.p. (heat pump)

Note that, as the example before showed, the closer in temperature are the hot and cold
environments, the higher the coefficient of performance will be. (In contrast to engines,

where the efficiency gets better as ;—C get lower)
h

In the HW you will be asked to derive the coefficients of performance for AC, and for
Refrigerators.

This finishes our foray to physical thermodynamics.

3.7) Calculation of entropy changes

Let’s make a list

e Cyclic processes: AS = 0 (e.g., Carnot engines)
e Reversible adiabatic: dS = @ = d?q = 0 (since dg,, = dq = 0)

e Arbitrary change for an ideal gas from a starting stage “i" to a final state “f”:
Recall that for ideal gas dU = C,, dT, so:

dq = dU — dw = CydT + PdV (ideal gas only)

Then (for ideal gases only!)

AS_J‘alq_fC,,dT+PdV_J‘C'ValT_l_fnRTdV_C1 (Tf)+ RI (Vf)
— )T " T )T yr &0 T i) Ty

l

Note that this result is true regardless of the actual trajectory taken.

e Phase changes: usually done at constant T, P so

i dH
P fixed: dqyep, =dH — dS = T
But since T is fixed, we can integrate to get
AH
AS = T (phase change)

e Risein S when P is constant for a fixed phase: similar to the rise in H when P is constant
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CpdT
T

AS:SZ_SIZJ

1.e., if Cp is approximately temperature independent (for the given phase)

T.
AS =S5, —S; = Cplog <T—2) (temperature change for a given phase)
1

0O O O O O

Example (per the enthalpy example in the previous chapter): what’s the entropy
change when ice at -50°C (“i” state) is melted and then the water is vaporized till
we have vapor at 130°C (state “f”), and both the initial and final states are at
1bar.

Answer: there will be again 5 stages:

Raising the temperature of the ice from -50°C (223K) till melting,
Melting (“fusion”) at 0°C (273K),

Raising the temperature of the water till 100°C (373K),
Vaporizing at 100°C,

and Raising the temperature of the vapor to 130°C (403K),

So altogether:

_ 273\ AHpsion 373\ AHyqp
S;—S,=C 1( ) Cp(wat 1(—) ~Tvap
=S = Cplice)In{Zo3) + —ogic + Ce(waten) In {522 )+ =2a¢
+ Cp(vapor) | (403)
p(vapor) In (=

and recalling that in 1Kg of water there are 1000/18=55.5mol, and that (see
prev. chapter):

N J o J
Cpm (ice) = 37 Kmol’ Cpm (water 11q1}1d) =75 Kmol’
Cppy (water vapo]r) = 36m, ]
AHfus = 6000@, AHvap = 40650m
we get
S, —S; =555 1<37 ] 1 (273)+6000 ] + Cp(water) 1 (373)
T on = o MO ol T\223) T 273K mol P o 273
+40650 ] +Co( ) (403))
373K mol ' P PO 373
= (415 + 1220 + 1300 + 6050 + 155)% = 9140%

Note that out of the five contributions (in bold), two thirds are from the 4t one,
the vaporization of the liquid, which increases the disorder significantly.

Interestingly though, the 3™ and 2" contributions are the same, i.e., raising
liguid-water temperature from freezing to room-pressure-boiling, i.e., 0 to
100°C, has as much effect as melting ice!!

End of example.
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The next two entropy change calculations are interesting and non-intuitive, so we put them in
special sections:

3.8) Entropy changes when superheated water turns to vapor (or
supercooled water turns to ice)

Superheating

Water that’s heated in a very clean and motion-free environment (e.g., a non-rotating microwave
oven in a very clean room) can be heated, at room pressure, past 100°C. It is labeled then
“superheated” water. That’s not the thermodynamically stable state of water at that temperature
and pressure (i.e., above 100°C for a pressure of 1bar), as the stable state then is vapor; but the
water does not reach the stable state since it needs to form bubbles to turn from liquid to vapor,
which require some energy.

We therefore say there’s a Kinetic barrier to reach from the unstable superheated state to the
stable one. If there’s a little bit of motion or dust that can give enough energy (or lower the
barrier) to overcome the barrier, and then the superheated water quickly turns to vapor.

That’s why sometimes you heat water in a microwave, nothing seems to boil, and then you touch
the glass and puff...almost all the water in glass vaporizes!

Supercooling

An analogous phenomenon happens when we lower the temperature of liquid water to 0°C and
below — if there’s no dust for the snowflakes to crystalize on, the water remains in a liquid form
(supercooled liquid) that’s very unstable and will turn immediately to ice if we shake it or put
dust in the air.

Note: except for the instability, supercooled and superheated water are “regular”, i.e., they have
the same heat capacity, and other properties like “regular” water (i.e., for 1 bar, like water
between 0 and 100°C)

Question:

What is the difference in entropy between supercooled water at -10°C (263K) and ice at this
temperature.

Answer:

First, note that it is easy to give the wrong answer! i.e.,

Qactual _ AH(T = 263K)
263K 263K

where gacrual 1 the heat released when the supercooled water at -10°C turns at water at this
temperature.

This “actual” process is irreversible — once supercooled water starts turning to ice, it won’t stop,
and will definitely not reverse via a tiny change!

AS #

The reversible process is indicated in the figure (all at 1bar)

e Slowly heat the supercooled water from -10°C to 0°C.

e At 0°C it turns reversibly to ice, by cooling it (with possibly a tiny bit of shaking to
ensure it doesn’t turn to supercooled water).

e Then, once you cool all the water at 0°C to make ice, cool the ice to -10°C.
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The entropy change, calculated along this actual path, is:
AS = AS(water, —10°C - 0°C) + AS(water — ice, 0°C) + AS(ice, 0°C » —10°C)

273K) AH;,5(0°Cs) 263K)
263K 273K 273K

And based on the numbers we gave beforehand we can calculate this entropy change.

= Cp(ice) In ( + Cp(water) In (

To conclude the chapter:

3.9) Entropy changes in mixing two different gases

Start a container with two separate gases, occupying volumes V;, V,. For simplicity assume the
pressure and temperature are the same, so by the ideal-gas law

i 1 (_ nRT)
n, B n, P
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Question: remove the separation. What’s the entropy change?

Answer: while q,crya1 = 0, for AS we need a reversible route! See above

e Expansion Step: First increase isothermally the volume of each of the gases. The left,
yellow one, from V; to V =V, + V,, the blue from V, to V.

The entropy change in this stage is, as we learned

%4 %4
ASexpansion = M RT In (71) +n,RTIn (172)

e Then place special membranes:

o On the right side of the yellow molecules’ container place a membrane that blocks
the yellow molecules, but is transparent to blue molecules. (This is theoretically
possible if, and only if, the molecules are different; even different isotopes
can be formally treated this way, e.g., mixing of C12 and Ci3.)

o And an analogous membrane on the left side of the blue-molecules container, that
blocks blue molecules.

e Now take the containers, and slide them through each other, as if they were
interpenetrating rods in an umbrella.

To be precise, we need to first ensure that one chamber is slightly smaller than
another, say the one with the yellow molecules; and then when the two
chambers touch each other, put the blue-molecules-blocker membrane on the
left of the yellow-molecules-blocker membrane. (plot it and see.)
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Think about it and see that the yellow molecules volume will not change (they can’t pass
their own membrane, but can freely move through the blue-molecules membrane).

Gently slide the two containers into each other it until all molecules occupy an
overlapping volume, V (i.e., the original volume).

The key is that the entropy change in this “merging” (“sliding-in”) stage is 0! The
merging is done without energy change and without work (each gas is fixed at its box), so
there’s no heat. Further, the merging is completely reversible — at any stage we can
“unmerge”.

Therefore, the total entropy change is just from the first, expansion step, i.c.,

vV %4
ASpix = nyRT In (71) + n, RT In <V_z)
Now define the fraction in the gas at the end to be
nq nq
xl - =

= n=n,+n
n n, +n, ( 1 2)

and similarly define x, = n,/(n; + n,); of course x; + x, = 1 (if the mole fraction of
the first gas is 1/3, the mole fraction of the 2™ gas will be 2/3).

Son; = xyn, n, = x,n.

. V ny . . . .
Further, since V—l = n—l, 1.€., the molar ratios are the same as the volume ratio, the molar fraction
2 2

will equal the volume fraction:

Therefore:

1 1
ASpix = NRT (x1 In (x_1) + x, In (x—z))

i.e., the entropy of mixing per the total number of moles is
ASmix

1 1
——=RT (x1 In (—) + x,In (—))
n X X,
Note that both terms are positive; that’s because, since x; < 1, its inverse is bigger than
1,soln ( !

x—) > 0. Thus, as we know, mixing is spontaneous, i.e., AS,,;, is positive.
1

Exercise (at home): what’s the entropy change when 1 Liter of He is mixed with 2 L of air

(essentially N,) when both gases are initialy at Troom and room pressure.

3.10) The third law

The third law is treated in Levine in Chapter 5 (and 21), but I find it easier to treat it here.

The third law is that at zero temperature, the entropy of a HOMOGENOUS substance in
equilibrium becomes 0.
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(There are some difficulties associated with heterogenous compounds, since there’s disorder
associated with exchange of particles; let’s not worry about these)

The key is that at zero temperature, there is no disorder.

That’s easy to understand in Stat. Mech., where entropy is related to the number of
“overall quantum states” (see the stat. mech. set of notes) -- if we also invoke
quantum mechanics.

Formally, at zero temperature the number of available states for a system is 1; that’s
because the system will automatically be at the lowest (ground) state.

For example, a bunch of many harmonic oscillators will be each at its ground state.
There will be NO UNCERTAINTY about where the system is at zero temperature; and no-
uncertainty means zero entropy.

You may wonder how the 3™ law is commensurate with what learned, that the entropy increases
by nR In 2 for an ideal gas when we double its volume, independent of temperature! (So it seems

that the entropy won’t be zero at zero temperature — we just need to increase the volume and it

will increase...)

There are 2 (related) answers to this paradox

)

The practical answer is that substances do no remain ideal gases due to attractions,
they become liquids and then solids as we reduce the temperature.

But there is a fundamentally more important reason than just attractions. Quantum
mechanics tells us that nuclei have an “extent”, they are not just point particles. In an
ideal gas (i.e., without interaction), as the temperature is lowered, this “extent” (i.e.,
the de Broglie wavelength) of the nuclei is related to the temperature — as the
temperature is lowered the de Broglie wavelength INCREASES further and
further -- until eventually it will be comparable to or even larger than the distance
between the particles; in that case, we cannot think of the molecules as a classical
ideal gas, and the thermodynamics derivation becomes invalid.

3.11) Conclusions: Chapter 3

We first learned

dqrey
T
We stated that for an isolated system dS > 0 (2" law)
We used the fact that dS is a state function to obtain the efficiency of engines and the
coefficient of performance of ACs, heat-pumps, etc.

ds =

The key was using a hot-environment and a cold-one (as in the Carnot engines),

lqcl — lqn!

where we realized that for reversible (optimal) operation, e
c h
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For example, for ACs, refrigerator, etc., while |q;| needs to be bigger than |q.]|,
it does not need to be much larger if the temperature difference is small. So for
heat pumps, for example, we can move heat from a cold place, and need to bring
just a little electricity to damp the total to a hot place.

e We realized that when raising temperature where the initial and final pressure are equal
we can calculate AS rom a fixed-pressure path:

CPdT Tfinal
AS = f =C ln( )
T P \Thnitial

while for a phase change

g = AH(T = Tphase change)
T,

phase change

e We derived the formula for the entropy change for an ideal gas upon an arbitrary change
of T,P,V

. dU — dw dU + PdV CydT nRdV
AS(ideal gas) :j 7 :j = :J —t+—

T Ve
ZCVIH( flnal)_l_ann( fmal)

initial initial

e We derived the entropy of mixing of ideal gas. We saw that the entropy rises in mixing
two different gases can be interpreted as the entropy rise when each gas separately
expands to fill the full volume; once the two gases are separately occupying the final
volume, the entropy of “merging” them together is actually 0!

e We learned the 3™ law, entropy vanishes at 0K — which we understood as quantum
mechanically a system at 0 Kelvin is in a single lowest overall state.

Relevance to chemistry

The stuff we learned is interesting and abstract, but in its present form is not trivial to apply for
reactions. Take the simplest reaction: phase change. And consider, e.g., supercooled water at
say -10°C.

We know that water has a higher entropy than ice. So why does supercooled water turns to ice?
That’s because when it does, it releases heat. This heat goes to the environment, and raises the
entropy of the environment.

So the total world entropy rises
AS,or1qa = AS(super cooled water — ice) + AS(environment) > 0
negative + positive = net positive
so the overall process is spontaneous.

In the next chapter we’ll learn about a more direct way involving system-only quantities to
determine if a reaction will happen.

65



IV. Gibbs Free Energy

At a specific T, P, consider liquid water. We know that it contains several molecules: mostly
H,0, but also OH™ and H™.

All 3 species are in equilibrium. We know from 20B that this is enough to determine their
concentration. In this chapter we introduce the tool which allows this: the Gibbs Free energy (or
just Gibbs Energy). We’ll derive the E = mc? of chemical theormodynamics:

G is minimum in equilibrium (for fixed T, P).

with plenty of consequences, discussed here.

4.1) Overview
Roughly, this chapter has two parts.
First, the Road to Equilibrium at fixed T (and later also fixed P):

e  We know dSy,iy = 0. We’ll get an expression involving the system alone (the Clausius
relation):

TAS = q
e We’ll then define the Gibbs Free Energy
G=H-TS=U+PV-TS
and get that, if any electrical work (labeled wg; ) is applied or obtained from the system, that

dG < dwy, when T and P are fixed.
When no electrical work is obtained or applied, dG < 0 (at fixed 7, P), so at equilibrium G
is minimal.

e We’ll introduce a very important quantity, the chemical potential,
G

onlrp

We’ll see, for example, that equilibrium between, say, 4, B in the reaction A — B simply
implies
Ha = Up

while if the products side is favored, then u, > ug and vice versa. Extensions to more
species, different stoichiometric coeff., etc. are trivial.

This equation is the core of chemical thermodynamics!

The next part of the chapter deals with changes of T, P

e Moving then to system in equilibrium where T and P are changing, we’ll find, e.g.,

dU = —PdV + TdS, dG = VdP — SdT
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and use this and other similar expressions to derive many interesting mathematical
relations involving P,T,V,S,and U, H or G.

We’ll see that these relations can be used to experimentally obtain S (and therefore G!).

Note: this is a very long and difficult chapter. Do lots of HW, practice makes perfect!

4.2) The Clausius relation.

Take an isolated system (where the environment is not connected to the system, so only the
system can change).

Then (Chapter 3) we know that S cannot decrease with time. Therefore, in equilibrium,
S (isolated system) is maximal.

However, chemical reactions are generally done in non-isolated systems. There, the entropy of
the combined system-+environment (i.e., the entropy of the world) is nondecreasing, and is
maximal in equilibrium (see figure below).

EC‘UI’\‘H\?T‘NW ' SUn’J\IQr.‘:JL.' maxima)

-F-_ - x ‘ _ ‘
Norhwn -
S@N\Jm@ QB\\J \l ¢

e g MO-‘F;“R\/
oS —o

£ime
This is not convenient, we want to refer only to system quantities. To do this, we’ll need some
“tricks”.
Thus, “world”, i.e., the system + environment, has non-decreasing entropy
0<AS+ ASenvironment

So AS can be negative (as in, e.g., freezing water), as long as this is compensated by a rise in

Senvironment-

Now let’s assume the surroundings are somehow “big”, and are at an essentially fixed
temperature T.

The key realization is that regardless of whether the process in the system is reversible or
irreversible, all the ENVIRONMENT will feel is that a little bit of heat was given or taken
from it.
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Thus: any process, reversible or not for the system, will look reversible to the environment.

If the heat input to the system is labeled dg, the environment heat-“input” will be —dq. The
change in entropy is then

dq

dSenvironment = - T

Therefore, since the change of entropy of the “world” is the combination of the system and the
environment, and since that total change of entropy must be non-negative, we get:
dq
0 < dSworla = dS + dSenvironment = dS — T

(and recall, 0 = dS,, 14 for reversible processes only, and 0 < dS,,1q for irreversible) i.e.,
dq<TdS

and the equality applies if, and only if, the process is reversible. This is the Clausius relation.

Example: Say there’s a process where the entropy change of the system is dS = 20%

and during that process the system is attached to a heat bath with temperature T =
400K (the “environment”).
Questions: can there be a process where
(i) dq=6000J in heat from the environment?
(ii) What about 8000J?
(i) and 12000J?
Answers:
(i) Start with the first case (dg = 6000]). Let’s see if it fulfills the Clausis relation.

Since TdS = 400 * 20% = 8000], we get
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6000] =dg < T dS =8000]
So the process is possible and will be irreversible.

To understand this in more fundamental terms, note that the environment lost 6000J.
So its change of entropy would be

dq 6000] |
dSenvironment = _? = — m - — i
and therefore the change of the entropy of the world is
J J
dSworld =dS + dsenvironment = ZOE - 15§ >0

i.e., the process is possible and irreversible.

(ii) Similarly, when dg = 8000 ], we can repeat the math above to show that both
dq and TdS are equal (i.e., each is 8000]), so the process is reversible (and therefore
allowed).

Another way of saying that is that
] dq ] 8000]
dSworla = dS + dSenyironment = ZOE - ? = OE - m =

i.e., the process is reversible.

(iii) Finally, the last case does not obey the Clausius relation (dg = 12,000] is larger
than TdS = 8000J), so it is impossible.

Indeed, if the heat input to the system would have been so large (and positive), that

would have meant that the entropy change of the environment would have been large

(and negative), dSeynironment = — 1:53}2] = —30 %, so the total change of the entropy of

the world would have been dSyoria = dS + dSenvironment = 20 — 30 = —10 ie,

the world’s entropy would have decreased — and that’s not possible.

4.3) The Gibbs Free Energy

Next, we’ll convert the Clausius relation to an equation about a state function of the system.
Start with:

First case considered: purely mechanical work

So far we only considered mechanical work; then, recall dU = dq + dWyech,
i.e.,dU = dq — PdV. Recall also that we defined H = U + PV, which will therefore fulfil,
dH =dq+VdP

Thus, we recall that for fixed pressures

dq = dH (P fixed)

Combining with the Clausius relation, dq < TdS gives
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dH —TdS < 0 (P fixed, only mechanical work)
Note that this equation refers purely to state variables!
Now define a new state function, the Gibbs Free energy
G=H-TS
Then
dG = dH — TdS — §dT

Let’s look at processes happening at fixed temperature (in addition to being at fixed pressure.)
Since dT = 0 for fixed temperature

dG = dH — TdS (T fixed)
Therefore combining the last two turquoise equations, we get
dG < 0 (P and T fixed, only mechanical work)

Thus, in processes (primarily reactions) in which the pressure and temperature are fixed, the
Gibbs free energy decreases! Or put differently: at a given pressure and temperature, the Gibbs
free energy will be a minimum in equilibrium!

See the figure: it shows that we converted the statement that the world’s entropy never
decreases (an earlier figure) to a statement that, for a restricted set of processes (fixed P and
fixed T') a system quantity decreases

Fixaw 1,2

S(_u_hi,g__@ moi mal <> G‘;Hm minimal

+ [y e

G Syster A avm
20,4.

L

£ime

Example: consider a molecule we’ll label “A”, and specifically consider its solid and
liquid forms. At room pressure, and at a temperature of 77°C (i.e., 350K):

o The energy of the solid is 90 i;
mol
o and that of the liquid is 95 i;
mol
o further, at that temperature the entropy of the solid is 50 $, while that of the
L J
liquid is 80—K mr
Question: which form will be more stable at this temperature?

70



Answer: let’s calculate the Gibbs free energy, G = U — TS + VP.
Since we consider solids and liquids (both: “condensed phases”) which have very low
volume, we can ignore the V'P term.

Note: for water at room pressure:

Py = 1bar= 18" ~ 20U 402 % ]
= * —_— (. - = -
m ar mol L mol mol
Small indeed
Therefore, for the solid:
J J J
Gsolid = Usolid —-T Ssolid == 90,000@ - 350K . SOM - 72,500m
While for the liquid
J J J
Gliquia = Uiiquid — T Siiquid = 95,000m — 350K 80m = 67,000m

Therefore, since Giiquia < Gsolid, the compound will be a liquid at this temperature.

Next Example:

Areaction A = B has,ata T = 27°C = 300K, a reaction entropy AS = 40 ﬁol, and a
. 10X
reaction energy AU = 10 -

(Note that we generally don’t write the “m” molar subscript in reactions, and
usually refer to “one-mole-of-reactions”. More details in Chapter 5).

Question: would the reaction take place in an “elastic balloon”, placed insidea T =
27°C heat bath inside a room (with room pressure) if:

(i) A, B are liquids; or

(ii) A'is a liquid; B is a gas

Answer:
T=const., P=cons., so we need to check AG.
AG =AU+ PV —TS) =AU + PAV — TAS (since P, T both fixed)

Consider now the two cases:

(i) Both A, B are liquids: V is small. So

AG =~ AU —TAS = 10,000L — 300K = 40L = —2,000L
mol Kmol mol

So the reaction will proceed, B is more thermodynamically stable than A.

(ii) B'is a gas:
J

AG = AU = TAS + PAV = =500 —— + PV;,(B)

(Note that we write AV = V,,(B) — V,,(A) = V,,(B), since V},,(A) < V,,(B) as A
is a liquid, B a gas)
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. : _ _ ] ~ J
But since B is a gas, PV,,,(B) = RT = 8.3 — 300K = 2,500 —

So

AG = —2000—— + 2500—— = 500——
mol mol mol

i.e., the reaction is not favorable.

4.4) The Gibbs Free Energy: allowing for electric work

So far we considered only mechanical work. We’ll now consider also non-mechanical work,
which we’ll label as electric work.

We’'ll see in this section that with electric work we can compensate a reaction barrier,
or, for spontaneous reactions where AG < 0, we can use the reaction to produce
electric work.

When current runs from your outlet, the electrons run (in average) in the same direction. The
electrical energy transfer is therefore ordered, so it is work.

Note: there could be other forms of non-mechanical work, e.g., magnetic, but we label
them all as “electrical”.

Let’s repeat then the derivation from the previous chapter, but allow now for electric work
dU =dq +dw = dq + dWpech + AWelec = dq — PdV + dw e
The enthalpy is defined always as H = U + PV, so inserting we get
dH = dq + VdP + dwgec
And for a fixed pressure case:
dH = dq + dwgje. (P fixed)
Or simply dH — dw,;,. = dq (for P fixed).
Inserting the Clausius relation, dg < TdS, gives
dH — dwg. < TdS P fixed.
As before, since G = H — TS, and since at fixed T we have dG = dH — TdS, we get:
dG < dwg,. (P,T both fixed)
which when accumulated gives
AG < Welee (P, T fixed)

So in general the amount of electrical work given has to be at least the change in G or
higher. If there’s an equality sign, the reaction is reversible, otherwise, it will be irreversible.

Example”
Question: Take the example from a few pages ago.:
o Calculate the amount of electrical work needed, or that can be extracted, for the
liquid-liquid case.
The same, for the liquid --> gas case.
At which temperature would the liquid-liquid transition be in equilibrium
without inputting/extracting electric work (estimate).
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Answer:

J

o Inthe first case, AG = —500 —, so we can extract up to 500m+)1 of electrical

mol

work (i.e., Wejee Can be as negative as —500# in which case it will be

reversible.)

And If W is less negative, e.g.,, we extract 300 J/mol or O, then the reaction is

irreversible

o Inthe 2" case, AG = 2000% so we need to input at least zoooﬁ for the

reaction to proceed (and if we put 2000 J/mol it will be reversible)

o It would be reversible without inserting or removing electric work at a
temperature T* where AG(T*) =0, i.e.,

AH(T*) =T* * AS(T*) =0

This implies that

_AH(T)
~AS(T)

*

At this point let’s approximate that the enthalpy of reaction does not vary much

with temperature, and the same for the entropy of reaction, so that we can

replace both their values at their values at room temperature

_AH(T*) _ AH(T = 300K)
T AS(T*) ~ AS(T = 300K)

*

And since it involves liquids, we can replace AH by AU, thereby getting

J

AU(T = 300K) 10000—
L ) _ mol _ 550 k.
AS(T =300K) 4o _J
K mol

Note: if we were told the heat capacity difference we could have done a
little better, since we know that both the enthalpy of reaction and the
entropy of reaction depend on ACjp, i.e.,

AH(T*) = AH(300K) + ACp * (T* — 300K)

300K)

However, that would have produced a complicated equation, and we
were anyway not given ACp, so we ignore it.

AS(T*) = AS(300K) + ACp * ln(

END OF EXAMPLE.
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We’re now ready for the highlight of the course:

4.5) Chemical Potentials

The chemical potential of a species in a specific phase measures the “tendency” of the species to
react with other molecules or to “change phase”. In short — the tendency to change.

Let’s first see this for two phases. Say a species A can exist in two phases.

Our discussion is general, for any two substances and/or phases, but as an example think of “A”
being sugar or salt, and the phases being:

Phase 1: A(pure, solid) — e.g., pure sugar blocks
Phase 2: A(solute in water) — e.g., sugar in water.
This is just an example, anything else will do.
The general statement is then:

If uq < p, the material would move from phase 2 to phase 1, and vice versa; so in equilibrium
"1 = H3.

Side note: This is reminiscent of what we know about temperature and pressure

If T, < T, (and no work it involved): heat is transferred from 2 to 1; in equilbirum
TZ = Tl

If P; < P,: mass moves from 2 to 1 (in equilibrium P; = P,)
Proof: say T and P are identical but equilibrium was not yet achieved. Formally,
G = G(T,P,nl,nz).

Say we fix T, P but change the number of moles, to n; + dn;, n, + dn,. The change in Gibbs
free energy will be, using what we learned on partial derivatives:

dG = G(T, P,ny + dny,ny + dnp) = G(T, Pyny ) = g_ni - m +§_:2 n PTdn2
2P, 2P,
Now define
G
= 6_111 ny,P,T
G
= onl
So

dG = pdny + pydn,

So far this was general. Now consider what would have happened if we moved a tiny number of
moles from phase 1 to 2; in that case dn; = —dn,.

For example, say we moved 0.01 mols from phase 1 to 2, then
dn, = —0.01mol, dn, = +0.01mol.
Then:
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dG = +0.01mol (1, — py)
Therefore, if u; > u,, then dG > 0!

Since we know that for a fixed T, P a system would like to be in the state with the lowest G,
then in that case some material would spontaneously transfer from phase 1 to phase 2. (For our
example, this will mean that some of the liquid vaporized-see figure).
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The process will go on until one of two things happen:

e Either the u's change as the material transfers till eventally p; = y, .
e Orall of phase 1 has been converted to phase 2.

Before going on to examples, we need one more fact:

For a pure phase: u = G,,

A substance in a pure phase could be for example:

e Pure liquid (pure water)
e Vapor made from one compound (He in a balloon)
e Pure solid (pure ice)

Examples for what is NOT a material in a pure phase:

e Water with sugar
e Air (essentially 80% nitrogen, 20% oxygen)
e Water mixed with ethanol
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When a substance is in a pure phase, its chemical properties are independent of the number
of moles (1gm of sugar has the same properties at 100gm!) so its Gibbs free energy is
proportional to the number of moles

G = G1 = anml(P'T)

Therefore

0(n,G,,,(P,T)
o = 2 o, ) Gute)

So the chemical potential is simply the molar Gibbs free energy!

Note that this is not true for compounds in solution; example — sugar in water.
For a fixed amount of water, for example, the taste (and other chemical
properties) of the solution will depend of course on the amount of sugar. A
water cup with three sugar cubes is different than with one!

Now we can proceed to our example:

(VERY LONG) Example: “solid” €<-> “solute”
reaction.

Notation: ( 0} ‘
o, 1 .+'{ /
! \ \ | [
y N \ [ [~ kj
e 1, isthe number of moles of solid “A”, L )<

A
® 1, isthe number of moles of the solute “A” in *\ /S\
. A \ )
the solution, and ny, o the number of moles of \ J

LI

the water solvent.

The Gibbs free energy will be the sum of the solid + liquid parts
G = Gsoria + Giiquia

e Solet’s say that: the molar Gibbs free energy of solid “A” is G,,;(P,T) = —80 mk—(])l Since
the solid is pure, the Gibbs free energy is proportional to the amount of ny, so Ggyjiqg =

anml(PlT) = _nl . 80£

mol

K] k] n
® And say that Gj;qyiq = N,0 - IOE +n,-20—In (—2)

mol nH,0
(this is some function | made up which is vaguely reminiscent of the correct behavior —
as we’ll see later).

Questions:

(i) Determine the chemical potential
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(i) If we pour into a container with 200 moles of water, 4 moles of solid “A” (think of
pouring 4 moles of sugar), what will be the equilibrium amounts of solid “A” and solute
“A”. Determine it both graphically (by drawing G) and from the equation for the
chemical potentials

(iii) Same for pouring 1 mole of solid “A” into the same 200 moles water container.

(iv) What is the chemical potential of water and is it relevant to the preceding parts.

(v) How much electrical work can we get in part (ii) — determine your answer graphically.

Answers
(i) The total G is
6= —n - 80—ty o 10—L 41, - 20— 1o < 2 )
! mol Hz0 mol = 2 mol 8 Ny,0
The chemical potentials are then
oc d <n1 . (—80 mk_(])l) + (n, — independent part))
u(4, solid) = u, = o = o
K]
- 80—
mol

while the chemical potential of the solute-A is

0 (nz . ZOﬁln( L ) + (n, — independent part))

N G mol ~ \ny,o
u(4, solution) = u, = o o
: ny
- 20 k] ) o (nz n (nyzo))
mol on,

Differentiate each term

M2+ 108 NH,0 _dnz ln( n; >+n " NH,0
= S —

an, dn,

n, 1 1 n,
=In +n, 55— ——=1In +1
"H,0 Z_ My,o "H,0

— 209 (1) 1
K2 = 2ol nnHZO

(ii) For an equilibrium where both phases are present, the chemical potential of “A” in

Therefore,

both phases needs to be equal, i.e., u; = u,; plugging in from above we get

K] K] n; . n;
—80— =20——(1n +1] i.e, —4 =In +1
mol mol N,0 N,0
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1n< e > = _s
Ny,o

n
2 = ¢5=0.0067 > n, = 0.0067 - 200mol = 1.35 mol

NH,o0
where we recalled that ny,o = 200mol.

Since the total number of moles of “A” is 4mols,

ny; = 4mol — n, = (4 — 1.35) = 2.65mol
Thus, most of the “A” will stay in solid form. This is equivalent to what happens when
we put too much sugar in water — the water becomes “saturated” in sugar, and any
extra amount beyond the “maximal capacity” is precipitated, i.e., falls to the bottom of
the cup and is in a solid form.

10 !

Chemical potentials in kJ/mol vs n, for the preticipate-solute case in the figures below:
solute (phase “2”) in blue, solid (phase “1”) in purple-red. Note that

(1) In the first case in the figure, ny,; = 4, equilibrium is achieved when the two
lines cross at ngquilibrium = 1.35 mol.

(ii))  Inthe 2" case, n;; = 1, the chemical potentials don’t cross, so all of “A” is in
the lower-u phase, phase “2”.

(iii) If we put only 1 mol of solid A in the same amount of water as before,
n(H,0) = 200mol, we cannot reach equilibrium — all the solid A will be dissolved, so 1
mol of A will be in the solution, and 0 moles will remain solid.

(iv) I leave it up to you to calculate py,, for this case, but note that since the reaction
does not involve water directly (the “reaction” involves A in solid an aqueous form, but

A does not react with water), then py, o is irrelevant to the previous parts.

(v) We need to determine
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Welec = Gequilbibrium - Ginitial =

G(P,T,n, = 2.65mol,n, = 1.35mol) — G(P,T,n,; = 4mol,n, = 0)

We can calculate this numerically from the explicit expression for G earlier. It is more
instructive instead to do it graphically. Look at the figure of G vs. n, below: (the left
figure above, associated with n;,;,; = 4mol). From the figure:

Ginitiai~1680K]

Gfinal~1653k]
So therefore

Welec = _27k]

i.e., up to 27kJ of electric work could be extracted from this “reaction” (i.e., phase
change).

n & n
= = S lot -80(1-nm+20nlogl— |+ 10~ 200 0 1
plot 80 (4 m+20nlog[200_]+10 200 0104 P g[200}

S

The total Gibbs Free energy (in kJ/mol) vs. n,, the number of moles of the solute “A” in the aqueous solution:

G = 80— 4 1029 40, 202 1 (22
- mol "0 mol Mz mol " Ny,0

for ny,o = 200 mol.

Left: presuming the total number of A is nq + n, = 4 mol, (where n; =moles of solid “A”). Note the
minimum at the equilibrium point, n, = 1.35mol. The rest of A (n; =2.65 mol) is precipitating

Right: presuming nq + n, = 1mol. Note that there’s no local minimum;
the lowest G is for n, = 1mol, n; = 0, all of A is in the solute, not precipitated

4.6) Chemical potential for reactions:

We proved that for an A — B reaction, puy = up is equilibrium, and if u4 > pg the product
side (B) is favored
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For a general reaction a very similar property follows!
Example:

aA+bB->cC+dD

o Ifau, + bug = cuc + dup: reaction is in equilibrium

o Ifau, + bug > cuc + dup: products favored, reaction will proceed to the right (or stop
if either of the reactants, A, B, is replenished)

o Ifau, + bug < cuc + dup: products favored, reaction will proceed to the left (unless
either one of the products, C, D, is replenished)

This is easier to write when we use stoichiometric coefficients.

Example:
CH4(g) + 20,(g) — CO,(g) + 2H,0(D)
Rewrite (drop the phases for brevity)
—CH, — 20, + CO, + 2H,0 =0
or
ven, CHy + 0,0, +v¢0,C0; + vy,oH,0 =0
Where we use the stoichiometric coefficients
Ven, = —1, Vo, = —2  (negative for reactants)
Veo, = 2, vi,0 = 2 (positive for products)
In terms of the stoichiometric coefficients, we define

Ap = Z Vildi
i

BTW, most books call this quantity AG, but | prefer to call it Au.

Then, in equilibrium Ay = 0, while if Au < 0 then the products are favored, and vice-
versa.

Another example: say we know that for a reaction,
1
A(s) +502(g) » AOQD),

where “A” is some compound, and

K]
K]

Question: What does 1(0,) need to be in order to have equilibrium?
Answer: We need —u(A) — %,u(OZ) + u(A0) =0, ie,
1(02(9)) = 2(1(A0) — pu(0)) =2+ (=5K)) = —10K

We’ll see in chapter 6 that pig, varies (increases) with pressure. Once we know what y

needs to be we can determine what pressure to have in order to have equilibrium.
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4.7) Reversible processes in equilibrium
Up to now we considered processes that approach equilibrium at a fixed T and P, e.g., reactions.
We learned that we need to find out what G 1is, as a function of T and P.

We’ll now shift to consider processes that are in equilibrium, but where T and P are changed;
and further, we’ll assume that change is reversible.

Further, we’ll assume these processes don’t involve electric work

Note: at any given T and P we can always determine the amount of extractable or
necessary electrical work from the difference in G between products and reactants.

For reversible changes, we know dq = TdS.
Therefore: dU = dq + dWyech, and thus:
dU = TdS — PdV (reversible processes)

Mathematical consequences:

Now we’ll deal with the mathematical consequences of the yellow-highlighted relation.

Let’s consider a change of the conditions (i.e., changing T, P,V , but without changing n). We
need to choose two independent variables to describe the changes. We have freedom to choose
whichever two variables we want.

We could have chosen the independent variables to be P and T, and we’ll do it later when we
talk about G; But for U, let’s choose the independent variables to be § and V.

(That’s allowed, since, if S changes and V changes, the change in T, P and U is determined in
principle.)

Formally, then, we write

U=U(,V).
But we learned in Calculus that the change in a function of two variables is
dU—aU dS+aU av
~ Sy avls

The two eqgs. for dU depend on the same two independent variables: S and V. So the coefficients
of dS and dV should be the same! lL.e.,

ou

S T

v
and

ou
av

s
We know this last equation already: if V is varied in a reversible adiabatic process
(with § = fixed), then dU = —PdV, so
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du
—P = W(adiabatic, i.e., S = fixed).

These specific relations above are not usually important for chemistry by

. aou . . I
themselves; the first, however, 35l = T, is very important for statistical
v

mechanics, where S iand U are the fundamental quantities, so this relation
becomes the definition of T'.

The main importance of such relations becomes clear when we consider the Gibbs free energy
G instead of the energy U.

Consider a system in equilibrium, as before:
dG =dU + PV —TS) =dU + PdV +VdP — TdS — SdT
We learned that dU = —PdV + TdS, so adding to the last equation gives
dG = (—PdV + TdS) + PdV + VdP — TdS — SdT
i.e., after cancelation:
dG = VdP — SdT (system in equilibrium)
We can then repeat the produce we did with U.

L.e., if we use P, T as the independent variables in describing G = G(P,T), we get

So from the last two eqs.:

G
opP

_, 96
r | @T

P
Remember this equation and its derivation!

Example: Given a reaction C — D at fixed pressure (P = P°). Define

AG - GD - GC
. dGc dGp
Then by subtracting rri —Sc from ?| = —5, we get
P P
0AG| AS
T |p '

Thus if we know or measure the Gibbs Free Energy difference at more than one T, we
can get the difference in entropy.

For example, say that this reaction is not spontaneous so that we need to invest, for
accomplishing it, an amount of electric work which is:
Welec = AG =10,000] at T = 300K
Welec = AG =9,500] at T =310K
Then
0AG difference of AG for different temperatures
T p difference in T
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_ (9500 — 10000)] _ J

(310 — 300)0K K
Therefore,
_0AG) ]
AS = ~ar ) =50 K

4.8) Maxwell’s relations

There are many thermodynamic relations which can be obtained simply from the fact that
U,H, G, or A (which is another state function, defined as A = U — T'S) depend only on the
current values of P, V,T and not on the previous history.

Take for example G (P, T), and rewrite its differential:
dG =VdP — SdT.

We know from calculus that for any function of two variables, F(x, y), the mixed derivative is
the same regardless of the order in which we differentiate, i.e.,

0%F B 0%F
dx dy Odyox’
Apply this to G(P, T, n), and get
0%G _ %G
dP OT ~ 9T 9P
But we know 2| = —s ,and LA V, so plugging to the eq. above gives:
JoTlp oPlT
as| _av
aPl,  oTlp

Note that all the partial derivative w.r.t. one variable (here P or T) are done with the other
variable fixed.

This is an example of a Maxwell’s relation — such relations are very useful. Several other
Maxwell’s relations are found in the book and the h.w.

The graphical way to remember these relations is delineated in class.

Example: say we have a crazy form of G
nC
G(P,T) = n(aT + bP?)3 — Tz
Determine whatever you can on S, V, and verify Maxwell’s relations.

Answer:
G 2nC
== =- T+ bP?)? - a———
S aTl, 3n(aT + bP%)* - a T
G
V=—| =3n(aT + bPz)2 - 2bP
dPly

And for Maxwell’s relations:
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awv| 0 - _ 2
a7, = a—T(Bn(aT + bP?)* - 2bP) = 12abn(aT + bP*)P
While
as| 0 22 2nCy 2

= 12nab(aT + bP?)P Q.E.D.

The importance of Maxwell’s relations.

One example of the use of Maxwell’s relations is for determining experimentally the entropy
of a compound.

Say we want to start from an initial pressure and temperature, and want to find the change of
entropy when we end up at a different pressure and temperature (and assume there’s no phase
change in between).

We can take any trajectory connecting the two, and integrate

AS = J as
But we know that if we write S as a function of T, P then, from calculus
as = 05 dT+aS dpP
~OTlp oPl;

as| . . :
We already know the first term, %l : 1.e., if the pressure is fixed then
P

. dqp ar
dS(P flxed) = T = Cp ?
Therefore,
) dT
aS| _ dS(Pfixed) Cr Cp
aTl, ~ dr dT T
. . S v .
Adding the Maxwell relation —| = — —| leads then to the final relation
oPlp oT |p

AS—]dS—f(CPdT ov dP)
B S J\T aT lp

which when we combine with the definition (from Chapter I) of the expansion coefficient,

10V
a = =—| , becomes
V oT P

Cp
AS = f (TdT —aV dp).

Of course, if there’s a phase change we need to add its contribution too.

This integral is valid no matter which were route we take from the initial to the final part. (See
figure in class.)
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Note that this expression for the entropy difference is general and is expressed in easily
measurable quantities!

The latter part of the highlighted integral looks very strange, since we take a
derivative at fixed pressure and then multiply by dP, i.e., % dP. Are we fixing
P

the pressure or we don’t?

The answer is that, at any point along the T, P trajectory, when calculating (or
measuring) Z—‘; , the derivative is taken by varying T a little (while fixing P), but
P

then the quantity is multiplied by the actual dP along the trajectory. See the
figure and class.

Entropy change with pressure for solids and liquids

Maxwell’s relations explain something we “guessed” before — that pressure has a very little
effect on liquids and solids (unless it is enormous, of course, 1000’s of bars).

The reason is that as we saw,

aS
op

v

= — aV
r 0T

P

and we know that for liquids/solids both V and « are tiny!

For example, for liquid water a = 2*112_4, and the molar volume is
cm? L
Vi = 18m—01 = O.OZm—01
SO
05 =4%10"° L
dPlr mol K

To see that this is small, recall that L * bar = L« P® = 100],i.e.,

S
=4%10"* )

_ﬁT mol K bar

So, for example when we change the pressure of water by 10 bar (i.e., 100-
meter-deep — since the pressure in the ocean or in a deep pool rises by 1 bar
every 10 meter) the entropy decreases by

J J

as
dS~ ——| *xdP = —4x10"*————* 10bar = —0.004
0P| i i mol K bar * ar mol K

which is tiny relative to the changes in entropy we considered.

Can Maxwell’s relation be experimentally verified? — ves!

Think of an experiment which you may do to verify Maxwell’s relation! (Hint — think of how we
measured the entropy).
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4.9) Conclusions: Chapter 4

We started by proving that dq < TdS, based on the fact that any change to the environment is
reversible as far as the environment is concerned.

That led us to the heart-and-core of this chapter. First:
AG < Wei

for fixed T, P. When there’s no electric work AG < 0, so G is minimum at equilibrium.

Zviﬂi =0

l

Later we got to

for reactions in equilibrium (and as a special case, y; = u, for a substance in two coexisting
phases).

These results would be essential for deriving phase diagrams and relative concentrations.

In addition, we derived rules which are useful for determining G and therefore U.
Experimentally, using dG = VdP — SdT, we got:

G| c
aTl,
oG _v
Pl

and therefore

as J _av J _ 0%
orPl, oTl, aropP
so experimentally we can find thermodynamic quantities from

AG = J —SdT + VdP

CpdT
T

— a—VJ dP), which, from the definition ¢ = V1 a—VJ gives:
orlp P

oT
CpdT
AS=J< - —anP).

AH(Tphase chage,.P) to AS

together with AS = [ (

This is true long as there’s no phase changer, otherwise add
Tphase—change
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V. Reactions

A simple chapter; we covered most of it earlier.

5.1) Overview

e Heat of reaction AH,4,, and heat of formation H¢ and their T-dependence.
e Similar quantities: Gy, Sy, etc.
e Hess law (conservation of energy)

Introduction

Earlier we understood the importance of G. We saw that a reaction would proceed spontaneously
at a fixed T, P only if it leads to a decrease in G.

Now is the time to see how one can determine the Gibbs free energy change.

5.2) Heat of reaction and heat of formation

Take a general reaction, with stoichiometric coefficients v; (recall: these are negative for the
reactants, positive for the products).

The reaction enthalpy is the enthalpy difference for a “mole of reactions”,

— _ 0 (:
Aern - Hproducts - Hreactants - Z ViHm(l)

i

where we sum over all species in the reactions, and the  © superscript indicates “standard state”
at 1 bar (see below). (Of course, for reactions at fixed total pressure, AH,y,, = q, the heat of
reaction):

An example will clarify: burning Benzene (at temperature between 0°C and
100°C)

2C¢Hg (1) + 150,(g) = 12C0,(g) + 6H,0(1)
with stoichiometric coeff.
Veghg = —2 Vo, = =15, Ve, =12  vu,o=6
So (omitting here the phases of the compounds)

AH,y, = —2H,(C¢Hg) — 15H,(0,) + 12H,(CO,) + 6Hp,(H,0)

We have freedom in describing the individual enthalpies.

Note: We could have used the absolute enthalpies, including the energies of the
electrons, etc. But that would be complicated and the numbers would be big
and inconvenient.

We will instead tabulate the enthalpies of formation for each compound. These are defined as
the difference in enthalpy between one mole of the compound and ITS ELEMENTS, when
these elements are EACH at 1bar (and that temperature) and at their “standard state”.

From Wikipedia: Standard states are as follows:
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e For a gas: the hypothetical state it would have assuming it obeyed the ideal gas equation
at a pressure of 1 bar

e For a pure substance or a solvent in a condensed state (a liquid or a solid): the standard
state is the pure liquid or solid under a pressure of 1 bar

Note that for an element this means usually the form in which the element is
most stable under 1 bar of pressure. One exception is phosphorus, for which the
most stable form at 1 bar is black phosphorus, but white phosphorus is chosen
as the standard reference state for zero enthalpy of formation for a historical
reason.

Also note: The standard state for a solute is a little complicated. We’ll deal with it later

Example: The heat of formation for benzene liquid, at not-too-high a temperature.

We first need to write the reaction associated with making Benzene from its atomic constituents
(as their standard states)

3 Hy(g) + 6C(s) = CsHe(1)

where “s” for Carbon means graphite. Then

which is of course

Note that the heat of formation depends on the phase of the final compound.
l.e., the heat of formation of the benzene depends on whether it is liquid or gas.

This heat of formation is reasonably easily measurable. Further, using Hess law below we could
get its values for many compounds without doing these reactions explicitly, which makes life
even easier.

Now back to our Benzene-burning example. The water and carbon-dioxide heat of formations,
AHf(CO,) and AHf(H,0) are similarly defined

And

Further, _ by definition around these temperatures we consider (0 to 100°C)

Note: HJ?(OZ (g)) is not zero for very low temperature, (e.g., 50K or below) since
there the standard state of oxygen is liquid or solid (depending on the
temperature), and not gas.
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The beauty of heats of formation is that we can get the heat of reaction for our total reaction
(burning benzene) using heats-of-formation rather than the molar enthalpies

L.e., rather than using the eq. we had

AHyy, = 2 V/H&U),

]

we can write

AH., = Z VHO ().

J

L.e., in our case
AH 4, (CcHg) = —2Hj9(C6H6) — 15H)9(02) + 12H19(C02) + 6H)9(H20)

(where the second term vanishes, Hf (0,) = 0).

Temperature dependence

If we want properties at other temperatures we need to construct the heat of reaction, and then we
can use the relations we learned.

E.g., we define the reaction heat-capacity from:

dAHpn dHp(J) _
dT = Z vy dT = Z V]Cé)m(]) = Arxnclg

i

We’ll often drop henceforth the “rxn” subscript, so this gives

dAH°
dT

= ACP
Similarly

AS° = Zvjs,%(/), AG® = Zv,G,%(])
J ]

and the usual formulae follow (with “A" for reaction)

dAGO_ ASO
dr
as well as
dAS° _ ACP
dr T~

5.3) Hess Law

Since you should be familiar with Hess law from 1% year chemistry, I just copy here the text
from Wikipedia, and would only go over it briefly in class.

Hess's law — Copied from Wikipedia
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Hess' law states that the change of enthalpy in a chemical reaction (i.e. the heat of reaction at
constant pressure) is independent of the pathway between the initial and final states.

In other words, if a chemical change takes place by several different routes, the overall enthalpy
change is the same, regardless of the route by which the chemical change occurs (provided the
initial and final condition are the same).

Therefore, Hess' law allows the enthalpy change (AH®) for a reaction to be calculated even when
it cannot be measured directly.

Hess' law states that enthalpy changes are additive. Thus the AH for a single reaction, e.g.,

k
C(s) + 0, — CO,(g) (AH" = —393.5 m_(])l) (direct step)

can be obtained by a sum of two reactions:

1 k]
Z . o — _ —_
C(s) + 50, = CO(g); (AH 110.5 mol)
CO(g) + ! 0 co (AH" 283 O—k] )
0. > ) - _ _
® Rt 2(8); ol
Summing the last two reactions gives AH® = —393.5 —r:(]) ] which is equal to AH in the reaction

above.

Note that you have to be careful about measurement errors and roundoff errors.
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VI. Reactions of ideal gases

6.1) Overview
A nice and not too difficult chapter, you’ve seen much of it in 14B/20B.

Note: We'll presume in this chapter that we don’t have aqueous solutions, only
ideal gases and pure liquids and solids. But the language we will use will be very
general, allowing us to adopt the techniques of this chapter to also cover solutes
and non-ideal gases in latter chapters.

Overview

We promised that }}; v;i; = 0 will be very useful for determining reaction equilibria. Here we
will prove this. The key: a proof that for ideal gases, u has two parts:

e A part calculated at a fixed pressure (1bar), u®(T) --- tabulated;

¢ And another, analytical part that depends on the actual pressure of the compound, and is
universal, i.e., is the same for all ideal gases.

e From the math we will group the pressure-dependent parts of the different compounds in
a reaction into one “constant” K which only depends on the temperature, so that:

e We will get a relation, relating in equilibrium the partial pressures of all gaseous
compounds so that when some of these partial pressures change, the other pressures must
change accordingly, in order to keep K constant.

Later, we will get the temperature variation of K(T), and its consequences. We’ll explain
this T-dependence using a simple physical principle, LeChatelier’s principle.

If we were to deal only with ideal gases, this chapter would be the end of the long and
treacherous road leading from the first law to reactions; in the following chapters, we will also
see liquid and solid solutions.

6.2) The pressure dependence of u and its consequences.

Pressure dependence of a pure compound (solid, liquid or vapor)

For a pure compound, u = G,,,(P,T).

So recalling dG = VdP — SdT, we get that
du = daG,,(P,T) = (whenT is fixed) V,,dP.

Let’s integrate from a convenient common point, 1bar, P° to any final arbitrary pressure, P

P
u(P,T) = u(P°,T) + f v, dpP'.

PO

We usually label u°(T) = u(P°,T). Further, let’s label the compound we consider as “A”, and
label u, V;,, with the subscript “A”, so
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P

wa(P,T) = WG(T) + f Vya AP’
PO

Activities

At this point let’s define the activity of a compound A, labeled a4, by:

P
RTll’laA = f VmA dP,
PO

So that the chemical potential fulfills:
ua(P,T) = p3(T) + RTInay,

The reason for this seemingly strange definition is that for ideal gases we would
be able to rewrite it in terms of a quantity you have seen in 14B/208B, i.e., ay =

i—‘g for ideal gases. This will be shown shortly.

To be more precise, we really define the activity as

ua(P,T) = pie™eren(T) + RT Ina,
and for pure solids, pure liquids, gases, and solvents, the reference value would be the
value of the chemical potential for the pure compound at 1 bar. (But things are different
for solutes.)

Let’s distinguish condensed phases vs. gases:

Pure condensed phases (pure liquids and pure solids)

V.. does not change much with pressure, so we can approximate

P
ua(P,T) = pg(T) +Vina | dP" = pg(T) + Vipy - (P = P°)
po

Further, 1}, for condensed phases is usually tiny, so unless the pressure P is quite large (say
larger than 100 bar) then the V,,,, - (P — P°) term is so small that we can ignore it, as we saw
often, so

ua(P,T) = uS(T) (condesned phases, pressures up to ~ 100 bar)

This is equivalent to writing ay, = 1 for pure condensed phases, so RT In a, ~0.

Exercise: calculate the 1}, - (P — P°) term for water, for P, = 0, P, = 100bar.

Answer: for water

V., = 18cm3 0.02 L
™ " mol  mol
So
L bar - L ] K]
(P — P°)V,, =100 bar - 0.02 =2 =200—=0.2—
mol mol mol mol
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So indeed, given that AH,,, = 41 mk—(])l, AHgs = 6 mk—(])l, we can safely ignore the

0.2kJ/mol from the PV term, i.e., we can safely set the activity of pure
solids/liquids as “@¢ondensed = 17-

Uﬂ&irﬁw.dar% £ depondine ‘
i Toige L b )

. j

D Lilj""‘l feolid

Grprer, 22341,

3%

[] liquid: solid: volume barely changed,
remains small

Thus:

b=V, de z{’“’“} ke o,
Sl o ligid/san

—

Pure ideal gases

For gases, the molar volume changes appreciably with pressure; when the latter is labeled P’,
Vipa = RT/P', so

Pa Py

RT P,
SrdP' = RT1n (—)

VmAdP’ = f Po

PO

1a(Pa, T) = S(T) = f

PO
The argument of the “In” above is exactly the activity, so we learn that
P
ay = P—‘z (ideal gases).

Physically, we see that u increases when we lower the pressure. (Higher pressure = less
volume > less disorder --> less entropy --> higher G (since G = H — TS)

This is true of course for any compound, not just gases, since the partial derivative of G w.r.t.
pressure (at fixed T) is the volume, i.c., a positive quantity.
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A

M » P

The chemical potential of an ideal gas: Mixtures of different sases

When we mix several gases in the same container (and all have same T') then they each will have
a partial pressure.

The chemical potential of each gas in the mixture is simply that of the same gas, pure, with
the same partial pressure it has in the mixture.

Example: air in Mexico City.

Recall that air is essentially (ignoring other compounds, and assuming dry air, no
water vapor) 80% nitrogen, 20% oxygen.

For example, in Mexico City (about 2.25 km above sea level) the total air
pressure is about 0.75bar, so the pressure of nitrogen will be about

80% - 0.75 = 0.6bar, and of oxygen will be about 0.15bar (ignoring other
compounds)

The key to the gas properties is that, essentially, the gas molecules don’t “sense”
the presence of other compounds; i.e., Oxygen in the air in Mexico City will have
the same properties as pure oxygen at 0.15bar.

We saw this when we discussed entropy of mixing. There we explained that, in
our language, the entropy of pure oxygen at a partial pressure of 0.15bar would
be the same as that of oxygen in air when the oxygen’s partial pressure is
0.15bar (and the nitrogen having whatever partial pressure it has, in this case
0.6bar).

In short: we can think of ideal gases mixture as if it was several separate pure
gases, each at its own partial pressure. So air in Mexico City has the same
properties, as far as G, H, S, etc., as if it we added these properties for two
separate containers — one with oxygen with 0.15bar, the other with nitrogen at
0.6bar.

So in an ideal gas “A” with partial pressure P4
P
Ua(Py, T) = u§(T) + RT In (P—'Z) (gas A with partial pressure Py )

Side-note: Consequences for mixing.
Let’s use this language to prove again something we know, mixing is favorable.

Mix two gases, with the same T, that initially are each pure, each in its own
container, and having each the same pressure P;;.
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After mixing -- removing the separation between the containers — the total
pressure will still be P;,;, and will be made from partial pressures P,, Pz where
nOWPA+PB :PtOt'

G is additive so (omitting the labeling of the T-dependence)
G (pre mixture) = G4(Pyor) + Gp(Pror)
(note that G4 = nyGpa = Nyla).
Similarly:
G(post mixture) = G4(P,) + Gz (Pg) < G(pre mixture)

(where we used the fact that G4 (P,) < G4(Py¢) since Py < P,,;). Thus, as we
proved already, mixing is favorable.

6.3) Reactions of ideal gases and solids/liquids

Instead of only using symbols with stoichiometric coefficients, let’s derive the expressions using
an actual reaction, and then generalize “by inspection” to all reactions.

Consider the methane formation reaction, at a high temperature where the methane is a gas, and
where there’s equilibrium,

2H,(g) + C(s) — CH,(g).
Let’s write it instead as
Vv4A(g) +veC(s) +vpD(g) = 0.
Here:

A =H,, D = CH,

AG and Reaction Quotioents

Let’s recall that we defined in Chapter 4
AM = Z Villi-
i
Henceforth we’ll replace the notation Ay by AG, to be consistent with how other people use,
although I personally don’t like the AG notation.

Also recall: The condition for equilibrium is AG = 0; but we’ll consider the general case, i.e.,
even as there’s no equilibrium)

Note:

We note in passing that AG is related to the slope of G in actual reactions. This is
something we have not talked too much about yet, but heuristically, this is
related to the voltage difference driving the reaction.

If AG = 0 there’s equilibrium, and if AG is highly positive or negative then
there’s a big tendenecy for the reaction to go one way or another.

95


nadinebradbury
Highlight


We may talk about this again at the end of the course. This is related to
electrochemistry, which you have seen in 14B/20B.

For our particular reaction:
AG = =2uy — pc(T) + pp = Vapa + Veite + Vpip
so insert from above

Let’s combine the 4 —dependent terms as:

8GO = vipp = ~2u8(T) — p2(T) + (T

L

Note: AG° can be interpreted is the amount of electric work necessary to
convert “2” moles of pure “A” a 1bar and “1” moles of pure C at 1bar, to “1”
moles of pure “D” at 1bar. See figure below (for a slightly different reaction)

Then group the u° in the “green” equality above (the bold terms) to get
AG = AG° + RT(v4Inay +v¢glnas +vplnap) =0
Now let’s remember basic logarithm properties.
First, aIn x = In x%, and therefore
AG° + RT (In(ay)¥4 + In(ag)Ve + In(ap)’) =0
Further, Inx + Iny = In(xy), so
AG = AG° + RT In((ay)¥4(ac)c(ap)?p)
Therefore, defining
Q = (@) (ac)¥e(ap)*®
Leads to
AG = AG° + RT In(Q)

Q is usually called: the reaction quotient.
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Equilibrium
In equilibrium AG = 0. We define the quotient in equilibrium as

K = Q(equilibrium) = (ay)V4(a;)"¢(ap)*? (equlibrium)

It is straightforward of course to generalize our derivation to an arbitrary

Q= H(ai)w

reaction:

The condition AG = 0 at equilibrium leads to
0 =AG°+ RTInK

Don’t confuse K with K for Kelvin. Also, at times K is labeled Kp.

The eq. above becomes

— aG® =InK
RT
1.e.,
AG®
K = e RT
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The Q-K relation and the road to equilibrium

Since we wrote 0 = AG°® + RT In K , it follows that AG® = —RT In K, so
AG = AG°+RTInQ = —RTInK +RTInQ

1e.,

Q
AG = RT In—
G nK

Therefore, if initially Q < K, i.e., the reaction is too much on the reactants side, then AG will be
a In of a number <1, i.e., AG will be negative, so the reaction would proceed to the products
side.

As it does, Q will rise till it reaches asymptotically the equilibrium value, K.

In the opposite case, too much products, Q > K and the reaction would proceed towards the
reactants side.

Q (if too much products initially)

time

Examples: Ideal gases

The expressions we derived are general. We’ll apply them in this chapter using ideal-gases
examples, and in latter chapters we’ll use these expressions also for solutions.

Example (from the book, slightly extended)
Reaction (all gases, all assumed ideal):
2H,S + CH, < 4H, + CS,
Initially:
n(H,S) = 11 mmol, n(CH,) = 5.5 mmol, n(products) = almost zero
At equilibrium:
n(CS,) = 0.7 mmol, P;,; = lbar

Question: Find K and AG®, and explain why are products formed in spite of the
fact that AG® > 0.
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Answer: (Method: find the n’s = P's > K > AG°)
First, n’s.

0.7 mmol of CS, was formed in equilibrium, starting from 0. Thus:

4*(.7=2.8 mmol of H, was formed, n(H,) = 2.8mmol
0.7 mmol of methane was destroyed, n(CH,) = 5.5 — 0.7 = 4.8mmol.
2*0.7=1.4 mmol of H,S was destroyed, n(H,S) = 11 — 0.7 * 2 = 9.6mmol.

Now for the P’s. From the ideal-gas law:
P(H,S) _ n(H,S)
Prot N¢ot

But nyp = 0.7 + 2.8 + 9.6 + 4.8 = 17.9 mmol, and P;,; = 1bar, so

9.6
P(H,S) = 1bar - T7g = 0.53bar.

Similarly

4.8
P(CH,) = 1bar- 179 ~0.27bar

2.8
P(H,) = 1bar- 75 ~0.16bar

0.7
P(CS,) = 1bar- 75 ~0.04bar

Now the stoichiometry of the reaction implies that

K = (aH2)4(acsz)1

- 2 1
(an,s) (acu,)
But for ideal gas the activity is determined by the partial pressure:
PHZ . . .
an, = 5o (never apply this for anything except ideal gases).

We'll use units where P® = 1, so then ay, = Py,, i.e,

K = (PH2)4(PCSZ)1 . 0-164 -0.04

= = =35-107*
(pHZS)Z(pCH4)1 0.53%2-0.27

Thus

AG® = —RTInK = —8.3L- 300K - (—7.95) = 20,000L
K mol mol

Do not make the mistake of assuming that when AG?° is positive (so K < 1) only products are
formed, or vice versa. Here, for example, AG® > 0, so the reactants are “favored” — but there’s
still a significant amount of products.
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As explained, any possible reactant or product gas must be present in a reaction vessel, although
perhaps in minute amounts. That’s because for very small (partial) pressures the chemical
potential u of a gas is very small so it is favored.

Put differently, in our reaction, initially n(products) is almost zero, so the partial pressure of
both H, and CS; is very small. Thus, uy, and pcs, are initially very negative numbers, so that
there’s a tendency to form products. As products are formed, py, and ucs, increase until
equilibrium is established.

Finally: note that initially Q was almost zero, i.e., much smaller than K.
Another example: N,04(g) < 2NO,(g)

Do the reaction in a piston with a total pressure P;,; = 2P°, and room
temperature. Start from ng.q,+(NO,) = 0.5 mol, ng4+(N,0,) = 0.3mol.

Question: determine the composition in equilibrium.
Answer.

Overall method:

GP (each species) > AG°->K->combine with P, = 2P° to get individual P’s—>
n’s.

So let’s start.

First, (at room temperature), reading from the table in the book

k] k]
GP(NO,) =513—, GP(N;04) =97.9— -

k
AG° =2-513-979 = 4.7—]
mol

and therefore:

AGO _(4700 ] mol—l)
K = e RT = e \25000mol™!/ = (15

P(NO,)?

S0 P(N20,)

0.15.

Combine with P(NO,) + P(N,0,) = 2 to get

P(NO,)?
0.15
The solution of this is P(NO,) = 0.48, P(N,0,) =2 —0.48 = 1.52

+ P(NO,) = 2

P(NO3)? _ 0.48

(Check: P(N,0,)  1.522

= 0.15, as needed.)

Finally, solve for the n’s.

n(NOy) _ P(NO,)

= = 0.316
n(N,0,) P(N,0,)

100



nsmrt(NOZ) 0.3 e ege
—=——= = — = (.6. So initially there’s too much products,
Ngtare(N204) 0.5 y P

the reaction will shift towards reactants.

Note: Initially,

So say x moles of N,0, were created; then
n(NO,) = 0.5—-2x, n(N,0,) =03+x
So

n(NO;)  0.5-—2x
n(N,0,) 03+«

0.316 =

The result of this linear relation is x = 0.175, so the final prediction is
n(NO,) =05—-2%x=05—-2%0.175 = 0.15mol
n(N,0,) = 0.3+ 0.175 = 0.475mol

(Check: 2N%2) _ 015 _ ) 316 indeed).
n(N204) 0.475

6.4) Pressure and Temperature dependence of Equilibrium &
LeChatelier’s Principle

Total-Pressure dependence

Let’s study the P-dependence of reactions by example.

Take the N,0, < 2NO, reaction example we just studied, with the same conditions, except that
now compress the volume, i.e., increase the total pressure, to, say, P;,; = 10 (i.e., 10 bar)

2

P
Then, the relation —2 = K = 0.15 remains, but now Py,0, + Pno, = 10 so we need to solve
N204
P(NO,)?
015 + P(NO,) =10

and the solution is P(NO,) = 1.15, P(N,0,) = 8.85
Note the changing composition!

Thus, earlier, the ratio of the pressures was, recall

P(NO,) 0.48
P(N,0,) 1.52

=0.316 (For Py = 2)

But now that the total pressure increased, the relative partial pressure of the products (and
therefore the percentage of the products) decreased

P(NO,) 115
P(N,0,) 8.85

=0.13 (For P = 10)

Clearly, by raising the total pressure, there was a shift from products to reactants. This is
an example of:

LeChatelier’s principle: when subjected to a disturbance, a system usually (not always!) shifts
its equilibrium in a way that somewhat (usually not completely) mitigates the disturbance.
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Here the disturbance is: reducing the volume, i.e., increasing the total pressure; the system
somewhat reduces the higher total pressure by reducing the total number of moles, which in
this case is possible by having some reactant formed, i.e., N,O, < 2NO,.

Side note: This N,0, < 2NO, reaction is quite fast, but to understand
LeChatelier’s principle deeper let’s imagine for a second that it would have
been slow (the speed of the reaction does not affect, of course, the final
outcome, so assuming it is slow just helps in understanding the principles)

Then we could imagine that what happens when we increase the total pressure
is that we: first reduce the volume, quickly, before any reaction occurs;

This raises the pressure automatically to a high value;

And then some NO; is converted back to N,O4 to somewhat reduce the
overall number of molecules and therefore the total pressure.

Once we plug the numbers (I won’t do it here, but it is fairly straightforward to
show), we find that the stages are:

* First, the volume is decreased by a factor of 5.35. This raises the total
pressure by a factor of 5.35, from 2bar to 10.7bar

* Then 55% of the NO; is converted to NO;; this reduces the total number of
moles by almost 7%, and therefore the total pressure is reduced to 10bar. l.e.,
the system “fought” back to somewhat mitigate the increase in the pressure
due to the changed external circumstance (the reduced volume).

Temperature dependence of K

Now consider the temperature variation of K.

The absolute simplest way to see it (slightly different from the way the book does it) is to spell
out

AG° (AH® —TAS®) _ AH°+AS°
RT RT ~ RT R

SO

_AG° _AH® AS°
K=e RT =e RTeR

Thus, K is a product of two terms.

The first term in K is a Boltzmann-like term, due to the relative difference in energy between the
products and reactants.

The second is an entropy term; in Statistical Mechanics we’ll learn that it measures the ratio of
the number of states of the products and reactants (we’ll see what that means later)

Let’s assume that we ignore the variation of AH® and AS® with temperature (they change, and
we know how to calculate that, but they don’t change much. We’ll talk about that later).
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AH® AS®
Then: the implications of K = e T e'® are again an example of LeChatelier’s

principle.

e For exothermic reactions (AH® < 0): —AH® is then a positive number, and when we
divide it by RT it decreases with temperature. So K decreases with temperature, i.e.:
for exothermic rxns. an increased T favors the reactants

e For endothermic reactions (AH® > 0): the opposite behavior. An increased T favors the
AH®
RT
when T is increased, so K increases with T').

products (— becomes a smaller-negative number — i.e., a less-negative number —

Physically, in endothermic reactions, as T increases, the products are favored because
they can store more energy. Thereby relieving a little the effects of the increased T.

/_E d\ﬁj@.hffs fn’nc.ﬂﬂ Euf‘
E;do‘”li‘,rmif. RQﬂc'ﬁmE

H

erdothinic e TT prosvit |
/ (‘H!}

Tt ao trorgy)

HR:. T

Readda s Eragucts

Variation of K with temperature:

Often AH®, AS® are approximately T —independent as we mentioned. Thus, when we change the
temperature from, say, T; to Ty,

AG(T) AGO(Tl)) B

2 1

(AHO —T,AS® AH°® — TlAS")
T, Ty

1.e.,

AHO (1 1
InK () = InK(Ty) = ——— <_ _ _)
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Reminder: as we mentioned earlier, you may be confused on how can we
assume that AS? and AH® are fixed, when we previously learned that AH rises
with temperature, i.e., we learned that

AH(T,) — AH(T,) = ACp - (T, — T;), and similarly for S?

The key is that AC,, - (T, — T;) is relatively small compared with typical values of
AH, especially for reactions involving gases, so we can typically ignore its
contribution to AH.

Example: N, + 3H, < 2NH3(g)

. K
Given that at room temperature Gr(NH3) = —16.4 m—(])l at room temperature, and that

Hp(NH3) = 46%, find out what will be K (T = 300K), K(T = 500K).

Answer
o First,
AG° = —Hf(NZ) -3 Hf(HZ) + 2Hf(NH3)
K] K]
=—0—3*«0+2=* (—16.4—) =—-328—
mol mol
So
kJ
(P )2 AG° __32'81@ 32.8
K(T = 300K) =~/ _ p=%F =¢ 25mol =¢25 =5-10°

Py, Py,

Note that K is very big at T = 300K so the reaction at this temperature is “products
dominated” (that’s not an exact statement since the specific product and reactants
concentrations depend on the total pressure and starting point, but it is more-or-less

correct).
e Second:
AH = 2H;(NH3) — H;(N,) — 3H;(H,) 2(46)k] 0—3%0 92k]
= — — = * (— _— — * = —  —
f 3 FR72 sz mol mol
So
In K(500K) = In K( 300K AHO( ! ! )
n = InK(300K) = —2={550K ~ 300K
J
92,000, 1 1
~13.2 m"l( _ ) — —1.64
+831 J 500K 300K
= Kmol
1e.,
K(500K) = 0.2

By LeChatelier’s principle, K(500K) < K(300K) since the reaction is exothermic.
Note how the ammonia gas is so strongly preferable over its constituents (hydrogen and
nitrogen) at room temperature, but not at S00K!
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6.5) Conclusions — Chapter 6.

We did several different things here:

e Starting with
du = dGy, = Vp,dP —TdS

we first obtained the pressure dependence of u (where all the pressures are in units of
P°):
P
Ba(T,P) = B3(T) + | VadP = 3T + RT In(ay)

po

_ {z u°(T) (for pure condensed phases)
| u°(T) + RTIn(P) (forideal gases)

e We then defined AG = Y; v;u;, and dervied
AG=AG°+RTInQ, =] (@
i

For example, for a reaction ad + bB + -+ - xX + yY + zZ + ---, AG° can be thought of as
the work needed to take a moles of pure unmixed A4 at P° plus b moles of pure unmixed B
at P°, ....and convert to x moles of pure X at P° plus y moles of pure unmixed Y at P°, etc.

e For equilibrium we noticed and defined
AG = 0(in equi. ) K(T) = Q(inequil.) » AG° = —RTInK

K is fixed at a given T, constraining what pressures the gas reactants can be in.

e We saw how K determines the evolution of the reactants with total pressure. Ata
higher total pressure the equilibrium shifts to the side with “less gas moles” according to
the LeChatelier’s principle.

AH® AS®
¢ Finally, we examined the T-dependence of K; we wrote K = e RT e R and realized that

this implied that for exothermic reactions K decreases with temperature.

e We got a practical way to calculate the variation of K between different temperatures as
AH° /1 1
ll'lK(Tz) - an(Tl) = —T<———)
Again this shows LeChatelier’s principle at work. For exothermic reactions, and
if T, > T;, the RHS is negative, so the equilibrium shifts, at higher temperatures, towards
reactants (as these store the extra energy since they have a higher enthalpy).

e We have therefore finished our “Tour de Force” of thermodynamics of pure compounds
and gases alone. Now we need to worry about mixtures (and reactions) of gases with
solutions and solids. For this we need phase-equilibrium.
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VII. Phase equilibrium

7.1) Overview

This chapter has two (almost disconnected) parts.

o We’ll first study the phase rule, explaining, e.g., why
o The P, T diagram has a sharp line separating water vapor and liquid;
o But the same is not true if we talk about a water+ethanol mixture where the
liquid-vapor separation_is not a single line in the P vs. T diagram.
This rule is very abstract, we’ll explain by several examples.

o We’ll then study the specific case of liquid/vapor or solid/vapor phase line, and we will
be able to get a new angle on results that could have been obtained also by the tools of
the previous chapter.

7.2) The Phase Rule
What’s a phase

Formally, a phase is a homogenous part of a system.

Note that:

e (ases: mix and form one phase (there’s one exotic exception involving He that we’ll
ignore)

e Liquids:

o Some mix fully (water + ethanol, 1 phase)

o Some never mix (oil + water, 2 phases)

o Some partially mix; for example: water + butanol liquids at room temperature

will:
= Break to two different phases if the butanol molar percentage is between
about 3% and 48%;

= Below 3% or above 48% the mixture will be single phase.

e Solids: there are some which can mix, e.g., Ag+Au (especially if you melt them together
and cool down), but many don’t.

Examples of phases include:

e [cetwater: 2 phases

e [cetwatertethanol: 2 phases (ice, and liquid water+ethanol)
e Single crystal Fe: one phase

e Steel: many (microscopic) phases

Vapor and gas: subscripts
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Henceforth we’ll use interchangeably the words vapor and gas (and the subscripts “v’” and

“g”). For liquids and solids we’ll use the subscripts [ and s (don’t conduse with entropy).

Number of phases

Denoted as p. (Don’t confuse with P for pressure!)
Say we have one component
Component means a species which can be independently set, e.g. H,0.

Note: a water liquid has also H* and OH~, as well as higher order clusters, but
the concentrations of these ions and clusters are fixed for neutral water, so they
are not independent, only the original H2O is.

cntcal

int
218 907

0.006

/ .'\ 3

° om T°C
(figure taken from https://socratic.org/questions/how-do-you-read-the-phase-
diagram-of-water)

Then, the compound will be in the phase which has the lowest u. For example, in the region of
P, T labeled “water” (i.e., “liquid”) in the figure, the chemical potential of the liquid will be
lower than that of the solid and vapor, y; < ug, Uy, so H,O will be in the form of liquid water.

In other ranges the vapor or solid will be the stable ones. In those single-phase regions p = 1.

In the border regions separating two single-phase regions, two phases will coexist. So there
p = 2. Along those lines the chemical potential of two phase will equal (and will be lower than
the chemical potential of any other phases). For example, along the line separating water from

vapor, = fy < fis

Finally, when all chemical potentials are equal, we can have three coexisting phases (so p = 3).
This is the “triple-point”, which for water is at 0.006 bars and 0.01Celsius.

Degrees of freedom

Define: f=the number of “independent conditions” that we can vary while still keeping the
same number of phases (i.e., keep p fixed).

The phase rule — example for water.

Let’s start with our ¢ = 1 example on water.
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If P, T are in a single-phase region then we can change both the pressure and the temperature
by a little bit while still keeping the number of phases. So:if p = 1 then f = 2

Similarly (see figure) if p = 2, i.e., two phases coexist (liquid-vapor, vapor-ice, liquid-ice) then
we can move only along the line.

For example, say P, T are along the liquid-vapor line, so y;(P,T) = u,(P,T). le., if we move
the temperature by a little, dT, then we need to change the pressure dP by a specific amount,
to keep:

w(P+dP,T+dT) = u,(P+dP,T +dT)
so f =1whenp = 2.

Finally, if p = 3, three phases coexist (liquid-ice-vapor), then we can’t move,

:ul(PfT) = ,UU(P,T) = ,Lls(P,T)

The pressure and temperature are then fixed. So f = 0 whenp = 3

Thus, we see a relation for this single-component phase map

f=3-p, when c =1

While these results are “obvious”, they exemplify the general relation which we’ll prove:

7.3) The phase rule — general
The general phase rule is:
f=2+c—p PhaseRule

Let’s prove it. We’ll refer to a “mock example”, of ¢ = 4 species: water, ethanol, butanol,
propanol. And we’ll make up some numbers in our example! — so don’t take the specific
numbers I give too seriously.

Also, our proof is only for compounds that cannot react with one another.

e We’ll assume that we are at a pressure of 1 bar, room temperature,

e We pour into a container ¢ = 4 species, numbered respectively 1,2,3,4: butanol, ethanol,
propanol and water.

e And say that we have p = 3 phases (see figure below)

Phase I will be a liquid with concentrations

x1; =10% butanol, x, ; =25% ethanol, x3 ; =14% propanol and x, ; =51% water (all
percentages are by mol, not weight).
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Another liquid phase (Phase II) with
40% butanol, 20% ethanol, 34% propanol and 5% water

(1,1 = 40%, xp; =20%, x35; =34%, x4n =5%)

And a coexisting vapor (Phase III) with
10% butanol, 10% propanol, 78% ethanol, 2% water vapor
(xlln == 10%, x2’” - 10%, X3," - 78%, X4,” = 2%

Remember—I| made up all these numbers, actual numbers will be different, the
numbers here are just to illustrate the proof.

So now’s the question: what’s f? How many independent variables can we independently
change a little, while keeping 3 phases?

Answer:

e First, the total number of degrees of freedom (DOF) is
2+p-c=2+3x4=14
Proof:
o In each of the p phases there are ¢ = 4 concentrations, i.€., X ; ...., X4 for Phase
I, and similarly for Phase II and Phase III. So there are ¢ * p=12 degrees of
freedom (DOF).
o Add 2 for pressure and temperature;

e However, we can’t vary all of the 14 DOF independently! There are two types of
constraints.
o First, the sum of concentrations in each phase must sum up to 100%. For
example, if we vary the concertation of the ethanol, butanol and propanol, then
the concentration of the water must vary too, so they all add to 100%.
This gives one constraint for each phase, i.e., p constraints.
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o Next, since the phases coexist, then for each species, its chemical potential must
match in each of its phases. For example, for butanol
u(butanol, phase I) = u(butanol phase II)
and
u(butanol, phase II) = u(butanol phase III)

Thus, for each of the “c” species, there are 2,i.e., p — 1 constraints (saying that
three numbers are equal means that there are two equalities).

Thus, for each species, we’ll have p — 1 constraints; so for “c” independent species, the
chemical potential equalities give ¢ * (p — 1) constraints.

Summing: there are p + ¢ * (p — 1) = 3 + 4 * 2 = 11 constraints.
So we have

2 + ¢ * p = 14 degrees of freedom, and

p +c*(p —1) = 11 constrains.

Thus a total of f = 14 — 11 = 3 variables that can be independently varied, and in the
general case
f=24cp—c*x(p—-1)=24+c—-p

What are the independent variables? Here, for example, the three independent variables
could be P and T, and another one — for example the concentration of ethanol in the
vapor.

I.e., we can vary the pressure a little, the temperature a little, and concentration of the
ethanol in the vapor by, say, 1%, and all the other concentrations will then vary by a set
amount, and the number of phases will still be 3.

¢ Note that this is different than for pure H20 — there, if we three phases coexisting P and
T would be set.

Exercise: in our 4-species example, if there are only two coexisting phases, can
we vary P and T and vary the concentration of more than one species by a
desired amount (while keeping two phases?)

Answer—yes. Thenf =2+ c—p=2+4 — 2 = 4,s0 we can vary the
pressure, the temperature, and two desired concentrations in one of the phases,
while keeping the same number of phases.

Counting independent degrees of freedom

Remember: we are only counting independent variables, i.e. variables that their concentrations
can’t be determined from using K for any relevant reaction. If a variable’s concentration is
constrained it won’t be counted.

Example:

Three species A, B, C, in a container. There’s a reaction A <-->2C. How many
independent compounds?

110



Answer: 2. A, and B. The concentration of C is constrained due to the existence
of K for the reaction A <--> 2C.

Epilogue to phase-rule part

The phase rule is general — that’s its strength and weakness. It can be applied in general
circumstances, but is hard to visualize. After we practice phases diagrams (chapters 9 and 12) it
would get easier.

We’ll now switch to the much-less-abstract 2™ half of this chapter:

7.4) Phase equilibrium in one component systems.
Look at the figure below of two phases. Pick nearby points along the line of equilibrium.

e Atpoint 1:

:uA(P' T) = HB(P' T)
e At point 2: the temperature and pressure changed, but the chemical potential is the same

Subtract the last two eq, get.:

duy = dpg
where
duy = ps(P+dP, T +dT) — u,(P,T)

But p4 is the chemical potential of pure A, and etc. for B, so we can use the egs. for
d GmAr dGmB .

duy = dGpa(P,T) = VypadP — SppadT
dug = dGy,g(P,T) = VygdP — S;,5dT
Equate it to get:
VinadP — SppadT = VypdP — S,,,5dT
So
(Vg = Vina)dP = (Smp — Sma)dT
i.e., since the quantities in parentheses as AV, AS, so
AV dP = AS dT
Where AV = V.5 — Vipa, AS = S;p — Sima
Thus, once we found AV}, AS,,, we can find the slope of the P vs. T phase-separation line
aP _AS
dT AV
We can make this equation even more useful by noting that in equilibrium, AG = 0, i.e., the

difference in Gibbs free energies between phase A and B vanishes (when we are on the phase
separation line), so

in equilibrium
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AH
0=AG =AH —TAS - AS:T

SO
dP _ AH
dT ~ TAV

This is the Clausius-Clapeyron equation.

Discussion:

Solid-liquid transition (or solid-solid or liquid-liquid): V is small, AV is even smaller, so Z—; is
very steep (large positive or large negative)

Specifically,

e For all solid-liquid (melting) transitions, AH > 0. You need heat to melt a solid.

e Usually, but not always, AV > 0, i.e., the liquid is less dense (i.e., has more volume per
mol) then the solid. (Exceptions are water and a few other compounds; in water the
liquid is denser than ice).

e But regardless of the sign of AV, the absolute magnitude |AV| is small for condensed-to-
condensed reactions

So: Z—ITJ for solid-liquid transition is usually positive, rarely (including water) negative, and

always has a large magnitude.

Let’s see how steep the curve is.

18 — 20)cm3 cm3
AV(H,0,s » ) = ( ) = -2

mol mol
AH(H,0,s - ) = 6000L
mol
So at 0°C:
dP /water\ AH 6000% ] ] bar
_( ): _ mol __ 49 7 _ 11,000~ =-110—
dT \ ice TAV 2cm3 K cm3 ’ KL K
273K -{— ol

Thus, for a lake 100m deep, where the rise in pressure is AP =10bars (since the pressure rises in
water by 1bar per 10 meter), ice will melt to water at a temperature that’s lower than in
room conditions by only

AT AP 10bar 0.1K
~dP ~ _110bar
dT K

(so ice melts there at 0-0.1=-0.1°C.)
You need to apply extremely large pressures in order to change the melting temperature of ice.

Actually, at really large pressures (above 1000 bar) different phases of ice
appear.
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Liquid-vapor transition (or solid-vapor):

For a transition from condensed-phase to vapor, we actually get an equation we already derived
in the previous chapter!

Specifically, as usual, the vapor is assumed to be an ideal gas, and we ignore (relative to it) the
molar volume of the liquid (or solid), i.e.,

P AH,, AH,, _ AH,  AHy,
dT ~ TAV,, TWV,() = V(D)) TW,w)) T’%T
(where here AH,, = AHy,p, or for a solid—>vapor transition, AH,, = AHgp):
dP P AH,,
dT ~ RT?
i.e.,
dP AH,, dT
P R T?
If we approximate that AH,,, is fixed then we can integrate this equation
dP AH, (dT
P R JT?
InP, —InP;, = —%(l—i)
R \T, T,

Note that this is just a special case of an equation we already know:

K —InK. = AH, ( 1 1)
=i == 1, 7 1,
.. P(4)
In our case, the reaction is A(£) - A(v),so K = o -

Example: at sea level the pressure is about 1.01bar and the boiling temperature of
water is about 100°C.
Questions:

(i) What would be the boiling temperature on Mulholland Drive, at a height of 400m
(about 1300 ft) where the pressure is about 0.96bar

(ii) The same on the Everest, where the pressure is 0.3bar
(iii) What's the vapor pressure of water at 50°C.

Answers:

(i) From the tables,

o KJ
AHyap(H;0, T = 100°C)~40 —
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In the first example, measuring relative to sea-level, dP = —0.05 bar, which is a small
variation. So we can find dT directly from the simple form of the Clausius-Clapeyron

formula

dP PAH 1bar - 40,000L1 bar

d—T(T =100°C) = o = ] mol _ 0.035T

—J . 2
8.3 Kool (373K)
SO
dP (—0.05 bar)
dT = bar = bar = —1.5K
O.OBST O.OBST

and therefore Tyjjing(P = 0.96P°) = 98.5°C.

T (o) levc

Physical explanation for the decrease in T: see figure.

Let’s start at sea level (see graph above). At that point the vapor and liquid
coexist, u(v, point 1) = u(#, point 1).

First stage: climb the hill. If we consider H,0 at 100°C, then we’ll be in point “c”
at the graph. At that point G,,(v) was reduced by a large amount

Au(w) =V, ( )AP—RTAP—RTAP —(83 ] 3731{) ( O'OSbar)
HAD) = V885 P B P\ Kmol 1bar

~ —150L
mol

while G,, (¥) is virtually unchanged,

A (e)—V(e)AP—18cm3AP—(0018 L (—005b )—00009L'bar
20 = Y ~ ""mol " mol (=0.05bar) = 0. mol
= —0.09L
mol

So at pointc, u(v) < u(?), i.e., the gas will be more stable. (qualitatively: less
pressure = the gas will be less confined = more disordered = will be more
stable.)
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Next stage: Then we reduce T, fixing P at the new, lower pressure. (Going from

o_n

point “c” in the graph to point 2.) The vapor becomes less disordered (so does
the liquid but by a smaller amount).

But less disorder (S) = G increases (since dG = —TdS here, as P is fixed). So
G, (v) increases faster than G,,, (1), until G,,(v) and G,,(¥) are equal again, at
point 2.

(i) Next: What's the temperature for which B, = 0.3bar. Here the pressure

difference is so big that we have to use the integrated formula

AH/1 1 ,
(_ — _> = InP, (mountain) — InP; (sea)

Plugging in we get

J
40000== /1 1 0.3
-—mol(_-—) —In (—) — 120
373K

] \T, 1
8.3 Kmol

The only unknown in T, which with a little math we get that

T, = 341K = 68°C

(iii) The vapor pressure at a given temperature is defined as the pressure of the vapor

when it is in equilibrium with the liquid.

For a one component system, the vapor pressure is thus a fancy notation for what
we usually call the boiling pressure at that temperature, i.e., the pressure above

which the compound will be liquid and below it is a gas, i.e., it is determined by the

phase transition P(T) curve.

So formally:

InP,,, (T = 323K = 50Celsi In(1bar) = AH’”( ! ! )
n vap( = = elsius) — In ar) = 7 \323k ~ 373K

J

:_40000m01< 1 ~ 1 >:_2
J 323K 373K
8.3
Kmol

So

Pyap(T = 323K) = e™% - 1bar = 0.136bar

Discussion: vapor pressure

If we leave water in an initially dry container (say with air), and seal the container, vapor would
start slowly forming. I.e., water molecules will leave the liquid to the gas.
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This will go on until equilibrium, i.e., until as many molecules leave the liquid as join it from
the gas.

At that point, the vapor and liquid would coexist, and the pressure of the vapor would be the
“vapor pressure for that temperature”. At that point, the air in the container would be at “100%
humidity”.
If the container is actually a room with little ventilation, and we are in the room,
the 100% humidity will feel very “stuffy” (imagine a small closed room with wet
laundry)

At such a room, even if we perspire, the perspiration would not really vaporize,
so we will not cool; that’s why it feels so hot in Houston (where the air is usually
close to 100% humidity) even when the temperature is the same as in
California/Nevada, where the air is much drier.

Of course, if initially we did not put a large enough amount of water, it would vaporize without
reaching phase equilibrium — so we will have less than 100% humidity, and the pressure of the
vapor would be less than “the vapor pressure”.

7.5) Conclusions — Chapter 7

In this chapter we:

e Proved the phase rule. The presence of p — 1 equality conditions on the y's of each

compound:

u(compound i, phase 1) = u(compound i, phase 2) = -+ = u(compound i, phase p)
led to the phase rule, f = 2 + ¢ — p (remember the proof, don’t memorize the
result!)

e We derived, for one component, the shape of the line separating two phases:
duy, = dug = AV dP = AS dT
(where A designates the difference between the two phases!). Thus:

ar _AS
dT AV
ap
So |d_T is very large (steep curve) for transitions between two condensed phases where

AV is small;

While for phase equilibrium between condensed phases and an ideal gas, we get

(assuming AH is approximately constant)

dP PAH AH/1 1 _ _
T InP,—InP;, = —?(———> ((llq. or solid) — gas)

e We understood this equation in terms of general reaction equilibria and defined the
vapor-pressure (pressure of gas when it is in equilibrium with a condensed phase).
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IX. Mixtures

9.1) Overview

Chemical reactions, especially biochemical, are usually carried out in solutions. Before we start
understanding how reactions occur in solutions, we need to examine the properties of mixed
solutions, boiling points, vapor pressure, etc. — all are topics that are covered in this chapter.

One basic point we’ll see is that mixing of two liquids increases the disorder and is therefore
favorable in many (but not all) cases relative to two pure unmixed liquids.

In addition, if the liquids are miscible the mixing changes the stability of the liquid. The mixed
liquid has different melting and vaporization melting and vaporization points (that would be
covered mostly in Chapter 12).

The chapter is organized as follows:
e First, we will encounter strange phenomena (“non-ideal” liquids).

e Then, we will mathematically characterize any liquid mixture using the concept of
partial molar volumes — a subtle concept.

e Finally, we will see how non-ideal solutions behave in the solute-solvent limit (one
compound much less abundant that the other).

9.2) Mixtures: Partial molar volumes.
Take 2 solutions (A and B in general). Amounts: ny, ng.
Mix them: the mixture would have a different total volume, free energy, entropy, etc.
e An extreme example is some salts in aqueous solution, where, under certain conditions

(sufficient concentration, not too low and not too high), if we add more salt the TOTAL
VOLUME SHRINKS!

Physically, the salt “breaks” the hydrogen bonding and the collapse of the
bonding network shrinks the total volume.

e Another, much more common and less extreme case is what happens for ethanol and
water; for these compounds the total volume when mixing them is smaller than the
sum of the individual volumes of the separate water and ethanol.

Mathematically, we define

av
V, (labeled: partial molar volume of A) = I
A
Note that V/, depends on n, and ng. It will be generally different if we use a
different B, i.e., it depends on the nature of the other compound too.

We also define henceforth properties for molar pure compounds with a * (and omit the “m”
subscript). So the molar volume of pure 4 is denoted as V;

Very important: V4 is not necessarily equal to V; (unless ng = 0). V, , the molar volume of
pure 4, is evaluated for ng = 0; while V, depends on n, and ng, and in extreme cases can be
negative!
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Physical interpretation of partial molar volume — Example

Add to a solution of 10,000 moles of A and 20,000 moles of B, a mole of “B”, i.e.,
dng = 1mol.

The volume of that 1 extra mole of B before you add it to the mixture is

Vg - 1mol

After adding that 1 mol, the total volume of the mixture changes by

av
dv = V(n, = 10,000,n; = 20,001) = V(ny = 10,00,n = 20,000) = —— - dny

B
av {mol
=——-1mo
anB
Thus, ;TV, which we labeled as Vg = ;TV, and which depends of course on n4, ng (it changes
B B

when you change ny, etc.) is the change in volume of the mixture brought about by adding one
mole of B to a solution with a fixed amount of n4, ng (as long as the total amount is much larger
than 1 mol).

All this sounds familiar, and indeed, we previously defined py = ;TG. The same interpretation
A

here, just replace G and V. (so u is the “partial molar Gibbs energy”).

Note that this graph below is not for room temperature, so dont use its exact numbers

Relation of total volume and partial volume (subtle!)

In spite of the fact that that the total volume is not a sum of the pure volumes of A, B
V #= n,Vi +ngVg

we can, amazingly, still write a similar looking and physically different equation
V =n,V, + ngVp

. . d
where again [ remind you that V, = % depends on ny, ng!
A

Proof:

Let’s say again that we consider a mixture with, say, 10,00 moles A and 20,000 moles of B (and
nothing else). The key is that the mixture’s properties depend only on the molar fraction.
Specifically,

e Take a mixture with one thousandth times less liquid, i.e., 10 mol A and 20 moles of B.
The mixture will have the same properties as when it is 10,000 and 20,000 moles of A
and B, respectively. In short, the properties depend only on the mole fractions, here

-

e Now pour in A and B a tiny bit each time, keeping the proportion fixed, i.e., add
repeatedly, say, drops — each of which has 0.01moles of A and 0.02 moles of B.
Keep on doing it and each time you add such a drop then

av av

dv = mdnA +Rdn3 =

XA:

118



ny

e Integrating (see the figure) over this very specific “trajectory” where we keep the
proportion fixed so V4 and Vg don’t change, and omitting the explicit mention of x, = %,

etc. we find that

V:JdV:VAfdnA‘l‘VBJdnB:VAnA+VBnB

as promised.

Partial Molar Volumes of
Ethanol and Water

* If you add a shot (3 oz) 58
of rum to 12 oz of Coca
Cola, what will be the
volume of your ‘rum ‘n 54
coke's

56 |-

Ethanol
52

V(mllmol)

Water

01 02 03 04 05 06
X

Ethanol

Taken from https://slideplayer.com/slide/8415870/

Note how the exact same reasoning would have worked for the Gibbs free energy, so we get “as
a byproduct” a very important relation,

G = nyly +nplp
where u, depends generally on ny, ng

Numerical example:
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U

Say that the pure liquids are ethanol (“A”) and water (“B”), that have as “pure”
molar volumes:®
3 3

cm cm
—, V;=181—

V; = 58.6 ,
A mol

mol’

. . 1 2 N

Also say that, again, we consider an x, = 3% =3 combination, and that at
combination the numbers are (see the ref. in the footnote):

2) cm3 cm?3

VA = VA (xA = xB === 57.1_, VB = 17.3

3’ 3 mol mol

Questions

Q: What's the total volume of the ethanol and water when they are separate,
not mixed

Answer:

— * *
Vseparate =ny-Vy+ng Vg =

3

cm 3

cm

mol

10 mol - <58.6
mol

) + 20 mol - <18.1 > =948 cm3

Q: What's the total volume for a mixture with n, = 10 mol, ng = 20 mol

Answer:

1 2 1 2
V:nA‘VA(xA=§.XB=§>+nB‘VB(xA=§,XB=§)

cm? cm?
=10mol-|(57.1— |+ 20mol - (17.3— | =917 cm?
mol mol

Note: the volume shrinks upon mixing— we’ll quantify it later.

Q: What's the total volume for a solution with n, = 20 mol, ng = 20 mol

Answer: we can’t know since we are not given V(x4 = xg = 0.5)

Q: What's the total volume for ny, = 10.2 mol, ng = 20.4 mol. Use two
methods to answer.

Answer 1: The simplest way to answer is to note that the proportions are the
. 1 2 oy .
same as they were earlier, x4, = 3 and xp = 7 All that’s different compared with

5 Taken from Tables 7 and 8 in D. Ricardo Delgado, M. Angeles Pefia and F. Martinez, Revista
Colombiana de Ciencias Quimico Farmacéuticas 42(2):298, 2013. Available from:
https://www.researchgate.net/publication/262561499 Preferential solvation of acetaminophen in ethanol
_water_solvent_mixtures_according_to the inverse Kirkwood-Buff integrals method
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the case above is that we have 2% more liquid. Therefore the volume will be 2%
higher, i.e.,

cm?

V=917 «1.02 = 935.3
mol

Answer 2: Alternately, we could use the formulae we learned earlier on the
variation of a function of two variables when both variables are slightly changed.
We’ll omit the “mol” and “cm3”.

V(n, = 10.2,n5 = 20.4) =

av
V(nA = 10, nB = 20) + — . dnA + — . dnB
on, xa=hxp=2 ongl, 1,2
=917 + VAdnA + VBdnB
=917 +57.1 -0.2+17.3-0.4 = 935.3 cm?

So the same answer!

Q: What's the volume when n, = 20mol, ng = 40.3 mol.

Answer: The proportions are not exactly 1:2, but they are not far. So let’s first
find the volume with 1:2 proportions that’s close to what we’re asked:

V(n, =20,nz =40)=2-V(n, = 10,nz = 20) = 1834 cm?

So: relative to (ny, = 20,ng = 40), the mole #s we’re interested in, n, =
20,ng = 40.3, are different by dn, = 0,dng = 0.3

So
V(n, = 20,ng = 40.3)
=V(n, =20,ng =40) + Vydn, + Vgdng
=1834+57.1%0.0+17-0.3 = 1839.1 cm3

9.3) Mixing Volume and Mixing Free Energy

Mixing volume

Let’s define a new concept, the mixing volume, as the difference in volume between the
mixture and its separate ingredients. We’ll refer to the prev. example.

Q: What's the mixing volume when n, = 10 mol,ng = 20 mol.
Answer:
AVix = V(ny,ng) — V(separate)

We have seen V(ny,ng) = 917 cm3. Also, we saw that (I repeat)

Vseparate = T4 - (molar volume of pure A) + same for B
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. cm? cm? 3
=n4V,s + ngVgz = 10 mol - 58.6 — + 20 mol * 18.1 — = 948 cm
mol mol
So the mixing volume is here negative

AV iy =917 — 948 = —31 cm3

Generally, based on what we learned the mixing volume will be
AV pix = V(ny,ng) — V(separate) = ngV, + ngVy — (n4V; + ngVy)
1e.,

AV iy =gV = V) + ng(Vp — Vp)

It is often fruitful to define it in terms of the molar fraction, using ny = n xy, etc.
(where n = ny + ng) so

AV i =1 (x,(Vy = V) + xp(Vp — V)

Mixing Free energy

Completely analogous, just replace V by G.

. . | . G
Thus, since the equivalent of V, = £| 1Sy = —
A

P | , we get an expression for G
A

G = nypy + nplp

Similarly

AGix = Gy — Gpremix = 1 (xa(ta — 1) + x5(1p — p3))
Note: in order for substances to mix, AG;; need to be negative.
To understand better, let’s write G = H — TS, i.e.,
AGnix = AH iy — TAS Lix

Note that generally, for any compounds, mixing increases disorder, so A4S ,ix > 0.
So —TAS ,ix would be negative.

But AH ;4 could be
e Negative (for compounds that really like each other, e.g., ethanol and water)
e Close to 0 (for compounds where the A-A and A-B and B-B interactions are similar) —
these are the ideal solutions that we’ll deal with
e Positive (compounds that don’t really like each other). And then, the question is how
positive is AH iy ?
o [Ifitis really high, i.e., higher than TAS,;x, then the compounds won’t mix at all
(e.g., oil and water).
o Butifit is positive yet not too big, the compounds would mix, but would be more
volatile (less strongly bound to the liquid) than they were before — we’ll see that
later for an acetone-with-CS2 solution.
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Exercise: the mixing free energy for ideal-gases that are initially both at the same
pressure, say lbar for simplicity. (Of course, for ideal gases, AH,;x = 0.)

So before mixing, since each gas is at one bar
Ha = 13

After mixing, the partial pressure of A would be
PA = xAPO

(e.g., if the total pressure in each of the initial chamber is 1bar, and we mix 20%
oxygen and 80% nitrogen — so the nitrogen chamber was 4 times bigger than the
oxygen one -- then the partial pressure of oxygen after the mixture would be
0.2*1bar=0.2bar)

So the effect on the oxygen pressure would be that it was reduced by a factor of
Xy4.

We know that the chemical potential is then

o Pa
Us = g+ RT In (PO)
So

Py

P°> = RT In(x,)

Ha — Mg = pa —Hg =RT ln<
Therefore
AGpix = NRT (x4 In(x,) + x5 In(xg)) ideal gases
andsince x5 <1, In(xg) <0,s0

AGhix < 0 forideal gases.

9.4) Ideal Mixtures

So far the discussion was general. We’ll now specifically deal with ideal gases and solutions.
An ideal mixture is one in which the A-A and B-B interactions are essentially the same as
the A-B interactions.

Examples:

. . . .. n
mixtures are easier — since we can treat for them any ratio —
n

All vapors would be assumed ideal gases (since ideal gases molecules do not interact at

For us, all gases are essentially ideal = so gas mixtures are mostly ideal mixtures.
Similar molecules, e.g., Benzene and Toluene.

Note: Liquids are not individually ideal nor non-ideal. Mixtures of liquids are ideal
or non-ideal. The same liquid would behave ideally when mixed with one
compound, and non-ideally when mixed with another compound.

Later we’ll discuss non-ideal mixtures in the limits ny > ng or ny < ng. But ideal

A
B
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9.5) Raul’s law, ideal mixtures, and non-ideal mixtures

The trick to getting information on solutions is to consider a mixture (a liquid made from A
and B) in equilibrium with its vapor, made from A and B. Let’s see what it gets us.

Ideal liquid Mixture: Raul’s Law

A formal empirical observation by Raul on the vapor pressure in an ideal solution is (see figure):
Py=x,(D)- P,
Note that Raul’s law obeys correctly the limits:
Whenx, -1 then P, - P,
Whenx, - 0 then P, —0

Reasons for Raul’s law: qualitative

Raul’s law says that P, (the vapor pressure) is proportional to the liquid mole fraction x, (1).

Think of it like that:

Equilibrium between vapor and liquid means that the number of molecules
leaving the liquid to the gas, equals the number entering the liquid from the
gas.

When x, (1), the concentration of 4, is not 1 (i.e., A is not pure), then fewer A
molecules leave the liquid (since there are fewer A molecules per unit area). In
ideal mixtures the number leaving turns out to be proportional to x,(1).

On the other hand the number entering from the gas to the liquid is
proportional to the pressure.

So if x4 (1), is, say, halved; then fewer molecules would leave the liquid, so the
gas pressure required for equilibrium would be half as much.

In other words, P, is proportional to x4 (1), as mentioned.

The first figure below (important figure, we’ll use it later) shows a diagram for
a benzene-toluene (“b-t”) mixture. The two liquid form together an ideal mixture, since the
interactions are so similar.

The figure shows the individual and total vapor pressure vs. the concentration of the toluene
in the liquid. The lines are straight, per Raul’s law.
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Numerical examples:

We’ll measure pressure here in units of torr (750.06 Torr = 1bar).
Torr is also known as mmHg (roughly: you need 1torr to raise a liquid column of Hg by one mm
in an old mercury thermometer).

(i) At 20 °C, a liquid mixture of toluene and benzene has (I round the #’s):

e n.(l) =10 moles of t =toluene (P =22 Torr at 20°C) with
e 1, (1) =30 moles of b =benzene (P, =75 Torr at 20°C)

The two compounds (benzene + toluene) are an ideal mixture, as we mentioned.
(i) Question: what’s the vapor pressure of the mixture.
Answer: (#’s rounded)
x:() = 0.25, x,(1) =0.75
Piot = P+ Py, = x, ()P, + x, (P, = 0.25 x 22 4+ 0.75 * 75 = 62 Torr

(ii) Question: If P,,;, = 65Torr, what is x; (1), and is it the same as x;(v)

Answer:
Peor = Pixe(D) + Pyxy (D) = Pix (D) + Py (1 — x.(D)
1.e.,
Pior = Py + (Pf — Pp)x, (D)
Let’s plug to get
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65 =754+ (22 - 75)x. (D)
The solution of which is:
x:(l)=0.19
Next: x,(v). We can easily determine x,(v) from what we know about gases. Within the vapor,
the molar fraction of toluene in the vapor is the same as the pressure-fraction, i.e., the ratio of the

toluene pressure to the total pressure, x;(v) = Pi. But
tot

P, = x,()P; = 0.19 % 22 = 4.2
SO

P, 42
—~=0.064 = 6.4%

x(v) = Peoe = 65

Note that_x, (v) “must” physically be less than x,(I). Toluene is less volatile than benzene, so it
is less present in the vapor.

Next:

Non-ideal mixtures.

Two subparts:

“Solvent” limit

It turns out that even in non-ideal liquid mixture, Raul’s law is obeyed for the solvent, i.c., when
x4 (1) close to 1. (In practice you can safely assume, in most context, that is it obeyed when the
concentration of liquid A, x, (1), is bigger than 90%. ). Put differently: solvents are generally
ideal.

For example, for a non-ideal A — B mixture, if the vapor pressure of pure A is P, = 0.020 bar,
then at x,4 (1) = 0.95, the vapor pressure would be about

Py, =x,() * Py = 0.95%0.020 = 0.019 bar

Question: in the same (non-ideal) mixture, if x,(1) = 0.6, what will be P,?

Answer: we can’t know! x, (1) = 0.6 is not big enough so we can’t assume Raul’s law.

If it would have been an ideal mixture, P, would be 0.6 x 0.02 = 0.012bar, but we are told it is
not an ideal mixture.

Heuristically, the reason that Raul’s law is valid for solvents is that the effect of the solute on
the free energy (and therefore on the chemical potential, which determines the stability of the
molecules in the liquid, and therefore the vapor pressure) is in two parts.

e First, an enthalpy effect: a small change in the enthalpy since a solvent molecule
A interacts differently with B than with another A (for a general non-ideal mixture). But
this is not a huge effect, since it only affects the very few solute molecules.

e Second entropy effect: Another, subtler but more important effect, is that the presence
of a solute molecule B increases the entropy of the solvent, thereby making it more
stable; and this effect is independent of the interaction of A and B.

To exemplify the effect on entropy, consider 5 identical molecules A that are in a
line, and what happens to the number of “system states” (i.e., how much
disorder would be) if we replace one of the A molecules by a B molecule

Before: one state. AAAAA

126



After: 5 possible states: AAAAB, AAABA, AABAA, ABAAA, BAAAA

More states mean more disorder --higher entropy —more stability.

For solvents the second, entropy, effect is the only important one, i.e., all solvents have the same
general behavior (i.e., obey Raul’s law) if their concentration is sufficiently close to 100% (i.e.,
say, above 90%).

“Solute” limit

For solutes (i.e., when x4 < 1) Raul’s law is not obeyed when the solutions are not ideal. But
we can still get a useful mathematical expression.

Specifically, when x4 (1) = 0 we’ll have obviously P, = 0 (i.e., pure B, no A in the liquid and
therefore nor in the vapor).

So let’s define K4 as the slope of P4 vs. x4(1) at x4 =~ 0. (Note that K, depends on the
identity of the solvent, B)

K, is called Henry’s “constant”. That’s a bad notation, since this “constant”
really depends on the identity of both the solute and solvent. So it is not really a
“constant”, and it depends on “B”, the solvent, not just “A”. But this is the name
that people use.

i.e., for solutes:
Po=K, x;() x4«1
Note that for ideal solutions, since Py = P, - x4(1), then
K, = P; (ideal — solutions only)
Question:

In the figure below of CS; —acetone: is Kcg, bigger or smaller than PESZ?

Answer:
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KCSZ is the Slope of PC52 for small Xcs, (l) (PC52 = Xcs, (l)KCSZ at low xCSZ)
P¢s, is the slope of Pcg, for large x¢s, (1) (Pcs, = xcs, (DPCs, at high xcs,)

For this mixture, the slope at low xcg, (1) is obviously HIGHER than the the slope at high
concenrtations of CS,.

Put differently, the slope of the vapor pressure of CS,, in this mixture is larger when it is
solute than when the same compound is a solvent.

Therefore, Kcs, > Pcs, (for this CS, + acetone mixture).

Physically, Kcs, > Pcs, means that the CSz molecules interact with acetone less strongly
than they would with other CS..

L.e., at low concentrations of CS: its vapor pressure is higher than it would have been were they
in an ideal mixture. CS; likes to “leave” the liquid when it is a solute in acetone, more than
the ideal-mixture Raul’s law would predict.

Of course, if the interactions of CS, with the solvent (acetone) were MUCH
weaker (less binding, i.e., more “positive” energy) than the CS,-CS; and acetone-
acetone interactions, then the two liquids would not have mixed.

That’s what happens in oil+water — the two liquids don’t mix, since AH ,;x >> 0,
as we mentioned.

And, remember again, when a compound is a solvent, is always behaves ideally.

Ideal vs. non-ideal mixtures: qualitative reasoning

To understand ideal vs. non-ideal mixtures consider two examples.

Water and heavy/semiheavy water (D20, HDO) are an ideal mixture.

Not because they do not interact — they actually interact very strongly (each molecule
interacts very strongly with its neighboring molecules, whether they have D or H
isotopes).

But the interactions are the same. (The force that H20 exerts on an HDO or D20
molecule is the same as the force that it exerts on another H2O molecule.)

Ethanol with water is a non-ideal mixture:

The water molecules attract each other strongly;

The ethanol molecules attract each other strongly;

But water and ethanol molecules attract each other very very strongly. So the reactions
are not the same as between each molecule, and the solution is non-ideal.

When you put ethanol and water together, the ethanol molecules get “between” the water
molecules and attract them strongly — the water molecules cluster around the ethanol ions
and therefore get close together.

As a heuristic example, consider what would happen if you put a group of timid people in

128



a party in a big room. They won’t get too close to each other.
Now put into the room some small tables with good food and beer — the people will be
drawn to the tables, and therefore to each other.

9.6) Conclusions — Chapter 9

In this chapter we studied:

Partial molar quantities
_av
VA = E .
where VV* indicates the volume of two separate compounds (4 moles of A, ng moles of
B). And we proved
V = nAVA + nBVB * V*(: nAV; + nBVék)

Often V, # V,. Generally V/, depends on x4, xg, ...

Analogously

G = nyuy + Nplp # Nally + Nplip

In fact, the difference between the post-mixing and pre-mixing quantity is called the Mixing
Free energy (or mixing enthalpy, mixing volume, etc.)

Gmix = G — 6" =n (x,(ug — 1) + xp(up — pp))
For ideal gases, we proved that
Gmix(ideal gases) = nRT (x4 In(x,) + x5 In(xg)) <0

Raul’s law: valid for ideal solutions at any concentration or for solvents in non-ideal
solutions (i.e., when x4 (1) is close to 1):

Py =x,(DP;
Henry’s “law” for dilute solutes in non-ideal solution is

Py = x4(DKy
where K}, is solute-and-solvent-specific coefficient that simply describes the linear rise of
the pressure from 0 when there’s no “A”.
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XII. Multicomponent Phase Equilibrium

The overall question in this chapter is: how do non-reacting substances mix in solutions. Much of
the theoretical foundation was laid in Chapter 9, and here we exemplify the theory through a few
samples of the rich phenomena governed by thermodynamics.

This chapter as presented here is made of 3 parts (in the book one of these parts is in Chapter 9).

12.1) Phase diagram for 2 components

Here we consider 2 components in 2 phases; and both components can be present in both phases;
this part is a continuation of the previous chapter.

Let’s start with ideal mixtures (so we can derive quantitative expressions), where the two phases
will be liquid and vapor.

We’ll see that, for a given temperature, the vapor and liquid would in equilibrium over a range
of pressures.

We’ll also remind ourselves of the dependence of the concentrations on the pressure, x4;(P),
Xav (P)

We will then derive the lever rule relating the total number of moles in the vapor and the
liquid to the compositions.

With the lever rule and the compositions-pressure relation we would be able to predict precisely,
for any total ny, ng, how much of compound A would be in the vapor and how much in the
liquid, and the same for B (and this means that we’ll also know the concentration of A and B in
each of the phases).

Another topic that will emerge from this general discussion is distillation, due to the difference
in composition between one compound and another.

We’ll then move to non-ideal liquids, still fully miscible but with azeotropes, i.c., (considering
for example a fixed sea-level pressure) mixtures with a boiling temperature which, for some
concentrations, is lower even than that of the more volatile compound (or alternately: higher
than that of the less volatile one).

Finally, we’ll move to partially miscible liquids. Mathematically, the discussion would not be
very different: just like the case of a fully miscible liquid 2-component mixture in equilibrium
with the associated 2-component vapor; Thus:

e There we also had 2 phases — liquid and vapor-- with fixed compositions in each phase
(for a given P and T) but varying amounts of moles in each phase depending on the
overall composition;

e Here (in the partially miscible case) we would again see that having 2 coexisting phases
implies that their composition is fixed. All this behavior would be related to the phase
rule.

Liquid-vapor phase diagram for ideal-solutions

Fix T. Recall that if we only had one compound A, then vapor and liquid could coexist at one
(compound-dependent and T-dependent) pressure, i.e., when P = P,(T).

But for 2 components things will be different.

Definitions
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First, recall some straightforward definitions. The total mole fraction of A is

Ny Nyt Ny, _
X4 = = y Mot =Ny +Np
Niot Niot

The mole fraction of A in the vapor is

Xan = Nay
Av —
ny

And of course Xap + Xpy = 1, Xa1 + Xy = 1, X + Xg = 1.

Next:

Liquid-vapor coexistence curve

Recall that if there’s equilibrium between liquid and vapor, the total pressure of the vapor would
be, by Raul’s law,

P =P, + Pg = x4 P + x5, Pg
So, since xg; = 1 —xy;, P = x4Ps + (1 —x4)Pp, ie.,
P = Pg + x4, (P; — P3).
We can rearrange to get the concentration of the liquid as a function of pressure

P-P;

Xal
Py —Pg

At the same time, the vapor is still an ideal gas; so for example if the of A concentration in the
vapor is 20%A (i.e., x4, = 0.2), that means that the pressure of A would be 20% of the total

pressure; SO 1n general, X4, = ?, winicn 1mmplics

*
_ Xq Py
xAU - P

Thus we can think of the concentration of A in the liquid and the concentration of A in the
vapor as both being functions of the pressure (given P we determine X4;; and then from P, xy;
we determine x4, ).

A plot of the two concentrations is given below. (It is clearest if you think of it as an inversion
of the axis; the “y” axis is the “independent variable”, the pressure, while the two “dependent”
variables, x4; and x4, are both along the “x” axis.)

Now we’ll use an example to understand the phase diagram.
Say: A=benzene, B=toluene (bad notation, sorry!)

T=20°C, so
Py = 75 torr, Pg = 22 torr (recall that 750 torr = P°).

Also: assume n, = 7 torr, ng = 3 torr, so x4 = 0.7.

Now let’s start at very high pressures, where only a liquid exists. Then lower the pressure
(downward arrow in the figure).

When the pressure is reduced, we reach a pressure where some vapor starts forming, a minute
amount at first. At that pressure, the liquid solution and vapor coexist, so Xy, is related to P by
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the equations above, P = Pg + x,;(P; — Pg). But since at that point essentially all the mixute is
still a solution (except for a minute amount of vapor), then x4; = x4, = 0.7, and therefore at that
point:

P =22+0.7 (75— 22) = 58.9 = 59 torr.

In more cartoonish form (in the cartoons below the y-axis is always pressure, the x axis
x4(1), x4 (v), where again “A” =benzene (not toluene!))

Now reduce the pressure further. Notice what happens (gliding arrows along the two
curves): the vapor becomes more abundant, the liquid less, and the two coexist.

But at each pressure, the vapor is richer in A then the liquid, as A4 is the more volatile compound.
I.e., as long as both vapor and liquid coexist, x,; will lie along the solid line, while x,,, will lie
along the curved line, and they will fulfill:

X < x4(=0.7) < xyy
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All of this goes on, with more vapor produced at the expense of the liquid, until almost all the
liquid is consumed. At that point, only vapor is present, so that its composition
must be x4, = x4 = 0.7.

When the pressure is lowered even further, the mixture will remain a vapor, no liquid present;
and since there’s only one phase, x4, = x4 = 0.7.

Determining P when we know x,,, = 0.7

The pressure at that point needs to be determined from the equation above,
_Pa Pa

Xpgp = — = Xyq1—.
Av P AlP

It is possible to manipulate the expressions in the particular equation so that it
reads as an equation for P in terms of x4, only, but that’s cumbersome. |
personally like the “guessing” approach:

= GuessP

= Determine x4; from P

= Determine x4, from P and x,;. If itis too high (higher than our target
result, 0.7 here) reduce P, and vice-versa if it is too low.

For example:

_ (P-Pg) _ 54-22
Py—Pg  75-22
_ (P—PR) _ 50-22
P,—-P5 7522
_ (P-Pp) _ 42-22
Py—Pg  75-22
(P—Pp) __ 42.5-22
P,—Pg 75-22
And by linear interpolation from the last two values we get P = 42.7.

P =54 torr > xy4 =0.615 > x4, = xAF’,P:‘ =0.615 *;—i = 0.85: too high. Lower:
_ XalPp _

= 0.538 = x4, = o= 0.538 *% = 0.81: Lower aggressively:

P =50torr = xy4

P =42 torr — Xxy4 =0.384 - xy, = xath _ 0.384 * g = 0.686. Raise a little:

P

P =43torr > x, = = 0404 - x,, = 4 = 0,404 x 2 = 0.704.

Next we ask: What are the distributions of vapor vs. liquid in between P=42.7 torr and
P=59 (i.e., n;, n, ) when both phases coexist? For this, we’ll need

The lever rule
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We’ll get n;, n, by realizing that there are two ways to determine the total number of moles
of A, i.e., ny.

The first is from the overall concentration:
Ny = X Nyt = X4 (N + 1)
The second is from the concentration in each phase:
Ny =Ny + Mgy = X1 + XgpNy
Equate these 2 equations and get
xg (N + 1) = xqm + XMy

Now move the terms so n; is on only one side, and n,, on the other side, to yield

n(xg — Xa1) = Ny (Xap — Xa)

This is the lever rule. (It really should be called the seesaw rule.) See picture below:

. =
MA

In the picture above, the “weight” n; times the “lever length” (x, — X,4;) on one side should be
the equal to the product of the weight and length on the other side. Like a seesaw!

Examples:

Mix 35 moles of benzene (“A) and 15 moles of toluene (“B”) so x, = 0.7
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We're at 20°C, so P; = 75 torr, Pz = 22 torr.
Question:

Find the total mass of A and B in the vapor and liquid for the following total
pressures (all in torr):

(a)60, (b)50, (c)43.8, (d)30
Answer:

Recall from a few pages ago that we determined that the two-phase region is
between 58.9 and 42.7 torr. Thus:

(a): Outside the two-phase region. All liquid, x4, = x,; = 0.7. No vapor.
(d): Analogous, all vapor, x4 = x4, = 0.7. No liquid.

(b): More interesting. In the 2-phase coexistence region. Vast majority of
mixture is still liquid. Formally, the method is

P - x,(1), x4(v) = Lever rule gives n,,n; — getny(v), ng(l)

We’ve done the first stage a few pages ago, | reproduce the results (with more
digits)
(P—Py) 50-22 X P

75
P =75 g7 = 0538 = Xaw = <5t = 0538+ 575 = 0.80

P =50torr = x, =

So the lever rule n;(x, — x4;) = Ny, (X4, — X4) gives

(0.7 = 0.538) = 1,(0.807 — 0.7) — L = 2097 =07
) " n, 0.7-0.538

= 0.660
Supplemented by n; + n,, = 50 we can solve both equations to give:
n; =199, n, =30.1

And therefore, in the liquid there’s ny; = n;x,; = 19.9 * 0.538 = 10.3 moles of
benzene; and in the vapor there will be ny, = ny — ny = 35 —10.3 = 24.7
moles of Benzene.

(c) Analogous, this time the vast majority is vapor and only a tiny bit of liquid. Do
it yourself similar to (b). (See also the cartoon 2 pages ago).
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Distillation

We saw that when the pressure is in the range where there’s some liquid and some vapor (for
x4 = 0.7, for example, we saw that this happens for P = 50torr) the vapor would be much
richer in the more volatile compound (here “A”, i.e., benzene).

Thus, if we want to distill benzene, for example, we can then remove the liquid, and stay only
with vapor. This will leave us with a much-more concentrated solution of “A” (x4, = 0.807 for
this vapor-only part, compared with x, = 0.7 before; with less moles (circa 30 vs. initially 50).

We can then continue this cycle. I.e., take the retained x, = 0.807 vapor, and increase the
pressure on it till about 2 of it liquifies — the remaining vapor (about 15 to 20 moles) would be
at an even higher concentration of “A”!

We can continue this stage more and more, and at each time remain with less vapor, but a more
concentrated one.

In practice 6-8 steps would be enough for an extremely highly purified “B”.
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What about the “remainder”, i.e., all the liquid/vapor we removed along the way? The answer is
simple: take that and pass it again through the same stages!

In this way, at least for the ideal liquids case, we can, after many steps, separate the compounds
to almost-pure “A” and almost pure “B”. See pictures above.

Industrial distillation:

Usually done at fixed P, by changing T. See figure®
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Non-ideal mixtures, Azeotropes

Most mixtures are non-ideal and exhibit interesting behavior. Especially interesting are
“azeotropes”, defined when there’s either a minimum and/or a maximum in the vaporization
temperature (at a fixed pressure) as a function of concentration, and that minimum is for a non-
zero concentration of both compounds, see the figure for example:’

The most celebrated example of azeotropes is ethanol + water; at an ethanol molar concentration
of 87% (or 96% by mass), the mixture vaporizes at 78.2°C, slightly less than pure ethanol which
vaporizes at 78.4 °C.

® From https://www.tf.uni-kiel.de/matwis/amat/td_kin_ii/kap_1/backbone/r sel3.html
7 From https://en.wikipedia.org/wiki/Azeotrope
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Curves calculated by mod. UNIFAG {Dortmund)
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Such behavior (the mixture vaporizes at a lower temperature than either of the pure ingredients)
is called a positive azeotrope (I am not sure why the name “positive”).

It is physically due to the molecules of the mixture, at that concentration, liking each other a little
bit less than the molecules of either of the pure compounds. So they are more volatile and
vaporize at a lower temperature.

Note that tied-knot behavior. The reason it has to be is outlined in class and the discussion
sections; basically, if it wasn’t a tied knot, there would have been two vapors coexisting at a
different concentration, which is impossible — they would have mixed.

Partially miscible liquids

Previously, we dealt with fully miscible liquids (even H2O+ethanol, though non-ideal, were fully
miscible).
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For partially miscible liquids, the phase behavior is as follows (see the figure in this and next
page).

Let’s assume for presentation sake that the “A” molecules are red, and that “B” ones are
blue. And assume that the color of the mixture just relates “linearly” to the concentration (B-
heavy: bluish purple. A-heavy: reddish purple)

When you start with pure A and add B, then initially only one phase is present (A with some B;
we’ll call this the “Y” phase). The concentration in the Y phase becomes less and less A-heavy
as we add “B”. l.e., the “Y” phase, which started out red, would turn to be a reddish-purple as
we add “B”.

This is until you get to a certain composition (say xg = 0.2, and this depends on compounds,
temperature and pressure).

At that point suddenly the “Z” phase appears. That phase is, say, 30% A and 70% B, so since B
is blue, it is a very bluish-purple

With adding even more “B” the concentration of the two phases won’t change, so their color
would be fixed — the “Z” phase would be 30% “A”, and the “Y” phase 80% “A”. But the “Y”
phase would be consumed and the “Z” phase will grow.

Note how nonintuitive this result!!

Naively one would think (I did when [ first studied this) that when we add more
B, the Y and Z phases would become diluted with B, making each “bluer”.
Wrong!

What really happens is that when we add B there would be more grams of the Z
phase, less grams of the Y phase, but as long as the Y phase is not completely
consumed, the compositions of both the Z and Y phase would be fixed.

This is where thermodynamics excels: it does not tell us how the two phases are
formed; only how does their composition vary.

The reason for the 2 fixed-concentration phases is the phase rule,
f=2+4+c—p. Herec =p = 2,s0 f = 2, and these two variables are the
pressure and temperature — which are fixed here. So no other degrees of
freedom, i.e., the concentrations in the two phases Y, Z are set (for this case,

¢ = f = 2, by the temperature and pressure, and cannot vary when we change
the overall concentration.

In more specific language, once T and P are fixed the remaining variables are
x4(Y) and x4(Z) (the concentrations of B is set from that of A — if the
concentration of A is 80% that of B would be 20%, etc.), and there are two
equations for these variables,

a(Y) = ua(2),  pupg(¥) = pp(2)
So 2 egs. for two unknowns! l.e., the concentrations are set by these equations.

Next, continue adding “B” until there’s so much “B” that all the “Y” phase is consumed, leaving
only the “Z” phase; this happens of course at x5 = 0.7, i.e., when the overall concentration
matches that of the “Z” phase.

When we add even more “B” the solution would turn bluer and bluer, i.e., all the solution would
be at the Z phase and the concentration of “B” would rise (to 90%B, 95%B and eventually to
almost 100%B).
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12.2) Chemical potential in liquid mixtures.
This part is from Chapter 9/10, but i moved it here to have continuity of subjects.

It is interesting that from the rules on vapor pressure, we can get the chemical potential u, of a
liquid comound in a mixture, even when the total pressure is high enough that there’s only a
liquid, i.e., no vapor!

The trick is to recognize that the chemical potential of the liquid is nothing more than the
chemical potential of the vapor when the vapor is in equilibrium with the liquid.

For example, say T = 20°C. We wrote that the vapor pressure of pure benzene is then 75 Torr =
0.1bar.

That means that the chemical potential of pure liquid benzene (at essentially any pressure) is
the chemical potential of benzene vapor at P, =75Torr. This chemical potential is denoted
as up, (D) (“*” for pure). lLe., (now benzene is again “b”)

up (D) = up (v, Pp)

Similarly, the chemical potential of benzene in a mixture, denoted as 1, (1), will be that of
benzene vapor at Py,

up (D) = pp (v, Pp)

But we know the relation between the RHS of the two equations, since we know how the
chemical potential of a vapor changes with pressure!

. Py,
ty (v, Pp) = pp(v, Py) + RT In (F)
b

Thus generally,

Py

*> any mixture
Py

(D) = pp (D) + RT ln<

This beautiful relation is valid of course for any compound, not just benzene. Note that while we

need to know %, the relation is valid at any pressure (since the liquid chemical potential is
b

essentially pressure-independent)

The chemical potential of ideal mixtures (and solvents):

Since Raul’s law P, = x,4(1)P; is valid in ideal mixtures and also for solvents, we can plug it
into the last equation to get:

ua(l) = w4 + RT ln(xA(l)) ideal mixtures and / or solvents

You see that the chemical potential in ideal mixtures and solvents is lower than for a pure
compound, signifying higher stability

The chemical potential of solutes:

For solutes we will plug in Henry’s law, Py, = x4 (1)K}, to get:

K
ua(l) = p4 + RT In (P—‘ixA(l)) for solutes, X, K1
A

We now simplify by noting that the logarithm breaks to two parts
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K K
In (P_;;xA(l)> =In <P—2) + ln(xA(l))

So we can write
pa(l) = pieference 1 RT In(x, (1))  for solutes, Xy K1

where we defined the standard (“reference”) state of the dilute solution to have a chemical
potential:

K
e = s+ in (22)
y PA
Note that this reference does not correspond to any real concentration. Instead, think of it like
this: the reference is defined so when the concentration of A, is say, 1 per million (x, = 107%)
then the chemical potential is
pa(xy = 1076) = pieietence + RT In(107°)

A,solute

Le., we can measure the chemical potential at this tiny concentration (u,(x, = 107°) then we
can define

pieterence — 1y, (x, = 107%) = RTIn(107°) = p,(x, = 107°) + 13.81 * RT

Think of the reference chemical potential for non-ideal solutes as what WOULD have been
the chemical potential if we could have continued Henry’s law up to a concentration of
100%.

Important: for solutes in water: x,(l) = A__ = T4 |y practice most
na+Nwater n Nwater
chemists use the molar density of the solute [A] = 7‘4 , and in water solution

you know how to transform from one to other.

So for most chemist, the reference pressure and concentration of solutes refer,

in actual experiment, usually not to a molar concentration of 100% but to a
mol

molar density, [4] = %A of 1—.

That means the expressions and definitions in some text books and in the
literature are slightly different than mine.

Activity coefficients.

Remember that when we derived the rate law (K = e “26°/RT) we defined K to be the appropriate
product of powers of activities, and we defined the activity to be

#A(l) — 'uzeference + RT In a,

Looking at the definitions above, we find that for solutions we can write:

a,(in solution) = x,(1)  ideal solutions, or any solvent, or any dilute — solute.

To account for deviations from these three limits, yet another coefficient is introduced, the
activity coefficient, y 4, which is 1 for ideal solutions, for solvents, or for an extremely dilute
solute. Then
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a,(in solution) =y, x4 (1)
Any deviation from these limits implies that y, will not be exactly 1.

Note: In polar solutions, and especially for batteries, the values of y, could be significantly
different than 1 due to the strong long-range Coulomb interactions (which implies that, for
example, solute molecules see each other even when there are very few of those).

12.3) Overview of colligative properties part

The last, easier, part deals with colligative properties (the effects of adding a little “salt:, i.e., a
non-volatile solid or liquid, to a solvent), when the solute is not present in one or more of the
phases of the solvent.

Colligative properties are ones which depend on the number of solute particles present, not
their identity, and the concept is relevant for dilute solutions.

In this part (only) A denotes the solvent, B the solute.

Usually, the solvent will be water, and by “salt” solute we’ll refer to any substances that don’t
mix into ice and do not vaporize, i.e., are only present in the liquid aqueous solution.

Then, due to the presence of the solute molecule, the liquid solvent is stabilized, and therefore
the boiling point increases, and the freezing point decreases.

Basically: salty water boils at >100°C and freezes at <0°C.

A similar-in-spirit phenomena is osmotic pressure, where a solute-solvent mixture in again in
equilibrium with a phase in which the solute is missing. But this time the 2™ phase is a solvent
separated by a membrane, and the effect of the contact is to increase the pressure in the
solvent-solute mixture.

The one key feature that enables an analytic treatment of boiling point elevation and freezing
point depression is that they are governed by equilibrium conditions for the solvent, and every
solvent (not solute!!) is almost ideal —i.e., obeys Raul’s law.

Colligative properties: Freezing point depression and boiling point
elevation

Assume the solvent is water, and the solute (B) is involatile, and can’t penetrate to ice.
(Example of such a solute: NaCl, or sugar). It only mixes with the liquid water.

The chemical potential of the liquid water is then reduced by the presence of the solute —
the extra disorder raises that water entropy, so the liquid water becomes more stable, while
the chemical potential of the ice and vapor forms don’t change.

This causes (see figure):

T <T; freezing point depression

T, <T, boiling point elevation

143



Freezing point depression: Quantitative

Consider solid (ice) vs. liquid water (both at 1bar). Water is the solvent, so it will be designated
as A. All the discussion will be for 1 bar.

When there’s a solvent, B, the chemical potential of the liquid is lowered (see figure) so the
equilibrium freezing temperature, Tr will now be when the new chemical potential of the liquid
matches that of the solid

uals,Tr) = na(L.Ty)

Note that since the ice has no solute, it remains pure, so we keep the

ko

in it.
We learned also that the liquid chemical potential for solvents
ua(LT;) = pi(LT;) + RTr Inx,
Plugging in the last eq. to the one above gives
wi(s, Tr) = ua(LTr) + RTy Inx,
which we can rearrange to give
RT¢Inx, = — (,uj;(l, Tf) — uj,(s, Tf)) = AG(Ty)

where we know that the chemical potential of pure compounds equals their molar Gibbs free
energy (relating to A), so their difference is the “fusion” (or “melting”) free energy, which I
denote by AG(T) (avoiding further labels and subscripts).

A simple way to get the freezing temperature from this relation is to note that at T}, the freezing
free energy difference (relating to the pure water case) vanishes! AG (T; ) =0.

Therefore, at other temperatures, we can approximate

Note: we used the relation we learned in the 1, math chapter:
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df
fO) = f() + (e —x)

Now

AH

AS = —
Ty

As we once derived.

This is because the Gibbs free energy vanishes at the pure-compound melting
temperature 0 = AG(T;) =AS —TfAH

So plugging to the Green equation above gives
AH ,
RTfInx, = T (Ty—T%)

The difference, Ty — Ty, is called the freezing point depression.

To further simplify we note that x, + xp (the mole fractions of A and B add up to 1), so
Inx, =In(1 —xp) = —xp
where the 2" equality is a mathematical approximation (i.e., a Taylor expansion) valid for small
Xg-
Example: x4 = 0.95,x5 = 0.05;
Inx, =1n0.95 = -0.05129,

i.e.,, Inx, is very close to —0.05 = —xj5 as predicted.
So:
Tf — Tf = HTfo lnxA = —ETfoXB
Finally, since in absolute magnitude the freezing temperature with and without salt are not that
different percentage wise (for water one is 273K, the other may be at most 18K lower, i.e., 255K,
i.e., at most 6% lower), then the product T;Tf ~(Tf* )2 we get
* A~ R 2

Thus, as long as the solute concentration is not too high (say <10%) then the freezing point
depression is proportional to the mole concentration of the solute, xg, and is independent of
the nature of B (as long as it does not incorporate to the solid).

Example: find the freezing temperature of an aqueous solution with x; = 5%.

. . k
Answer: Recall that the melting free energy is AHfysion = 6m—(])1.

Thus:

_J
8.3 ol
T, —Tf = ——]0- (273K)% - 0.05 =~ —5K
6000 ——
mol
i.e., for such water the freezing point will be -5°C.
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Another example:

Say that the solute was NaCl, and we pour in about 16% NaCl by weight of
water. How will the result above change.

Answer: the molar concertation of NaCl will be about 5%

M 18
Xnacl = —22 % 0.16 = —— % 0.16 ~ 0.05
Myacy 58.4

However, in water NaCl breaks to Na*t, Cl~, so the amount of solute moles
doubles; i.e.,

xp =Xyt + Xc- =0.05+0.05=0.1

And therefore, since x5 doubles compared with the previous example, the
freezing point depression doubles, i.e.,

T; —Tf = —10K > T; = —10°C.

Boiling point elevation

Similar — see figure earlier, in the opposite direction, since when we add a solute the liquid is
more stable, it will vaporize a little later.

Since AHy,p, » AHp, and since the change in phase-transition temperature is proportional to N

it follows that boiling point elevation will be much smaller than the freezing point depression,
but it can reach a few degrees for water with lots of solvent.

Colligative properties: Osmotic pressure

Let’s look at the figure below. We have liquid in a container divided to two parts, labeled I and
II, and separated by a membrane which only allows water to go through, not solutes.

Part I has water (solvent, “A”) and a solute (“B”), while Part II has only water.

Because the membrane allows water to go through, it will flow to the region where it has the
lowest chemical potential. But we know that the chemical potential of water when it is a solvent
is less than that of pure water, so that means that water will flow from II to I.

The flow is terminated once the pressure in Part IT will be high enough due to the extra pileup of
liquid there (this causes an extra pressure, labeled IT). (Alternately, we can just impose a higher
pressure on the water in Part II, as in the lower part of the figure).

The reason that the flow stops is that the chemical potential of water does change a little bit with
pressure. This is an effect we usually ignored for liquids and solids but it is crucial here.
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Note: in practice we often will use the same height, but push the water on part lI
with that extra pressure, II, see the figure.

Let’s compare a point at the top of the water in region I. (See lower figure)

Once equilibrium is established then since the chemical potential at part II will be that of pure
water, at atmospheric pressure, the chemical potential will be i

Now label the extra pressure on the left region by I1. Then the chemical potential of the water
solvent at that point (which has to equal the chemical potential on the right) will be

ua(P® +1,x) = u3(P° + 1) + RT Inx, = (P?) + VoIl + RT Inx,

Reminder: the last equality follows since we learned earlier that upon a pressure
change du = V,,,dP, so

PO+11
Ko (PO+TT) = i (PO) + f Y dP = (P + Ty
P
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The equality of the last two blue expressions becomes
wa(P®) = uy(P°) + V,,l1+ RT Inx,
1.e.,
0=V,II1+RTInx,
Since we learned that Inx, = In(1 — x5) =~ —xp, we get

VmH = XBRT
3
(also, V,, = 18 % is the molar volume of the solvent, water).

By measuring the extra pressure we can therefore find xz, and therefore the number of moles of
B. For a given, known solute mass we can therefore find the molar mass (mass per moles) of the
solute. This is the basis of esmometry, which is used to find the molar mass of macromolecules.

Incidentally, the I1V,,, term measures how much work a cell must do to transport
minerals across a membrane.

And note that this last yellow equation looks so much like the ideal gas equation
of state. This is the only time we get an ideal-gas-looking equation for
something involving liquids, even though of course there are no gases here.

Osmometry

The equation above, I1V},,, = xgRT, is the basis of osmometry, which is used to find the molar
mass of macromolecules (and this could be important for identifying them).

Since V,,, refers to “A” i.e., water (so it is simply 18cm®/mol), then by measuring IT and T
accurately we can extract xg, the molar concentration of the solute macromolecule.

Therefore, if we pre-measure the absolute mass of the sample of macromolecule that we disperse
in water, we can determine from that and from its measured molar concentration, xz, the mass
per mole, which will help identify what the solute is!

Of course one has to be careful; for example, if the macromolecule has for some reason attached
salts that dissolve in water (or is acidic so it releases a few hydrogens), then x5 would be larger
(possibly much larger) than the molar concentration of the macromolecules, since for every
macromolecule there will be several salt ions dissociated.

12.4) Conclusions: Chapter 12

In this chapter we studied:

In the 1st part (continuing Chapter 9):

e For two ideal liquids (A and B), mixed, the key was that when there are two phases
(liquid and vapor) the concentration would be different in each, x,(I) # x4(v). The
important equations were Raul’s law, P, = x,4 ()P, that gave

P = Py +x,(D(P; — P3)
and
Py xa(DP;

Xp., =
v p P

combined with the:
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e Lever-rule (for two species in two phases)
n(xg — Xa1) = Ny (Xay — X4)
We saw how this leads to quantitative description of the equilibrium concentrations and
mole-numbers in the two phases

Further, the lever rule is valid always, not just for ideal mixtures, and we can use it, e.g.,
to analyze partially-miscible liquids.

e We also learned distillation, azeotropes (and tied-knots), and fixed-composition phases
for two partially miscible liquids.

In the 2" part (from Chapter 9):
e Chemical potential of mixtures: using the trick of considering a liquid-vapor
equilibrium to find the chemical potential of the liquid, we found that in general

P
ua(l) = uy + RT In (P—‘i> generally
A
And this expression was further simplified for ideal mixtures and/or solvents, and for

solutes.

e Activities: we defined the reference state for solutes, and managed to relate the activity
that appears in the rate law to the concentration for solutes, ideal solutions, and solvents:

as = Yaxa(D).

In the 3" part: We learned about
e Freezing point depression, recalling that for P = 1bar and T = T (the no-salt pure
freezing temperature) the chemical potential of the pure liquid and vapor are equal, while
once we add salt, at the modified (lower) freezing temperature, the chemical potential of
the gas is balanced by a lower chemical potential for the liquid, which is more disordered.
With a few lines of math we got
(17)°

AH
which indicated that when the heat-of-phase-change is small, the temperature change is

big (and that’s why the freezing-temperature change is much larger than the boiling one)

freezing — temperature change = dT; = —xgR

e We applied a similar methodology to obtain the equations for osmotic pressure:
Ua(P) = pa(P +T,x,) = s (P) + TV — RTxz = 1MWy = RTxg

That’s it for Thermodynamics!
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