
1 
 

Chem. 113A: 

Dr. Daniel Neuhauser 

Notes based on handouts of Prof. Shimon Weiss 

  



2 
 

Chapter I. Classical Mechanics (CM) failures: 

I.1 Classical atom not stable 

 

 

 

 

Orbiting charge radiates, atom falls inside. 

 

I.2 Photoelectric Effect 

 

Classical mechanics predicts that max of kinetic energy determined only by 
𝐼,  the intensity of the light, and is independent of the frequency, 𝜈. 

But experiment says differently. 

Experimentally:  
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i.e., no electrons beyond a threshold (which depends on the metal), and for 
frequencies above the threshold, 

𝑀𝑎𝑥. 𝐾. 𝐸. = ℎ𝜈 − 𝑊 

where W is the work-function of the metal, i.e., how much energy we need 
to give an electron to be kicked out a metal.   

Most importantly ℎ, the slope of this curve, is universal, i.e., it is the same 
no matter which metal we use.  

ℎ  is measured to be  

ℎ = 6.62 ∗ 10ିଷସ J ∗ sec 

Einstein explained the photoelectric effect: light is made of photons.  Each 
photon has energy 

𝐸௧ = ℎ𝜈 

(Einstein based this on the work of Planck on Blackbody radiation, which 
we’ll review later, i.e., we proceed non-historically). 

If the photon energy is beyond the work function of the metal, than when a 
photon is absorbed it gives the electron enough energy to climb out of the 
metal, and the electron still be left with some energy. 

Think of the electron as being stuck in a “well” – the photon needs to give it 
enough energy to climb out of the well, and if it does, the remaining energy 
(not spent on climbing out of the well) is available for the electron as kinetic 
energy. 
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Example: for sodium the work function is 2.28 eV, where eV, the energy 
that a single electron gets upon a change of voltage of 1V, equals   

1eV = 1.60 ∗ 10ିଵଽJ 

So if we shine blue light with frequency of, say,  𝜈 = 6.70 ∗ 10ଵସHz on 
sodium, the photon energy is  

𝐸௧ = ℎ𝜈 = 6.70 ∗ 10ଵସHz = 6.62 ∗ 10ିଷସ J ∗ s = 4.44 ∗ 10ିଵଽJ = 2.77eV 

(since Hz =
ଵ

ୱ
 ). 

 I.e., when this blue photon is absorbed, it will have enough energy to kick 
out an electron, and give it as much as  

K. E. max = ℎ𝜈 − 𝑊 = 2.77eV − 2.28eV = 0.49eV 
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I.3 Another problem of CM: Blackbody radiation predicted to 
be infinitely strong… 

A blackbody: absorbs essentially all impinging radiation and emits it later. 

Modes inside a black body 

Inside a blackbody – many modes of radiation which contribute. 

The modes are discretized – key property of standing waves (e.g., guitar 
harmonics).  Incidentally, this discussion of modes will be very relevant for 
QM later on, e.g., for particle in a box., 

1D: For E.M. the allowed modes look like: 

 

 

 

 

 

 

etc., where the end points are the end of the box, which has size L (i.e., the 
horizontal line’s length is denoted by L) 

 

The “wavelength” of this standing waves are, by inspection 

𝜆ଵ = 𝐿 

𝜆ଶ =
𝐿

2
 

And in general 

𝜆 =
𝐿

𝑗
      𝑗 = 1,2.3, …. 

Note that unlike guitar modes, there’s no mode with 𝜆 =


ଶ
. 
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We get the frequencies from recalling that frequency * wavelength = speed 
=𝑐 (here speed of light) 

𝜈𝜆 = 𝑐 

so 

𝜈 =
𝑐

𝜆
=

𝑐

𝐿
 𝑗 

So the frequency is proportional to the index telling us what is the 
frequency 

So in 1D, the density of modes,(i.e., the number of modes with frequency 
between 𝜈 , 𝜈 + 𝑑𝜈 divided by the frequency range 𝑑𝜈) denoted  as 𝜌ଵ(𝜈), 
will be constant 

𝜌ଵௗ(𝜈) =
𝐿

𝑐
 

I.e., the same number of modes will be, for a given black body, between 
100MHZ and 105MHZ and 100 GHZ and 100.005 GHZ (since the range of 
frequencies is the same in both cases, 5MHZ.).  And of course, the bigger 
the black body, the more modes will be in it. 

In 3D this “density of modes” will get an additional factor of 𝜈ଶ, it is an “area 
factor” – you saw it in 20B when you learned that the Maxwell speed 
distribution is (where 𝑢 = 𝑠𝑝𝑒𝑒𝑑) 

𝑓ଷௗ,ெ௫௪(𝑢) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝒖𝟐 ∗ exp ቆ−
𝑀𝑢ଶ

2𝑘𝑇
ቇ 

The bolded 𝑢ଶ in Maxwell’s distribution is due to the 3D (it will be absent if 
space was 1D), and similarly here for radiation 𝜌ଷ(𝜈) is proportional to the 
squared frequency 𝜈ଶ; the proportionality constant can be shown to be 
8𝜋𝐿ଷ/𝑐ଷ, so 

𝜌ଷ(𝜈) =
𝐿ଷ

𝑐ଷ
∗ 8𝜋𝜈ଶ 

Digression: classical heat capacities. 

If you did not learn it, just accept that classically every degree of freedom 
has a heat capacity, which is essentially the derivative of the energy with 
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respect to temperature, of 
ோ

ଶ
.  Classically this explains why the heat 

capacity of a Helium gas is 3R/2, as in Helium, or Neon, or other noble 
gases, the only degrees of freedom are the overall translational motion of 
the atoms 

You learnt that each degree of freedom has a heat capacity of 
ோ

ଶ
, but that 

was per mole; per one degree of freedom we will need to divide by the 
number of particles in a mole, i.e., the per-one-mode heat capacity 

classically is  be 
ଵ

ଶ

ோ

ேಲೡೌೝ
=

ಳ

ଶ
,  where Boltzmann’s constant, is 

𝑘 =
𝑅

𝑁௩ௗ
=

8.31
J

K mol
6.02 ∗ 10ଶଷ

mol

= 1.38 ∗ 10ିଶଷ
J

K
 

End of digression. 

 

Each radiation mode – same as Harmonic Oscillator 

In electrodynamics, one can show that each radiation mode we talked 
about above is associated with an oscillating electric and magnetic field 
(i.e., “electromagnetic” field).  Further, the intensity of that electromagnetic 
field (for each mode) behaves as if it was a single harmonic oscillator.   

You learned in 20B and/or 110A (and especially 110B if you took it) that an 
harmonic oscillator has two degrees of freedom associated with it, the 
position and momentum.  For radiation, the degrees of freedom are 
different, they are the strength of the electric field and the strength of the 
magnetic field, but mathematically they are analogous.   

Here we have two degrees of freedom (electric and magnetic fields), so the 
heat capacity associated with a single radiation mode is 𝑘. 

Therefore classically we will expect that each of the modes will have an 

average energy per mode of 𝑘𝑇, where 𝑘 =
ோ

ேಲೡೌೝ
 is Boltzmann’s 

constant. 

CM: problem with energy. 
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Now you see that problem.  Since the density of modes 𝜌ଷௗ(𝜈) grows with 
𝜈, and since the energy of each mode is classically expected to be the 
same (𝑘𝑇), then if we sum up all the energies of each mode we will get 
infinity (since the sum of all the energies will be the sum over the number of 
modes over all frequencies, which is infinite.) 

QM: solution: discrete photons. 

Planck offered a mathematical solution (later understood to be true 
physically) 

𝐸(𝑝ℎ𝑜𝑡𝑜𝑛 𝑤𝑖𝑡ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝜈) = ℎ𝜈 

So the photon energies are discrete.  Therefore, defining: 

𝑃 = 𝑃𝑟𝑜𝑏(0 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝜈) 

we get from statistical mechanics that 

𝑃𝑟𝑜𝑏( 1 𝑝ℎ𝑜𝑡𝑜𝑛 𝑤𝑖𝑡ℎ 𝜈) = exp ቆ−
𝐸(𝑜𝑛𝑒 𝑝ℎ𝑜𝑡𝑜𝑛)

𝑘𝑇
ቇ 𝑃 

= exp ൬−
ℎ𝜈

𝑘𝑇
൰ 𝑃 

(if you are not familiar with this form, recall that you have seen it in 20B as 

exp ቀ−
ா

ோ்
ቁ where then E and R referred to per-mole quantities; here R is 

replaced by 𝑘 since we talk about per mode or per particle quantities, not 
per-mole) 

Similarly 

𝑃𝑟𝑜𝑏( 2 𝑝ℎ𝑜𝑡𝑜𝑛 𝑤𝑖𝑡ℎ 𝜈) = exp ൬−
2ℎ𝜈

𝑘𝑇
൰ 𝑃 

𝑃𝑟𝑜𝑏( 3 𝑝ℎ𝑜𝑡𝑜𝑛 𝑤𝑖𝑡ℎ 𝜈) = exp ൬−
3ℎ𝜈

𝑘𝑇
൰ 𝑃 

And generally 

𝑃𝑟𝑜𝑏( 𝑛 𝑝ℎ𝑜𝑡𝑜𝑛 𝑤𝑖𝑡ℎ 𝜈) = exp ൬−𝑛
ℎ𝜈

𝑘𝑇
൰ 𝑃 
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Planck’s photons solved the blackbody problem 

Physically 

Before showing the full expression mathematically, let’s understand 
physically why the introduction of photons solved the problem. 

Now if our photon frequency is large, 𝜈 ≫
ಳ்


, then the photon energy will 

be much larger than the thermal energy, ℎ𝜈 ≫ 𝑘𝑇, so the Boltzman factor 
for even having a single photon (at an energy 𝜈) will be exponentially small 

ℎ𝜈 ≫ 𝑘𝑇 →  exp ൬−
ℎ𝜈

𝑘𝑇
൰ ~0.    

Therefore, a black body can only emit radiation at frequencies up to a few 
times 𝑘𝑇. 

Mathematically: 

 

⟨𝐸௧௧(mode with 𝜈)⟩ = Average 𝐸 in mode with frequency 𝜈 = 

൫(𝑝𝑟𝑜𝑏. 0 𝑝ℎ𝑜𝑡𝑜𝑛𝑠) ∗ 𝐸(0 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝜈) + (𝑝𝑟𝑜𝑏. 1 𝑝ℎ𝑜𝑡𝑜𝑛𝑠) ∗ 𝐸(1 𝑝ℎ𝑜𝑡𝑜𝑛𝑠  𝜈) + ⋯ ൯

(𝑝𝑟𝑜𝑏. 0 𝑝ℎ𝑜𝑡𝑜𝑛𝑠) + 𝑝𝑟𝑜𝑏. 1 𝑝ℎ𝑜𝑡𝑜𝑛 + 𝑝𝑟𝑜𝑏. 2 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 + ⋯ )
 

⟨𝐸௧௧(mode with 𝜈)⟩ =
ቀ0 ∗ 𝑃0 + ℎ𝜈 ∗ 𝑃0 ∗ exp ቀ−

ℎ𝜈

𝑘𝑇
ቁ + 2ℎ𝜈 ∗ 𝑃0 ∗ exp ቀ−2

ℎ𝜈

𝑘𝑇
ቁ + ⋯ ቁ

𝑃0 + 𝑃0 ∗ exp ቀ−
ℎ𝜈

𝑘𝑇
ቁ + 𝑃0 ∗ exp ቀ−2

ℎ𝜈

𝑘𝑇
ቁ + ⋯

 

 

⟨𝐸௧௧(mode with 𝜈)⟩ = ℎ𝜈
ቀ0 + 1 ∗ exp ቀ−

ℎ𝜈

𝑘𝑇
ቁ + 2 ∗ exp ቀ−2

ℎ𝜈

𝑘𝑇
ቁ + ⋯ ቁ

1 + exp ቀ−
ℎ𝜈

𝑘𝑇
ቁ + exp ቀ−2

ℎ𝜈

𝑘𝑇
ቁ + ⋯

 

and defining 𝑠 ≡
ఔ

ಳ்
 we get: 

⟨𝐸௧௧(mode with 𝜈)⟩ = ℎ𝜈  
0 + 1 ∗ exp(−𝑠) + 2 ∗ exp(−2𝑠) + ⋯

1 + exp(−𝑠) + exp(−2𝑠) + ⋯
 

And it can be shown mathematically that the ratio becomes 
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⟨𝐸௧௧(𝑚𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝜈)⟩ = ℎ𝜈
exp (−𝑠)

1 − exp(−𝑠)
=

ℎ𝜈 exp ቀ−
ℎ𝜈

𝑘𝑇
ቁ

1 − exp ቀ−
ℎ𝜈

𝑘𝑇
ቁ

=
ℎ𝜈

exp ቀ
ℎ𝜈

𝑘𝑇
ቁ − 1

 

Thus, we see mathematically that for high frequencies due to the  

exp ቀ−
ఔ

ಳ்
ቁ factor in the numerator this expression will vanish, i.e., the 

energy that a black body has associated with high frequencies is damped 
since there are exponentially few occupied modes at high frequencies. 

 

Final QM expression: 

The final expression for the energy density that a blackbody has at each 
frequency 𝜈 is  

(density of modes with 𝜈) ×(average energy in each mode) 

i.e., 

Eenergy density(𝜈) =  𝜌ଷ(𝜈) ∗  ⟨𝐸௧௧(mode with 𝜈)⟩ 

i.e., 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜈) =
𝐿ଷ

𝑐ଷ
8𝜋𝜈ଶ × ℎ𝜈

1

exp ቀ
ℎ𝜈

𝑘𝑇
ቁ − 1

 

i.e., 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜈) =
𝐿ଷ

𝑐ଷ
8𝜋ℎ

𝜈ଷ

exp ቀ
ℎ𝜈

𝑘𝑇
ቁ − 1

 

Indeed, when we plot this expression we get exactly the extended bell-
shape curve that is seen experimentally, and indeed it falls off significantly 

for 𝜈 >
ସಳ்
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At room temperature 
ସಳ்


 is at the IR so the earth radiates at the IR. 
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I.4 Another problem of CM: Heat Capacity of atomic solids 

As we mentioned you learned (and you’ll prove if you take 110B) that 
classically each degree of freedom gives R/2 to the heat .  For example, 𝐶௩ 
of a He gas is 3R/2, as each atom has three degrees of freedom – moving 
in the x, y, or z direction. 

So say we have cubic solids, for simplicity (Na Cl, e.g.) 

We expect: 

𝐶~3𝑅 = 6
𝑅

2
 

This is because  

 In a cubic solid each atom has around 6 bonds with its neighbors; 
 Each bond is “half” belonging to each atom, i.e., there are 3 net 

bonds per atom. 
 Each bond is like a harmonic oscillator (it is spring-like), i.e., has a 

kinetic energy and potential energy, i.e., 2 degrees of freedom. 
 So therefore, per atom there are 3*2=6 degrees of freedom 

And in reality (experimentally): 

 At high T indeed 𝐶~3𝑅. 

 But at low T,  𝐶 decreases and vanishes (turns out that 𝐶~𝑇ଶ at low 
T). 

 

Why isn’t 𝐶 constant? 

Reason (Q.M.): At low T, the thermal energy is not sufficient to excite the 
bonds.  Well to be more precise, one can excite at low T only the large 
scale motion of the atoms called “phonons”,  
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but at T gets lower the number of such phonons with frequencies 𝜈 that are 

not much larger than 
ಳ்


 gets smaller, so it gets difficult to excite such 

vibrations, i.e., the energy in vibrations diminishes at low T so the heat 
capacity decreases. 

Interestingly, there is something you probably saw in 20A or 20B or 110A 
which is analogous: The fixed-volume heat capacity of light diatomic gases 
(e.g., 𝐻ଶ, 𝑂ଶ, 𝑁ଶ) is 5R/2, and is due to the overall translational motion of the 
center of mass (3 degrees of freedom) and due to the rotation (2 degrees 
of freedom); the vibration is not active.   

But at high T (say 1500K) the vibration of a diatom becomes active, i.e., as 
we input more heat one can populate significantly the higher energy 
vibrational states.  I.e., at high temperature the probability to occupy the 

first excited or higher vibrational state, exp ቀ−
ఔೡ್

ಳ்
ቁ is not zero anymore. 

So at high T, 𝐶~7𝑅/2 for diatoms (7 since: 3 translations, 2 rotations, and 
2 vibrations). 

By the way, an analogous but opposite phenomena occurs at low 
temperatures – around 10K or lower; then the frequency associated with 
rotational excitations (see later, a few weeks from now) becomes larger 

than 
ಳ்


, so the diatom cannot rotate, and its heat capacity is only 3R/2 due 

to the 3 translational motions 

. 
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I. 5  Discreteness of spectra 

Another unexplained CM phenomena was the discreteness of spectra of 
atoms (and molecules too, though that’s more complicated to see in real-
life due to effects of rotation and vibrations – things are simpler for atoms). 

Atoms can be excited (at that time, late 1800’s) 

 In space (emitted or absorbed light observed then in telescopes). 
 In flames 
 By an electrical discharge. 

Then, when the atoms are excited, they emit light.   

When one measures then the spectra of the emitted light, then lines are 
observed

 

C.M. : no explanation for discreteness of spectra. 

 

Q.M.:  couple with 𝐸 = ℎ𝜈.  I.e., absorption or emission of a photon is 
associated with a change of energy.   

So If we assume (a strong assumption, soon explained) that electrons in 
atoms are in specific states or level (“orbitals” for us chemists) then 
emission just means that the electrons move from one state to another. 

I.e., emission is associated with change of an electron energy, so the total 
energy is conserved: denoting the initial state (orbital) of the electron by 2, 
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and the final by 1, then  𝐸ଶ − 𝐸ଵ = ℎ𝜈

 

But where’s discretization in nature ? 

For waves – i.e., guitar modes (a single fundamental: 

 

 and harmonics (e.g., the first harmonics) 

                       

are discretized.  So indeed electrons are waves, but before discussing that, 
let’s discuss the first approach at quantifying electron motion – i.e., an 
approach which modifies classical mechanics, and gets fit to experiment for 
the simplest types of atoms: the Bohr model. 
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Chapter II.  Towards QM 

II. 1  The Bohr Model 

Experimentally, turns out that the emission frequencies of excited 
Hydrogen atoms belong to a discrete series, which can be labeled by two 
integers, 𝑛, 𝑚 where 

𝑛 = 1,2,3, … 

𝑚 < 𝑛 

Such that 

𝜈 = 𝜈 ൬
1

𝑚ଶ
−

1

𝑛ଶ
൰ 

(so, e.g.,𝜈ଶଵ = 𝜈 ∗ ቀ1 −
ଵ

ଶమቁ =
ଷ

ସ
𝜈,   etc.) where 

𝜈 = 3.29 ∗ 10ଵହHz 

(i.e., about 4-5 times the frequency of purple and blue light, which is 
 ~7 ∗ 10ଵସHz). 

Bohr explained it as mentioned in the previous page, i.e., the emitted light 
is associated with transition from level 𝑛 to level 𝑚: 

𝜈 =
𝐸 − 𝐸

ℎ
 

where the energy of each level is 

𝐸 = −
ℎ𝜈

𝑛ଶ
 

i.e.,  

𝐸ଵ = −ℎ𝜈 = 6.62 ∗ 10ିଷସJsec ∗ 3.29 ∗ 10ଵହHz = 2.18 ∗ 10ିଵ଼J = 13.6eV 

𝐸ଶ = −
ℎ𝜈

4
= −

13.6eV

4
= −3.40eV 

etc. 

Further, Bohr built a “theory” which explains it, the Bohr model, which says: 
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Bohr model assumptions: 

 Electrons are in classical orbitals 
 The only deviation from usual CM is that these classical orbitals have 

a quantized (i.e., discrete) angular momentum values: 
|𝑳| = 𝑛ℏ = 0, ℏ, 2ℏ, 3ℏ, …. 

 where 

ℏ =
ℎ

2𝜋
= 1.05 ∗ 10ିଷସJsec 

 and recall that the angular momentum is  

𝑳 = 𝒓 × 𝒑 

So: CM says (recall your physics classes) that 𝑳 is conserved; Bohr 
further says that its absolute values are quantized. 

 

Implications of Bohr model for 1-elec systems (H, He+ Li++, etc.). 

The attraction to the nucleus for an electron that’s distance 𝑟 away is 

𝐹௧௧௧௩ = 𝑏 
𝑍𝑒ଶ

𝑟ଶ
 

Where 𝑍 is the nuclear charge 

𝑍 = 1 (for 𝐻);         𝑍 = 2 (for 𝐻𝑒ା);         𝑍 =   3(for 𝐿𝑖ାା)     

and 

𝑏 ≡
1

4𝜋𝜖
 

is part of the MKS units convention. 

Let’s look only at spherical orbits (though the model works also for elliptical 
ones). 
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Then 𝑟 and p are perpendicular, so the cross product value is simply their 
product: 

|𝐿| = |𝑟 × 𝑝| = 𝑟𝑝 

Couple with the Bohr’s model assumption 

|𝐿| = 𝑛ℏ 

to get 

𝑝 =
𝑛ℏ

𝑟
 

So the velocity, which is the momentum over the mass, becomes 

𝑣 =
𝑝

𝑀
=

𝑛ℏ

𝑀𝑟
 

Now just equate the centrifugal and attractive force on the electron (the 
centrifugal force pushes it away, so to speak, and the attractive Coulomb 
force pulls it to the nucleus): 

𝐹௧௨ = 𝐹௨ 

i.e., 

𝑀𝑣ଶ

𝑟
= 𝑏

𝑍𝑒ଶ

𝑟ଶ
 

But we just derived 𝑣 =
ℏ

ெ
 so plug it in to get 

𝑀

𝑟
൬

𝑛ℏ

𝑀𝑟
൰

ଶ

= 𝑏
𝑍𝑒ଶ

𝑟ଶ
 

i.e., 
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𝑛ଶℏଶ

𝑀𝑟ଷ
= 𝑏

𝑍𝑒ଶ

𝑟ଶ
 

i.e., 

𝑟 =
𝑛ଶ

𝑍
ቆ

ℏଶ

𝑏𝑀𝑒ଶ
ቇ 

i.e., 

𝑟 =
𝑛ଶ

𝑍
𝑎 

where we introduced  

𝑎 =
ℏଶ

𝑏𝑀𝑒ଶ
= 4𝜋𝜖

ℏଶ

𝑀𝑒ଶ
= 0.529 𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚 =   0.529 ∗ 10ିଵ 𝑚 

𝑎 is called “bohr radius” and is a length unit. 

Note: 

 The distance to the nucleus becomes smaller as the charge 
increases. This is indeed true for the deepest core states, which 
mostly feel only the attraction of the nucleus, and are “tighter” (i.e., 
more compact) as the charge increases. 

 The distance from the nucleus increases quickly 

𝑟(𝑛 = 1) =
𝑎

𝑍
 

𝑟(𝑛 = 2) = 4
𝑎

𝑍
 

𝑟(𝑛 = 3) = 9
𝑎

𝑍
 

This is true for excited states of hydrogen (or of He+, etc.), they 
become very extended in gases; this is known in QM as “Rydberg 
states" 
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Finally, the most important part – the Bohr model prediction for 
energies 

First, consider in general systems with Columbic interactions (regardless of 
the Bohr model).  Then 

𝐸 = 𝐸(𝐾𝑖𝑛𝑒𝑡𝑖𝑐) + 𝐸(𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑛𝑢𝑐𝑙𝑒𝑢𝑠) 

Where 

𝐸(𝑘𝑖𝑛𝑒𝑡𝑖𝑐) =
1

2
𝑀𝑣ଶ 

𝐸(𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = −
𝑏𝑍𝑒ଶ

𝑟
 

From the equation on the force equality 

𝑀𝑣ଶ

𝑟ଶ
= 𝑏

𝑍𝑒ଶ

𝑟ଶ
 

We get (by multiplying by r) 

𝑀𝑣ଶ

𝑟
= 𝑏

𝑍𝑒ଶ

𝑟
 

i.e. 

2𝐸(𝑘𝑖𝑛𝑒𝑡𝑖𝑐) = −𝐸(𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

Or 

𝐸 = 𝐸(𝐾𝑖𝑛𝑒𝑡𝑖𝑐) + 𝐸(𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = 𝐸(𝑘𝑖𝑛𝑒𝑡𝑖𝑐) − 2𝐸(𝑘𝑖𝑛𝑒𝑡𝑖𝑐) 

i.e., 
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𝐸 = −𝐸(𝑘𝑖𝑛𝑒𝑡𝑖𝑐) =
1

2
𝐸(𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

So far this statement, labeled the “Virial Theorem”, is general for any 
system with electric interactions (and is true, btw, also in QM). 

Now plug in the Bohr model prediction  𝑟 =
మబ


 to get: 

𝐸 =
1

2
𝐸(𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = −

1

2

𝑏𝑍𝑒ଶ

𝑟
= −

1

2

𝑏𝑍𝑒ଶ

𝑛ଶ𝑎

𝑍

= −

1
2

𝑏𝑒ଶ

𝑎
𝑍ଶ

𝑛ଶ
 

i.e., 

𝐸 = −𝑅ு   
𝑍ଶ

𝑛ଶ
  

where we introduced the Rydberg constant 

𝑅ு =
1

2

𝑏𝑒ଶ

𝑎
=

1

8𝜋𝜖

𝑒ଶ

𝑎
 . 

You can (and should) calculate that: 

𝑅ு = 2.18 ∗ 10ିଵ଼𝐽 = 13.6 eV 

i.e., we get perfect agreement with experiment, since that’s exactly what 
experiment found. 

 

Summary of Bohr model: 

 Fits experiment amazingly for hydrogen (and hydrogen like atoms). 
 The underlying assumption, |𝐿| = 0, ℏ, 2ℏ, …, quantization of the 

angular momenta, seems very elegant, and is indeed related to 
quantum mechanical rules. 

 Does not work for more complicated atoms with many electrons or for 
molecules – we need the better theory (QM, derived a few years 
later). 
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II.2 Wave nature of electrons 

1880’s:  

Waves were thought to be: 

 Extended 
 Can interfere.  E.g., as you have seen in 20A and organic chemistry, 

when discussing destructive combination of A.O.(atomic orbitals) to 
make an M.O. (molecular orbital); we’ll talk about interference in 
classical electricity below. 

 Can be quantized – e.g., fundamental and harmonics as discussed 
earlier 

And Particles were thought to be very different 

 Point like 
 Cannot interfere. 

 

By 1900-1920 however: 

 Problems with E.M. waves (black body, photoelectric effect, heat 
capacity of solids)  waves need to have particle property, 𝐸 = ℎ𝜈 

 But problems with discreteness of energies of electron energy 
remained; Bohr model tells us the electron energy levels are discrete 
but why? 

So de Broglie (1923) 

 Particles  are waves! 

Reason: de Broglie explained: For relativistic photons: 

𝑝 =
𝐸

𝑐
    (for photons, or any particle with 𝑣 = 𝑐) 

(Note the factor of 2 difference from nonrelativistic mechanics, where  

Non − relativstic particles: 𝑝 = 𝑀𝑣, 𝐸 =
ଵ

ଶ
𝑀𝑣ଶ =

ଵ

ଶ
𝑝𝑣 → 𝑝 =

ଶா

௩
)  

The usual wave relation, coming from 𝑐 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑓𝑟𝑒𝑞𝑒𝑛𝑐𝑦 ∗

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ, gives 
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𝑐 = 𝜈𝜆 

i.e., 

𝜈 =
𝑐

𝜆
 

Combine then with Planck’s relation for photons to give 

𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
 

i.e.,  

𝑝 =
𝐸

𝑐
=

ℎ

𝜆
 

Or conversely 

𝜆 =
ℎ

𝑝
 

De Broglie noticed that this relation does not involve the velocity of light.  
So he speculated that  

 This relation could be general, not just for light i.e., any particle is also 

a wave with a wavelength 𝜆 =



 

 Note that this will give (as we’ll see soon) naturally the discreteness 
of the orbitals, i.e., if particles are waves then they can be in discrete 
states, like the guitar harmonics we mentioned, and this will solve the 
problem of why an electron does not fall into the nucleus – since it is 
an extended wave, not a particle! 

 But what’s the equation this wave fulfils? This was answered by 
1925/1927 by Schrödinger and separately by Heisenberg, as we’ll 
discuss. 

But before, we need to talk about : double slit, and interference. 
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II. 3 Interference and Double hole experiment: For light and 
for electrons. 

Consider a classical electromagnetic wave.  For example, light that 
impinges on a screen.   Say the screen (think of it as the blackboard) 
defines the y-z plane and the distance to the screen is the x-direction. 

Say one of you lights a candle, and between the candle and the screen (the 
blackboard) we put a blocking wall with a single hole.  Then on the screen 
we’ll see a blob, due to the light that passes the hole. 

Looking along an x-z cut, we’ll see: 

 

 

And the intensity of the light that’s distributed on the right blackboard, will 
look like a blob; i.e., drawing the (y-z) screen, we’ll see something like 

 

 

(obviously this is an overly simplified picture, we would have expected that 
the light beam will gradually fade away from the center of the blob, but I am 
not drawing too fancily here). 
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Next, open another hole in the intermediate blocking wall, i.e., 

 

 

IF light was made of purely particles, without any wave properties, we 
would have expected to see on the screen then an overlapping pattern, i.e., 
something like 

 

In 1801 Thomas Young did this experiment using light (with slits, not holes, 
but same principle) and instead of finding this pattern above he found 
something which we call today interference pattern: 
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This proves that light is NOT made simply of particles (of course, the 
photoelectric effect proves that light is not a simple wave either, but that’s 
for later in this section). 

Why are the patterns? The intensity of the light at each point in the screen 
is proportional to the squared absolute electric field at that point. 

𝐼(𝒓) = |𝐸(𝒓)|ଶ 

where 𝒓 is the 3-d position of the point on the screen. 

(Truly the electric field has also  direction, called “polarization”, but we 
ignore it in this discussion). 

Complex numbers: 

To understand the interference, it turns out it is much easier to use complex 
electric field.  Don’t worry about the fact that electric fields have to be real, 
as they are measurable, for light this is a mathematical trick which we could 
have avoided at the price of a lot more math (for electrons the complex 
nature of the wavefunctions is essential, but that’s later). 

What we quickly need to know about complex numbers is that, first, a 
complex number, 𝐶, can be written as 

𝐶 = 𝑎 + 𝑖𝑏 
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where 𝑎 and 𝑏 are real, and formally the complex "𝑖" fulfils 𝑖ଶ = −1. 

We can define the conjugate of a complex number 

𝐶∗ = 𝑎 − 𝑖𝑏 

We can also define the absolute squared of a complex number, which is a 
real number: 

|𝐶| ≡ ඥ𝑎ଶ + 𝑏ଶ 

and fulfills 

𝐶𝐶∗ = |𝐶|ଶ 

Proof: 

𝐶𝐶∗ = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) 

𝐶𝐶∗ = 𝑎ଶ + 𝑖𝑏𝑎 − 𝑖𝑎𝑏 + 𝑖𝑏(−𝑖𝑏) 

𝐶𝐶∗ = 𝑎ଶ − 𝑖ଶ𝑏ଶ 

𝐶𝐶∗ = 𝑎ଶ + 𝑏ଶ,     𝑄. 𝐸. 𝐷. 

 

Finally, we note that any complex number can be written as its absolute 
value times a phase; this is called a “polar representation” 

𝐶 = |𝐶| exp(𝑖𝜙) 

where 𝜙 is the angle between 𝑎, 𝑏, see below: 
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We can also write 

𝐶∗ = (|𝐶| exp(𝑖𝜙))∗ = |𝐶| exp(−𝑖𝜙), 

i.e., the phase of the conjugate number is minus the phase of the original 
number, and the absolute value is the same.  In particular, if the absolute 
value is one, we just get 

(exp(𝑖𝜙))∗ = exp(−𝑖𝜙). 

This is consistent with another property of complex numbers, 

exp(𝑖𝜙) = cos(𝜙) + 𝑖 sin(𝜙). 

Multiplying complex numbers is very easy if we use this “polar” 
representation 

𝐶ଵ𝐶ଶ = |𝐶ଵ| exp(𝑖𝜙ଵ) |𝐶ଶ| exp(𝑖𝜙ଶ) = |𝐶ଵ||𝐶ଶ| exp൫𝑖(𝜙ଵ + 𝜙ଶ)൯ 

 

Transmission through one hole mathematically: 

So with complex numbers, we can say that if there is only one hole (e.g., 
we cover the other one), at a point 𝒓𝟏 ,then the electric field at any point 𝒓 
on the screen is 

𝐸(𝒓) = |𝐸ଵ(𝒓)|exp (𝑖 𝜙ଵ(𝒓)) 

where 
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 |𝑬𝟏(𝒓)| is a (real) blob-function, which looks like the red blobs we 
drew (in the y-z directions), i.e., it dies away from the center of the 
blob,  

 the phase 𝜙ଵ(𝒓) which can be shown to be related to the distance of 
the hole from the screen  (|𝑟 − 𝑟ଵ|) and to the wavelength 𝜆:  

𝜙ଵ ≃
2𝜋

𝜆
(|𝑟 − 𝑟ଵ|) 

So with a single hole the intensity of the light will be  

𝐼(𝒓) = |𝐸(𝒓)|ଶ 

i.e., for a single hole we will just see a blob, no surprise here. 

Two holes: mathematically 

More interestingly is what happens when we use now two holes. Now the 
electric field at a point r will be the sum of the electric fields coming 
from each hole 

𝐸(𝒓) = 𝐸ଵ(𝒓) + 𝐸ଶ(𝒓) 

where, as before, 

𝐸ଵ = |𝐸ଵ(𝒓)| exp൫𝑖𝜙ଵ(𝒓)൯ 

and analogously 

𝐸ଶ = |𝐸ଶ(𝒓)| exp൫𝑖𝜙ଶ(𝒓)൯ 

See the figure, where I now pick a specific point and show the electric fields 
contributing from both holes” 

 

 

so 

|𝐸(𝒓)|ଶ = |𝐸ଵ + 𝐸ଶ|ଶ 
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i.e., 

|𝐸(𝒓)|ଶ = 𝐸(𝒓)𝐸∗(𝒓) = (𝐸ଵ + 𝐸ଶ) (𝐸ଵ
∗ + 𝐸ଶ

∗) 

|𝐸(𝒓)|ଶ = 𝐸ଵ𝐸ଵ
∗ + 𝐸ଵ𝐸ଶ

∗ + 𝐸ଶ𝐸ଵ
∗ + 𝐸ଶ𝐸ଶ

∗ 

The first and last terms are just the intensities due to each hole separately, 
i.e., 𝐸ଵ𝐸ଵ

∗ = |𝐸ଵ|ଶ, etc., so 

|𝐸(𝒓)|ଶ = |𝐸ଵ|ଶ + 𝐸ଵ𝐸ଶ
∗ + 𝐸ଶ𝐸ଵ

∗ + |𝐸ଶ|ଶ 

The two terms in the middle are the interference terms;  

𝐸ଵ𝐸ଶ
∗ + 𝐸ଶ𝐸ଵ

∗ = |𝐸ଵ| exp(𝑖𝜙ଵ) |𝐸ଶ| exp(−𝑖𝜙ଶ) + |𝐸ଶ| exp(𝑖𝜙ଶ) |𝐸ଵ| exp(−𝑖𝜙ଵ) 

𝐸ଵ𝐸ଶ
∗ + 𝐸ଶ𝐸ଵ

∗ = |𝐸ଵ||𝐸ଶ|(exp(𝑖𝜙ଵ) exp(−𝑖𝜙ଶ) + exp(𝑖𝜙ଶ) exp(−𝑖𝜙ଵ)) 

so 

𝐸ଵ𝐸ଶ
∗ + 𝐸ଶ𝐸ଵ

∗ = |𝐸ଵ||𝐸ଶ|൫exp (𝑖(𝜙ଵ − 𝜙ଶ)) + exp (−𝑖(𝜙ଵ − 𝜙ଶ)൯ 

and using 

exp(𝑖𝜙) = cos(𝜙) + 𝑖 sin(𝜙) 

we get 

exp(𝑖𝜙) + exp(−𝑖𝜙) = 2cos (𝜙) 

so that the interference terms become 

𝐸ଵ𝐸ଶ
∗ + 𝐸ଶ𝐸ଵ

∗ = 2|𝐸ଵ||𝐸ଶ| cos(𝜙ଵ − 𝜙ଶ) 

and therefore the total intensity is  

|𝐸(𝒓)|ଶ = |𝐸ଵ|ଶ + |𝐸ଶ|ଶ + 2|𝐸ଵ||𝐸ଶ|cos (𝜙ଵ − 𝜙ଶ) 

Therefore when cos(𝜙ଵ − 𝜙ଶ) = −1 there will be destructive intereference, 
so the intensity will be |𝐸ଵ|ଶ + |𝐸ଶ|ଶ − 2|𝐸ଵ||𝐸ଶ| = (|𝐸ଵ| − |𝐸ଶ|)ଶ!    

And if |𝐸ଵ| = |𝐸ଶ| at the point, then we’ll have completey destructive 
intereference,𝐼 = 0! i.e., no light at that point (where the phases are 
opposite of each other, and the intensities are the same) when both holes 
are open. These points (or regions more generally) of destructive 
interference are denoted by black stripes in the  interference pattern above. 
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BTW, this is completely analogous to destructive interference in Σ∗ or Π∗ 
bonds. 

Reconciling the wave and photon picture of light 

How to reconcile? For that we need to do the slit experiment in the limit of a 
small number of photons. 

Below there’s a true experimental example, actually for electrons (from 
Wikipedia), for the full slit experiment – but the same thing will happen for 
photons, although the physical length scale of the experiment will be 
different of course. 

 

Below are the patterns, as function of time.  Initially we see “particles” – 
electrons here, or photons if we were to do an the Yong slit experiment. 

Later, as more as more “hits” are recorded, we start seeing the patterns. 

So the continuous wave pattern are really a disguise for  a pattern 
developed by many “hits”  
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This is like a branch of Impressionism, called “Pointillism”– where a pattern 
is made by many dots! See the picture by Seurat below. 

  

Relation to electrons 

Experiments on beams of electrons have shown, as we just saw, that 
electrons are indeed also a wave.  A wave of what?  Well, the wave is a 
“wavefunction” of an electron.  Seems circular…  

But the important thing is that we understand that the probability of an 
electron to be in a certain place, is analogous to the intensity of a light in a 
certain place |𝐸(𝒓)|𝟐; 

So the probability of electron in be at a point 𝒓 is similarly |𝜓(𝒓)|𝟐 where 𝜓 
is a complex function of position, known as the wavefunction. 

What we learn from the slit experiment, is that if an event (e.g., an electron 
or a photon hitting the screen at a point 𝒓) can occur by one of several 
possibilities (e.g., the possibility that the light passes through slit 1 or 
through slit 2; or that the electron passes through slit 1 or through slit 2), 
then: 

The total electric field(for light) or total wavefunction, i.e.,  wave-
amplitude (for electrons or other “particles”) is 

𝐸 = 𝐸ଵ + 𝐸ଶ    (𝑙𝑖𝑔ℎ𝑡) 

𝜓 = 𝜓ଵ + 𝜓ଶ   (𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠) 

So in the latter case, the probability is 
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𝑃 = |𝜓ଵ + 𝜓ଶ|ଶ 

And there’s interference between the different pathways. 

Note that if we were to measure where does the particle (photon or 
electron) goes through, e.g., if we were to cover the 2nd  hole and 
measure how much goes through the first, the interference will be lost and 
we would have got no pattern, i.e., 𝑃 = |𝜓ଵ|ଶ. 

Summary: double slits 

Four Lessons for Quantum Chemistry from the Double-Slit (or Double hole) 
experiments: 

-- Particle wave duality: particles (e.g., electrons) also have wave 
properties. 

-- Superposition principle: an electron is in a superposition of two exclusive 
states (passing slit #1 & slit #2). 

-- Effect of measurement/observation: observation collapses the 
wavefunction to one of the states (passing slit #1 or slit #2), with equal 
probability in this specific case. 

-- Interpretation of wavefunction: probability of finding the particle is the 
squared of the absolute value of the wavefunction. 
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III. Waves, Operators and the Schrödinger 
equation 

From Young’s experiment and its equivalent on electrons: Central to our 
formulation of QM is the probability amplitude (or ”wavefunction”). 

From the double-slit experiment, we have seen that the wavefunction gives 
rise to interference, just as wave amplitudes add to give interference. 

As such, we seek a mathematical description of particle wavefunctions. 

This ultimately leads to the Schrödinger wave equation, the solution of 
which produces the wavefunctions for any given quantum mechanical 
system. 

Before we get to the Schrödinger wave equation, though, it is pertinent to 
review a bit what we know about waves and the mathematics thereof. 

Wave Properties 

•There are transverse monochromatic waves (TEM =Transverse Electric-
Magnetic): disturbances whose displacement oscillates in a direction 
perpendicular to 𝒌, the direction of motion of the wave (water waves, EM 
waves). 

• There are also longitudinal waves: a disturbance whose displacement 
oscillates along the direction of propagation of (sound). 

• Amplitude of a wave = maximum displacement. 

• The wavelength λ is the distance between two successive amplitude 
maxima at a given instant (units: μm, nm, Å). 

• The velocity 𝑣 = the distance a given wave crest moves per unit time 
[units: m/sec].  (Actually, it is more complicated than that…there’s 
something called group velocity and something called phase 
velocity…but we won’t discuss those here). 

• The frequency 𝜈: number of times per second a wave amplitude at a 
given point in space passes through the maximum value [unit: Hz]. 

See: 
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http://www.youtube.com/watch?v=CswoSQC_NX0&feature=endscreen&NR=1 

http://www.youtube.com/watch?v=UHcse1jJAto&feature=endscreen&NR=1 

http://www.youtube.com/watch?v=aguCWnbRETU&feature=related 

 

Wave Properties 

The radial frequency 𝜔 = 2𝜋𝜈 [radians/sec]. 

 The period T = time required to complete one cycle of the oscillation 
[sec] 

 The phase = number of radians accumulated since some arbitrary 
zero time [radians]: denoted by φ. 

 Principle of superposition: displacements add up (for same 
position 𝒓 and time t. 

 

Henceforth: 1D (later we’ll generalize to 3D). 

The simplest wave equation for a (classical) wave 𝑓(𝑥, 𝑡) is  

𝜕ଶ𝑓

𝜕𝑥ଶ
−

1

𝑣ଶ

𝜕ଶ𝑓

𝜕𝑡ଶ
= 0 

What is 𝑓(𝑥, 𝑡)?  Could be the density (for sound waves), the electric field 
(for light propagating in a homogenous media), etc.  For this discussion 
assume 𝑣 is constant. 

The solutions of the wave equation could be written in terms of 
propagating Normal modes, 𝒇𝒌𝝎 i.e., solutions that depend on specific 
wave vector (𝑘)and frequency (𝜔) – (henceforth when I write frequency I 
mean angular frequency, 𝜔 = 2𝜋𝜈) 

𝑓ఠ(𝑥, 𝑡) = exp ቆ𝑖2𝜋 ቀ
𝑥

𝜆
− 𝜈𝑡ቁቇ 

And writing that 𝜔 ≡ 2𝜋𝜈, 𝑘 ≡
ଶగ

ఒ
, we get: 

 𝑓ఠ(𝑥, 𝑡) = exp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯ 
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Note that I could at this stage just look at the real part, i.e., cos൫𝑖(𝑘𝑥 − 𝜔𝑡)൯ 
but we need to start practicing the complex solutions. 

First, verify that these normal modes are indeed solving the wave equation 

𝜕ଶexp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯

𝜕𝑥ଶ
= −𝑘ଶexp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯ 

𝜕ଶexp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯

𝜕𝑡ଶ
= −𝜔ଶexp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯ 

 

So  
𝜕ଶ𝑓ఠ(𝑥, 𝑡)

𝜕𝑥ଶ
−

1

𝑣ଶ

𝜕ଶ𝑓ఠ(𝑥, 𝑡)

𝜕𝑡ଶ
= ቆ−𝑘ଶ +

𝜔ଶ

𝑣ଶ
ቇ 𝑓ఠ(𝑥, 𝑡) 

So in order to have a solution, we need to have  

𝜔ଶ = 𝑣ଶ𝑘ଶ 

You actually know this relation—you learned that 𝜔 = 2𝜋𝜈, that 𝑘 =
ଶగ

ఒ
  and 

that 𝑣 = 𝜈𝜆, which is exactly equal! 

Adding up solutions. 

The key is the principle of superposition, which will lead us eventually to the 
Schrödinger equation!.  Specifically: 

Stationary Solutions-Warmup 

Let’s warm up by adding two counter propagating wave.  One with 𝑘 > 0, 
and the other with −𝑘, i.e., define a wave 

𝑔(𝑥, 𝑡) ≡ exp(𝑖(𝑘𝑥 − 𝜔𝑡) + exp൫𝑖(−𝑘𝑥 − 𝜔𝑡)൯ 

i.e., 

𝑔(𝑥, 𝑡) = (exp(𝑖𝑘𝑥) + exp(−𝑖𝑘𝑥)) exp(−𝑖𝜔𝑡) 

i.e., 

𝑔(𝑥, 𝑡) = 2 cos(𝑘𝑥) exp(−𝑖𝜔𝑡) 
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So we got that g is a stationary solution times an oscillating time-dependent 
factor! 

𝑔(𝑥, 𝑡) = 𝑔௦௧௧௬(𝑥) ∗ exp(−𝑖𝜔𝑡),       𝑔௦௧௧௬(𝑥) = 2cos (𝑘𝑥) 

This is exactly what happens in, e.g., guitar waves where the stationary 
harmonics go up and down.  Of course, in reality the solution of course is 
the real part of 𝑔, i.e.,  

𝑔௧௨(𝑥, 𝑡) = 𝑔௦௧௧ (𝑥) ∗ cos(𝜔𝑡). 

Adding up waves, and operators 

The following will be painful, but once we understand it we can see the 
reason behind the specific form of Schrödinger’s equation. (The usual 
alternative, just giving it outright without justification, is not educational in 
my opinion). 

First, consider what happens when a wave is made of several (from 2 to 
infinitely many) components, with different 𝜔, 𝑘.   

For example, 

𝑎(𝑥, 𝑡) ≡ 5 exp(𝑖(𝑘ଵ𝑥 − 𝜔ଵ𝑡) + 8 exp൫𝑖(𝑘ଶ𝑥 − 𝜔ଶ𝑡)൯ 

Where the “5” and “8” are arbitrary coefficients, and each component fulfils 
the wave relation, so that 𝜔ଵ = 𝑣𝑘ଵ,  𝜔ଶ = 𝑣𝑘ଶ 

Well, if we were to pick some values for 𝑘ଵ and 𝑘ଶ (and therefore to 𝜔ଵ and 
𝜔ଶ) and plot the real and imaginary part of the wave, we will generally get a 
strange function which is non periodic.  But it could represent an 
acceptable wave. 

(That’s what happens, essentially, when we play a guitar or any other 
instrument – we excite the fundamentals and harmonics of the different 
cords simultaneously, and get a wave of sound which is non periodic, i.e., 
we get music!) 

Now, comes the question – how could we talk about “the” frequency 
of such waves, or more modestly, what will we mean by multiplying the 
wave by its “frequency”. 
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Well, there is no single frequency to this wave 𝑎(𝑥, 𝑡), since it is made from 
2 components with different frequencies.  But we could still define a 
frequency operator. 

Recall from linear algebra that operators are things which convert 
functions to functions. 

We will denote the frequency operator by ωෝ– where the hat reminds us that 
it is an operator, not a number.  This frequency operator, when acting on 
our wave, should produce another function, labeled here 𝑏(𝑥, 𝑡) 

𝑏 = ωෝ𝑎 

 What should 𝑏(𝑥, 𝑡) look like? Well, almost intuitively, the action of the 
operator of frequency on our wave, which I remind you is:  

𝑎(𝑥, 𝑡) ≡ 5 exp(𝑖(𝑘ଵ𝑥 − 𝜔ଵ𝑡) + 8 exp൫𝑖(𝑘ଶ𝑥 − 𝜔ଶ𝑡)൯ 

should be 

𝑏(𝑥, 𝑡) ≡ 5𝝎𝟏 exp(𝑖(𝑘ଵ𝑥 − 𝜔ଵ𝑡) + 8𝝎𝟐 exp൫𝑖(𝑘ଶ𝑥 − 𝜔ଶ𝑡)൯ 

(where I highlighted the frequency factors), i.e., each component multiplied 
by its own frequency.  Makes sense. 

Well, amazingly, we can find an elegant representation of this operator – it 
is just: 

ωෝ = 𝑖
𝜕

𝜕𝑡
 

You may not like it – how come we converted the concept of “frequency” 
into “a complex time-dependent derivative” – but let’s see indeed that it 
works.  Apply the time-dependent partial derivative to our wave: 

ωෝ𝑎(𝑥, 𝑡) =  𝑖
𝜕

𝜕𝑡
𝑎(𝑥, 𝑡) 

But since  

𝑖
𝜕

𝜕𝑡
exp(−𝑖𝜔𝑡) = 𝑖(−𝑖)𝜔  exp(−𝑖𝜔𝑡) = 𝜔 exp(−𝑖𝜔𝑡)        since 𝑖(−𝑖) = 1  

we get that 
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ωෝ𝑎(𝑥, 𝑡) =  𝑖
𝜕

𝜕𝑡
൫5 exp(𝑖(𝑘ଵ𝑥 − 𝜔ଵ𝑡) + 8 exp൫𝑖(𝑘ଶ𝑥 − 𝜔ଶ𝑡)൯൯ 

ωෝ𝑎(𝑥, 𝑡) = 𝜔ଵ5 exp(𝑖(𝑘ଵ𝑥 − 𝜔ଵ𝑡) + 8𝜔ଶ exp൫𝑖(𝑘ଶ𝑥 − 𝜔ଶ𝑡)൯    ! It worked‼ 

The beauty is that now we can take any wave and find the action of the 
frequency on it.  We don’t need to even write it anymore as a combination 
of normal modes! 

 

 

EXAMPLE – given a Gaussian wave, i.e., a Bell-Shaped wave of the form, 
e.g.,  

𝑢(𝑥, 𝑡) = exp ൬−
1

2
(𝑘𝑥 − 𝜔𝑡)ଶ൰ 

 Draw this packet for two different times 
 Find the action of the frequency operator on it this wave 
 Find the action of the squared frequency operator on this wave 

Answer:  

 Drawing: u is a “wavepacket” – and it moves with its shape 
unchanged in time 

 
 

 Apply the derivative 
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𝜔ෝ𝑢 =
𝑖𝜕

𝜕𝑡
𝑢 = −𝑖

1

2
2 ∗ (𝑘𝑥 − 𝜔𝑡)(−𝜔) exp ൬−

1

2
(𝑘𝑥 − 𝜔𝑡)ଶ൰

= −𝑖𝜔(𝑘𝑥 − 𝜔𝑡)𝑢(𝑥, 𝑡) 

 Apply the derivative twice: 

ωෝଶ𝑢 = ωෝωෝ𝑢 =
𝑖𝜕

𝜕𝑡

𝑖𝜕

𝜕𝑡
𝑢 = −

𝜕ଶ

𝜕𝑡ଶ
𝑢 =  −

𝜕ଶ

𝜕𝑡ଶ
exp ൬−

1

2
(𝑘𝑥 − 𝜔𝑡)ଶ൰ 

A tedious 2nd derivative calculation gives then: 

−
𝜕ଶ

𝜕𝑡ଶ
𝑢 = 𝜔

ଶ((𝑘𝑥 − 𝜔𝑡)ଶ − 1) exp ൬−
1

2
(𝑘𝑥 − 𝜔𝑡)ଶ൰ 

i.e., 

ωෝଶ𝑢 = 𝜔
ଶ((𝑘𝑥 − 𝜔𝑡)ଶ − 1)𝑢 

Strange indeed…positive for some x’s & t’s,, negative for others …but 
that’s what the math gives. 

END OF EXAMPLE. 

 

 

Similarly we can find the wavevector operator: 

𝑘 = −
𝑖𝜕

𝜕𝑥
 

And I leave it up to you to verify that 

𝑘𝑎(𝑥, 𝑡) = 5𝒌𝟏 exp(𝑖(𝑘ଵ𝑥 − 𝜔ଵ𝑡) + 8𝒌𝟐 exp൫𝑖(𝑘ଶ𝑥 − 𝜔ଶ𝑡)൯ 

as it should. 

 

So now you see that we can rewrite the classical wave equation,  

𝜕ଶ𝑓

𝜕𝑥ଶ
−

1

𝑣ଶ

𝜕ଶ𝑓

𝜕𝑡ଶ
 

Instead as 
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൬𝑘ଶ −
1

𝑣ଶ
ωෝଶ൰ 𝑓 = 0 

It is in a sense as we have ቀ𝑘ଶ −
ଵ

௩మ
ωෝଶቁ=0,  but not really always, only 

when acting on physical waves – i.e., which fulfil this equation.   

Schrödinger’s equation 

These equations above were for classical waves.  Now let’s ask follow 
Schrödinger (at least simplistically) and ask what should be a similar 
equation that waves of electrons should fulfil. 

Well, one thing we learned from de-Broglie is that the momentum is related 
to the wavelength: 

𝑝 =
ℎ

𝜆
=

2𝜋

𝜆
ℏ 

so the wavevector 𝑘, which I remind you is simplistically  

𝑘 =
2𝜋

𝜆
 

 is related to the momentum, i.e., 

𝑝 = ℏ𝑘 

So the first ingredient will be to replace the momentum by a momentum 
operator, i.e., 

�̂� = ℏ 𝑘 

i.e., the momentum becomes the derivative operator: 

�̂� = −𝑖ℏ
𝜕

𝜕𝑥
 

Similarly, Schrödinger took Planck’s relation 

𝐸 = ℎ𝜈 

i.e., 

𝐸 = ℏ𝜔 
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(henceforth 𝐸 denotes energy, not electrical field anymore), and turned it 
into an operator relation, i.e., 

𝐸 = ℏωෝ  

I.e., 

𝐸 = 𝑖ℏ
𝜕

𝜕𝑡
 

Now we know for classical particles without a potential that  

𝑝ଶ

2𝑀
= 𝐸 

(where M is the mass).  So the last ingredient is to write the same equation 
for waves: 

�̂�ଶ

2𝑀
Ψ = 𝐸Ψ 

where 

Ψ(𝑥, 𝑡) 

is the “wavefunction” representing the electron (or the system more 
generally). 

But  

�̂�ଶ = ൬−𝑖ℏ
𝜕

𝜕𝑥
൰

ଶ

 

i.e., 

�̂�ଶ = −ℏଶ
𝜕ଶ

𝜕𝑥ଶ
 

so 

−
ℏଶ

2𝑀

𝜕ଶ

𝜕𝑥ଶ
Ψ = 𝑖ℏ

𝜕

𝜕𝑡
Ψ 

This is the Schrödinger equation for a free particle in 1D.  Now let’s extend 
it to include a potential, and to 3D. 
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First, include a potential.  Recall that the conservation of energy in classical 
mechanics adds a potential very simply: 

𝑝ଶ

2𝑀
+ 𝑉(𝑥) = 𝐸 

So here we do the same,  

i.e., extend the operator equation above (
ොమ

ଶெ
Ψ = 𝐸Ψ) to also include the 

potential: 

൭
�̂�ଶ

2𝑀
+ 𝑉(𝑥)൱ Ψ(𝑥, 𝑡) = 𝐸Ψ(𝑥, 𝑡) 

i.e., 

−
ℏଶ

2𝑀

𝜕ଶΨ(𝑥, 𝑡)

𝜕𝑥ଶ
+ 𝑉(𝑥)Ψ(𝑥, 𝑡) = 𝑖ℏ

𝜕

𝜕𝑡
Ψ(𝑥, 𝑡) 

This is the complete time-dependent Schrödinger equation in 1D!  

 

Extension to 3D: 

In 3D, the wavefunction is now 𝜓(𝒓, 𝑡), where 𝒓 = (𝑥, 𝑦, 𝑧). We can get 
immediately the 3D Schroedinger equation by recalling that, classically, in 
3D the conservation of energy becomes 

𝑝 ⋅ 𝑝

2𝑀
+ 𝑉(𝒓) = 𝐸 

where 

𝑝 ⋅ 𝑝 ≡ 𝑝௫
ଶ + 𝑝௬

ଶ + 𝑝௭
ଶ 

So quantally, we need to replace the 2nd derivative w.r.t. one variable, 
డమ

డ௫మ
, 

by the sum of the 2nd derivative w.r.t. three variables:  

𝑝 ⋅ 𝑝 = −ℏଶ∆ 

where we introduced the Laplacian: 

∆ ≡
𝜕ଶ

𝜕𝑥ଶ
+

𝜕ଶ

𝜕𝑦ଶ
+

𝜕ଶ

𝜕𝑧ଶ
 



44 
 

Therefore, the Schrödinger equation becomes 

−
ℏଶ

2𝑀
∆Ψ(𝒓, 𝑡) + 𝑉(𝒓)Ψ(𝒓, 𝑡) = 𝑖ℏ

𝜕

𝜕𝑡
Ψ(𝒓, 𝑡) 

The rest of the quarter will be devoted essentially to solving (and 
extending) this equation in many circumstances! 

Time-dependent vs. Time-Independent Schrödinger equation 

The time-dependent Schrödinger equation which we derived is an initial-
value equation in time.  This generally means that it is of the form 

𝜕

𝜕𝑡
Ψ(𝒓, 𝑡) = 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 Ψ(𝒓, 𝑡) 𝑎𝑡 𝑡 𝑜𝑛𝑙𝑦. 

Therefore, if we know the wavefunction at time t, then we can find the 
wavefunction at a later time, 𝑡 + 𝑑𝑡 (and then repeat the procedure to 𝑡 +

2𝑑𝑡, 𝑡 + 3𝑑𝑡, etc., i.e., to all future times). 

Here, specifically, we show it by realizing that 

𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
≃

Ψ(𝑥, 𝑡 + 𝑑𝑡) − Ψ(𝑥, 𝑡)

𝑑𝑡
 

So plugging to the Schrödinger equation we get 

𝑖ℏ
Ψ(𝑥, 𝑡 + 𝑑𝑡) − Ψ(𝑥, 𝑡)

𝑑𝑡
= −

ℏଶ

2𝑀

𝜕ଶΨ(𝑥, 𝑡)

𝜕𝑥ଶ
+ 𝑉(𝑥)Ψ(𝑥, 𝑡) 

i.e.,  

Ψ(𝑥, 𝑡 + 𝑑𝑡) = Ψ(𝑥, 𝑡) − 𝑖ℏ𝑑𝑡 ൭−
ℏଶ

2𝑀

𝜕ଶΨ(𝑥, 𝑡)

𝜕𝑥ଶ
+ 𝑉(𝑥)Ψ(𝑥, 𝑡)൱ 

Note the difference from classical mechanics(CM).  In CM we need to know 
just two things about a particle initially, its position and momentum (or 
velocity), from which we find how it behaves at later times.  In QM we need 
to know the full initial wavefunction at the initial time, Ψ(𝑥, 𝑡௦௧௧).  
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The time-independent Schrödinger equation: the Hamiltonian and 
stationary states. 

When we talked about propagating modes, exp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯ we have 
shown that combination of two such propgating modes can lead to a 
stationary mode, 𝑔(𝑥, 𝑡) = 𝑔௦௧௧௬(𝑥) ∗ exp(−𝑖𝜔𝑡). 

A similar thing happens in QM. But first: 

The Hamiltonian 

To facilitate, let’s define the “Hamiltonian” operator, which for us, at 
present, is just the sum of the kinetic energy and potential energy 
operators.  We’ll write in 1D but our definitions are true in 3D too 

𝐻 ≡
�̂�ଶ

2𝑀
+ 𝑉 

i.e., 

𝐻 ≡ −
ℏଶ

2𝑀

𝜕ଶ

𝜕𝑥ଶ
+ 𝑉(𝑥) 

i.e., 

𝐻Ψ(𝑥, 𝑡) ≡ −
ℏଶ

2𝑀

𝜕ଶΨ(𝑥, 𝑡)

𝜕𝑥ଶ
+ 𝑉(𝑥)Ψ(𝑥, 𝑡) 

Note that 𝐻 is an operator but for convenience and historical reasons we 
don’t give “hats” to it. Henceforth almost everything we’ll deal with will be 
an operator (except for the wavefunctions and for numbers) so to simplify 
we don’t put “hats” on the operators. 

Also, 𝐻 is NOT the enthalpy – no relation (some faint relation actually, 
which we can ignore).  For us, at present, let’s think of 𝐻 as the energy 
operator. 

In terms of 𝐻, the Schrödinger equation is simply: 

𝑖ℏ
𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
= 𝐻Ψ(𝑥, 𝑡) 

Now let’s look for product-solutions, i.e., 
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Ψ(𝑥, 𝑡) = 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔(𝑡) ∗ 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔(𝑥) 

It is easy to guess that the function in time will be simple, actually of the 
same form we had before for normal mode, exp(−𝑖𝜔𝑡) (since we are really 
just looking for normal modes of the Schrödinger’s equation). So write 
down: 

Ψ(𝑥, 𝑡) = exp(−𝑖𝜔𝑡) 𝜓(𝑥) 

Let’s see what properties this 𝜓(𝑥) has to fulfil. 

Plugging in to 𝑖ℏ
డஏ(௫,௧)

డ௧
= 𝐻Ψ(𝑥, 𝑡), we get  

 𝑖ℏ
𝜕

𝜕𝑡
exp(−𝑖𝜔𝑡) 𝜓(𝑥) = 𝐻 exp(−𝑖𝜔𝑡) 𝜓(𝑥) 

i.e., 

ℏ𝜔 exp(−𝑖𝜔𝑡) 𝜓(𝑥) = exp(−𝑖𝜔𝑡) 𝐻𝜓(𝑥) 

Where the RHS is true since H does not involve any derivative in time, so 
𝐻 exp(−𝑖𝜔𝑡) = exp(−𝑖𝜔𝑡) 𝐻. 

Dividing by exp(−𝑖𝜔𝑡), and exchanging the RHS and the LHS, we get the 
time-independent Schrödinger equation: 

𝐻𝜓 = 𝐸𝜓 

where 

𝐸 = ℏ𝜔 

To conclude: if we can find a solution of the highlighted time-independent 
Schrödinger equation, then a time-dependent solution will follow as 

Ψ(𝑥, 𝑡) = exp ൬−
𝑖𝐸

ℏ
𝑡൰ 𝜓(𝑥) 

(where the phase factor is simply exp (−𝑖𝜔𝑡)). 

In chemistry, already in 20A, we talk about molecular orbitals – those are 
exactly the solution of the time-independent Schrödinger equation for 
electrons in atoms. 

Most of the class will be devoted to finding such orbitals for different cases. 
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As a side-note, we will later see that the energies of such orbitals are 
bounded from below for the Coulomb potential – which will be indeed 
a proof the quantum mechanics solves the first presented challenge 
that CM faced, i.e., the electron will not damp to the origin. 

Part III: Summary. 

To summarize this perhaps the most important chapter of the course, we: 

 Talked about classical waves 
 We understood the wavevector and frequency of waves of the form 

cos(kx-wt) etc. 
 We saw that in order to “apply”/multiply a general combination of 

waves by their “frequency” we can replace the frequency by an 

operator, 
డ

డ௧
, and similarly the wavevector becomes 𝑘 = −

డ

డ௫
 

 This, together with 𝑝 = ℏ𝑘 = −
ℏడ

డ௫
, 𝐸 = ℏ𝜔 and the classical 𝐻 = 𝐸 

where 𝐻 ≡
ොమ

ଶெ
+ 𝑉 led to the time-dependent Schroedinger equation 

𝑖ℏ
డஏ

డ௧
= 𝐻Ψ. 

 We understood the Schrödinger equation is an initial value equation. 
 We derived then back the time-independent Schrödinger equation, 

𝐻𝜓 = 𝐸𝜓,  Ψ = exp ቀ−
ா

ℏ
𝑡ቁ 𝜓 
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IV. Eigenfunctions, Eigenvalues, Operators, 
Observables. 

The time-independent S.E. is also an example of an “eigenvalue equation”.  
Such an equation always has the form: 

𝐴 𝑓 =  𝑎 𝑓 

i.e., 

                                Operator* function = number * same-function 

In an eigenvalue equation an operator acts on a function, (known as an 
eigenfunction) in such a way that the result is that same function multiplied 
by a constant - the eigenvalue. 

In the time-independent S.E. we have: 

𝐻 𝜓 =  𝐸𝜓 

Ψ is said to be an eigenfunction of 𝐻 with an eigenvalue 𝐸. 

 

Now, eigenvalues play a central role in Q.M. in that the eigenvalues of a 
given operator are the only values that can be observed in measurements 
of the observable associated with that operator. 

E.g. for any given system 𝐻 𝜓 =  𝐸𝜓  is, in general, satisfied by numerous 
(often infinite) pairs of eigenfunctions and eigenvalues (𝑒 , 𝜓  , 𝑗 = 1, … . ) 
such that: 𝐻 𝜓 =  𝑒𝜓 

Such eigenvalue equations apply to the operators of all observables 
associated with a given system 

SIDE NOTE: For such a system, if a measurement is made of the 
energy of the system, the only possible observable values are the 𝑒 .  
This is a little tricky to formulate and understand though but all it 
means is that if the system is in a mixture of states the act of 
measurement forces it to choose one state with a specific energy; 
let’s leave for now and get back to it in 10 pages.  END OF SIDE 
NOTE. 
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For example, the possible measured values of the  x-component of the 
linear momentum of a particle are the eigenvalues that satisfy the equation: 

 
�̂�௫𝜙 = 𝑎𝜙 

 

−𝑖ℏ
𝜕

𝜕𝑥
𝜙 = 𝑎𝜙 

So 

𝜙(𝑥) = exp ቀ𝑖
𝑎

ℏ
 𝑥ቁ 

For a general system, the eigenstates of 𝐻𝜓 = 𝑒𝜓  are known as the 
“stationary-state wave functions” of the system.  From these wavefunctions 
we can determine all the other properties associated with the stationary 
states of the system. 

Hermitian Operators  

Let’s look at an operator 𝐴. 

We’ll only consider linear Operator (for meaning, consider your linear 
Algebra course). 

Now, if 𝐴 corresponds to an observable, its eigenvalues are necessarily 
real numbers  and Linear algebra tells us (and we’ll show) that 𝐴 must be 
what is called an Hermitian Operator. 

An Hermitian Operator is defined as one which  

න 𝑓∗(𝐴𝑔)𝑑𝑥 = ൬න 𝑔∗(𝐴𝑓)𝑑𝑥 ൰
∗

 

I.e., except for the complex conjugates, the idea is that we can apply A on 
a function 𝑔(𝑥) and then multiply the resulting function (𝐴𝑔) which is a 
function of position, by (the complex conjugate) of another function 𝑓∗(𝑥) 
and integrate over all space; or transpose the functions (apply 𝐴 on 𝑓, 



50 
 

multiply by 𝑔*  and then integrate); and the results are complex conjugates 
of each other (if 𝐴 is an Hermitian operator). 

Since what we observe in experiments are always real quantities, 
observations in quantum mechanics are intimately tied to Hermitian 
operators.  

So we’ll spend a few sections on Hermitian operators 

Examples of Hermitian Operators 

Let’s see some Hermitian (linear) operators. 

(i) Derivative: anti-Hermitian. Is the derivative operator Hermitian? No… it is 
“anti-Hermitian”! 

Proof: assume that we deal with functions which go to zero near infinity (a 
little wishy-washy for this operator, but never mind for now).  Then we can 
integrate by parts so 

න 𝑔∗(𝑥)
𝑑

𝑑𝑥
𝑓(𝑥) 𝑑𝑥  = − න 𝑓(𝑥)

𝑑

𝑑𝑥
𝑔∗(𝑥) 𝑑𝑥 

since we can interchange the conjugate, and since (𝑓∗)∗ = 𝑓, we can write 
the RHS as 

− න 𝑓(𝑥)
𝑑

𝑑𝑥
𝑔∗(𝑥) 𝑑𝑥 = − ൬න 𝑓∗(𝑥)

𝑑

𝑑𝑥
𝑔(𝑥) 𝑑𝑥൰

∗

 

So therefore: 

න 𝑔∗(𝑥)
𝑑

𝑑𝑥
𝑓(𝑥) 𝑑𝑥 = − ൬න 𝑓∗(𝑥)

𝑑

𝑑𝑥
𝑔(𝑥) 𝑑𝑥൰

∗

 

So we get this “minus” sign relative to a Hermitian operator.  So the 
derivative operator is anti-Hermitian.   

(i'):    𝑖
ௗ

ௗ௫
 is Hermitian:  To make the derivative operator into Hermitian all 

we need is to multiply the equations above by 𝑖.  

𝑖 න 𝑔∗(𝑥)𝑖
𝑑

𝑑𝑥
𝑓(𝑥) 𝑑𝑥 = −𝑖 ൬න 𝑓∗(𝑥)

𝑑

𝑑𝑥
𝑔(𝑥) 𝑑𝑥൰

∗
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And since 𝑖∗ = −𝑖 we can insert it into the parentheses on the RHS (with a 
sign change) to get 

න 𝑔∗(𝑥)𝑖
𝑑

𝑑𝑥
𝑓(𝑥) 𝑑𝑥 = ൬න 𝑓∗(𝑥)𝑖

𝑑

𝑑𝑥
𝑔(𝑥) 𝑑𝑥൰

∗

 

which proves indeed that 𝑖
ௗ

ௗ௫
  is Hermitian .  This is good, as it means that 

�̂� = −𝑖ℏ
ௗ

ௗ௫
 is Hermitian, so it will have (see below) real eigenvalues. 

 

Note also that the second-derivative operator is Hermitian, as you can 
prove. 

 

(ii) The operator of multiplying by 𝑥 (or 𝑥ଶ, 𝑥ଷ, any real local function of 
𝑥, such as the potential  𝑉(𝑥) ) -- is Hermitian.   The proof is trivial: 

න 𝑔∗(𝑉𝑓) 𝑑𝑥 = න 𝑔∗(𝑥)𝑉(𝑥)𝑓(𝑥) 𝑑𝑥 = න 𝑓∗(𝑥)𝑉(𝑥)𝑔(𝑥)𝑑𝑥

= ൬න 𝑓∗(𝑥)𝑉(𝑥)𝑔(𝑥)𝑑𝑥 ൰
∗

   𝑄. 𝐸. 𝐷. 

BTW, note that adding two Hermitian operators gives a Hermitian operator.  
So for example an operator like 

𝑎 = 𝑥 − 𝑖
𝑑

𝑑𝑥
 

will be Hermitian.  We’ll have a lot to talk about this “raising operator” later 
when we discuss harmonic oscillators. 

Hermitian Operators: Real Eigenvalues 

Let’s see that indeed Hermitian operators have only real eigenvalues (it 
is also the opposite, but let’s not worry about the opposite, i.e., that if a 
linear operator has only real eigenvalues it is Hermitian). 

The proof is simple.  Take an eigenfunction, 𝜙(𝑥) of 𝐴.  We know that 

𝐴𝜙(𝑥) = 𝑎𝜙(𝑥) 
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Define 𝑔(𝑥) = 𝑓(𝑗) = 𝜙(𝑥).  The definition above of an Hermitian operator 

is ∫ 𝑓∗(𝐴𝑔)𝑑𝑥 = (∫ 𝑔∗(𝐴𝑓)𝑑𝑥 )∗ so it gives, once we insert 𝑔(𝑥) = 𝑓(𝑗) =

𝜙(𝑥), that   

න 𝜙
∗(𝐴𝜙)𝑑𝑥 = ൬න 𝜙

∗൫𝐴𝜙൯𝑑𝑥 ൰
∗

 

But 𝐴𝜙 = 𝑎𝜙, so 

න 𝜙
∗(𝑎𝜙)𝑑𝑥 = ൬න 𝜙

∗൫𝑎𝜙൯𝑑𝑥 ൰
∗

 

Now 𝑎 is a number so we can take it out of the integral, so 

𝑎 න 𝜙
∗(𝑥)𝜙(𝑥)𝑑𝑥 = ൬𝑎 න 𝜙

∗(𝑥)𝜙(𝑥)𝑑𝑥 ൰
∗

 

But 𝜙
∗(𝑥)𝜙(𝑥) = ห𝜙(𝑥)ห

ଶ
 and is real, so 

𝑎 නห𝜙(𝑥)ห
ଶ

𝑑𝑥 = ൬𝑎 නห𝜙(𝑥)ห
ଶ

𝑑𝑥 ൰
∗

= 𝑎
∗ ൬නห𝜙(𝑥)ห

ଶ
𝑑𝑥 ൰

∗

 

Further, since ห𝜙(𝑥)ห
ଶ
 is real, ∫ห𝜙(𝑥)ห

ଶ
𝑑𝑥 is real so it is equal to its 

complex conjugate; so 

𝑎 නห𝜙(𝑥)ห
ଶ

𝑑𝑥 = 𝑎
∗ නห𝜙(𝑥)ห

ଶ
𝑑𝑥 

Further, ∫ห𝜙(𝑥)ห
ଶ

𝑑𝑥 cannot be zero unless 𝜙 is trivially zero, so we can 
divide both sides by it so 

𝑎 = 𝑎
∗ 

Therefore, 𝑎 is equal to its complex conjugate, so it must be a real number 
– Q.E.D. 

Next: 

Orthogonality of eigenfunctions of Hermitian Operators 

We’ll now prove the eigenfunctions of Hermitian operators which have 
different eigenvalues are orthogonal: 
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න 𝜙(𝑥)𝜙(𝑥)𝑑𝑥 = 0      if    𝑎 ≠ 𝑎 

In our 20A language, this means that molecular orbitals (i.e., 
eigenfunctions of the Hamiltonian governing a single electron motion) with 
different energies (eigenvalues of the Hamiltonians) are orthogonal. 

Proof: similar technique to the proof that the 𝑎 are real.  Start again with  

𝐴𝜙(𝑥) = 𝑎𝜙(𝑥) 

Now multiply on the right with 𝜙
∗(𝑥) and integrate  

න 𝜙
∗(𝑥)𝐴𝜙(𝑥)𝑑𝑥 = න 𝜙

∗(𝑥)𝑎𝜙(𝑥) 𝑑𝑥 = 𝑎 න 𝜙
∗(𝑥)𝜙(𝑥) 𝑑𝑥 

Reverse the role of 𝑗, 𝑛 and rewrite the equation above then as 

න 𝜙
∗(𝑥)𝐴𝜙(𝑥)𝑑𝑥 = 𝑎 න 𝜙

∗(𝑥)𝜙(𝑥) 𝑑𝑥 

But since A is Hermitian the LHS of the “red” and “magenta” parts are 
related 

න 𝜙
∗ (𝑥)𝐴𝜙(𝑥)𝑑𝑥 = ൬න 𝜙

∗(𝑥)𝐴𝜙(𝑥)𝑑𝑥൰
∗

 

And therefore so are the RHS: 

𝑎 න 𝜙
∗ (𝑥)𝜙(𝑥) 𝑑𝑥 = ൬𝑎 න 𝜙

∗(𝑥)𝜙(𝑥) 𝑑𝑥 ൰
∗

 

i.e. (no more colors…) 

𝑎 න 𝜙
∗ (𝑥)𝜙(𝑥) 𝑑𝑥 = 𝑎

∗ ൬න 𝜙
∗(𝑥)𝜙(𝑥) 𝑑𝑥 ൰

∗

 

i.e., since 𝑎
∗ = 𝑎 as the eigenvalues are real, and since 

൫∫ 𝜙
∗(𝑥)𝜙(𝑥) 𝑑𝑥 ൯

∗
= ∫ 𝜙

∗ (𝑥)𝜙(𝑥) 𝑑𝑥: 

𝑎 න 𝜙
∗ (𝑥)𝜙(𝑥) 𝑑𝑥 = 𝑎 න 𝜙

∗ (𝑥)𝜙(𝑥) 𝑑𝑥 

i.e., 
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൫𝑎 − 𝑎൯ න 𝜙
∗ (𝑥)𝜙(𝑥) 𝑑𝑥 = 0 

It follows that either the eigenvalues are equal (𝑎 = 𝑎), or, if they are not 

equal, their overlap is zero, so  ∫ 𝜙
∗ (𝑥)𝜙(𝑥) 𝑑𝑥 = 0.  But this is exactly the 

definition of orthogonal orbitals! 

BTW, this theorem says nothing about orthogonality of eigenfunctions with 
the same eigenvalues’; such eigenfunctions are called “degenerate” 
eigenfunctions.  For example, you know that the hydrogen atomic 2p 
orbitals for hydrogen (2s, 2px, 2py, 2pz) have all the same energy. 

It turns out we can take degenerate eigenfunctions and make orthogonal 
combinations of them.  (E.g., an SP combination of 2s and 2pz orbitals on 
the hydrogen atom). 

So the end result is that in practice the eigenfunctions of all Hermitian 
operators we’ll deal with will be orthogonal, whether automatically (when 
the eigenvalues are different) or made to be so (if the eigenvalues are the 
same). 

Normalizing: 

We can “always” scale an eigenfunction to be normalized, i.e., 

න 𝜙
∗ (𝑥)𝜙(𝑥)𝑑𝑥 = න|𝜙(𝑥)|ଶ 𝑑𝑥 = 1 

(actually, there are problems if we talk about scattered electrons which 
have an infinitely extended wavefunction, e.g., conduction-electrons in 
metals, but let’s not worry about this here).  

We can therefore summarize that in general the eigenstates are (or can be 
made to be) orthonormal 

න 𝜙
∗ 𝜙  𝑑𝑥 = 𝛿 

where we did not write explicitly 𝜙(𝑥), abbreviating instead 𝜙 . Also, 𝛿  is 
the Kronecker delta 

𝛿 = 1  if 𝑗 = 𝑛,        0  otherwise. 
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Finally: given any Hermitian operator, it can be shown (we won’t ) that 
its eigenfunctions are a complete set, i.e. given a general wavefunction 
𝜓 we can write  

𝜓(𝑥) =  𝑐𝜙(𝑥)



 

and the expansion coefficients 𝑐 are easily extracted for orthogonal 

eigenstates; for example to get 𝑐ୀ, multiply by 𝜙(𝑥) and integrate to get 

න 𝜙(𝑥)𝜓(𝑥) 𝑑𝑥 = න 𝜙(𝑥)  𝑐𝜙(𝑥)



𝑑𝑥 =  𝑐



න 𝜙(𝑥)𝜙(𝑥)𝑑𝑥

=  𝑐𝛿,



= (𝑐ଵ ∗ 0 + 𝑐ଶ ∗ 0 + ⋯ + 𝑐 ∗ 0 + 𝑐 ∗ 1 + 𝑐଼ ∗ 0 + ⋯

= 𝑐 

i.e., 𝑐 =  ∫ 𝜙(𝑥)𝜓(𝑥) 𝑑𝑥, i.e., in general 

𝑐 = න 𝜙(𝑥)𝜓(𝑥) 𝑑𝑥 

Analogy to classical 3D vectors 

This is completely analogous to saying that if we have a single-3D 
vector,  𝒗 = ൫ 𝑣௫, 𝑣௬ , 𝑣௭൯, then we can get its components by dot-product 
with the axis unit vector, e.g., 

𝑣௬ = 𝒚ෝ ⋅ 𝒗 

I.e., 𝑐 in QM should be thought of as expansion coefficients in some 
infinitely big space of eigenfunctions. 

Space dimensionality 

NOTE ON DIMENSION: In the discussion of Hermitian operators we used 
"𝑥".  But the discussion is completely general.  𝑥 could refer to  

 1D,  
 or for a single particle in the real world it will be 3D 
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 or even more interestingly, when we consider e.g., a molecule with 50 
electrons then 𝑥 is really 3 ∗ 50=150 dimensional i.e., "𝑥" refers really 
to 𝑥ଵ, 𝑦ଵ, 𝑧ଵ, 𝑥ଶ, 𝑦ଶ, … , 𝑥ଵହ, 𝑦ଵହ, 𝑧ଵହ.   

 And there’s always spin, as we’ll see later, which will double the 
dimensionality further… 

 

QM postulates and Hermitian operators: 

(I) The state of a Q.M.’al system is completely specified by a wave 
function.  
The probability that a particle will be observed at a time in a spatial 

interval between ቂ𝑥 −
ௗ௫

ଶ
, 𝑥 +

ௗ௫

ଶ
ቃ  (or [𝑥, 𝑥 + 𝑑𝑥] )  is given by: 

|Ψ (𝑥, 𝑡)|ଶ𝑑𝑥  (which is the same as Ψ∗(𝑥, 𝑡)Ψ(𝑥, 𝑡)𝑑𝑥.) 
 
In 3D, the equivalent probability is  |Ψ(𝒓, 𝑡)|ଶ𝑑ଷ𝑟   where 𝑑ଷ𝑟 ≡

𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧,  and 𝒓 = (𝑥, 𝑦, 𝑧). 
 
The wavefunction of a Q.M.’al system must obey the time 
dependent S.E.: 

𝜕Ψ

𝜕𝑡
=  −

𝑖

ℏ
𝐻Ψ 

Where 𝐻 is the Hamiltonian, or total energy operator, associated 
with the system. 
 

(II) For every measurable property of a system in classical mechanics 
such as position, momentum, and energy, and even some that are 
not known in classical mechanics such as “spin”, there exists a 
corresponding operator in quantum mechanics.   
An experiment in the laboratory to measure a value for such an 
observable is simulated in the theory by operating on the 
wavefunction of the system with the corresponding operator. 
 

(III) Properties of Q.M.’al operators: 
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The eigenvalues of the QM operators corresponding to 
experimental observables are real 
 
The eigenfunctions of the QM operators corresponding to 
experimental observables are orthogonal to each other 
 
The normalized eigenfunctions of the QM operators corresponding 
to experimental observables form an orthonormal basis 

 
(IV) In any single measurement of the observable corresponding to 

operator, the only values that will ever be measured are the 
eigenvalues of the operator. 

 
This is a fancy way of saying that each time we measure a 
quantity, we force the system to be an eigenstate of that quantity.  
In average, it will find itself in some probability of being in some 
value, another probability of another eigenvalue, etc.; but in each 
measurement it will only be in one eigenstate with one eigenvalue. 
 
For example, when we measure the momentum, we force the 
system to “choose” its momentum – sometime it will have one 
value, sometimes another, but each time we measure, as soon as 
a measurement of  𝐴 is made, the system’s wavefunction 
changes.  We force it to be in an eigenstate of the momentum 
operator (or another operator, all depends on our measuring 
device). 
 
Thus, as soon as a measurement of an operator 𝐴 is made, the 
system’s wavefunction changes.  In fact, it converts by the very act 
of the measurement to the eigenfunction of  corresponding to the 
value 𝑎  obtained in the measurement:  
 

Ψௗ =  𝑏𝜙



  →    Ψ୬ୣ୵ = 𝜙    

where the specific state “k” chosen is random (1 or 2 or 3 or 
4…etc.) and the probability 𝑷𝒌for the system to land in a 
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specific state k is proportional to |𝑏|ଶ   This will be made clearer 
in the next postulate. 
 

(V) If a system is in a state characterized by the wavefunction Ψ, and 
the value of the observable associated with operator is measured 
once each on many identically prepared systems in this state, then 
the average value (the expectation value) of these measurements 
is given by: 

⟨𝐴⟩ =
∫ Ψ∗𝐴Ψ 𝑑𝑥

∫ Ψ∗Ψ 𝑑𝑥
 

(where 𝑑𝑥 in 1D, or 𝑑ଷ𝑟 in 3D, etc. ). 
 
Note that Ψ should be normalized to 1, i.e., by the 1st postulate 
∫ Ψ∗Ψ 𝑑𝑥 = 1  (since the integral of the probability that the system 
is somewhere is 1 ), so then of course 

⟨𝐴⟩ = න Ψ∗𝐴Ψ 𝑑𝑥 

Specifically, Quantum particles, in general, give inconsistent 
answers (measurement outcomes): 
(i) What are the possible outcomes? Discrete or continuous? 

⇒ determined by the observable or its corresponding 
operator. 
 

(ii) What are the probabilities? 
⇒ determined by the wavefunction 
 

(iii) What is the average (expectation value)? 
⇒ algebraic calculation  

Expectation values: details 

The next few pages will deal with expectation values. 

Let us examine this by expanding  Ψ  in terms of the complete, orthonormal 
set of eigenfunctions 𝜙 of 𝐴  (so 𝐴𝜙 = 𝑎𝜙 ) 

Ψ =  𝑏𝜙



     (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠) 
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Normalization:  the normalization=1 condition is 

1 = න Ψ∗Ψ 𝑑𝑥 = න ቌ 𝑏𝜙



 ቍ

∗

 𝑏𝜙



 𝑑𝑥 

1 =   𝑏
∗𝑏



න 𝜙
∗𝜙  𝑑𝑥



 

1 =   𝑏
∗𝑏



𝛿



 

But we can remove the 𝛿 and the summation over 𝑙 , as for a given 𝑗 the 

only value of 𝑙 contributing is 𝑙 = 𝑗 due to the delta-function overlap, 
∫ 𝜙

∗𝜙  𝑑𝑥 = 𝛿.  Therefore 

1 =  𝑏
∗𝑏 =



ห𝑏ห
ଶ



 

is the condition on the overlap. 

BTW, note that this is completely analogous to saying that if a 5D vector 

𝑣 = (𝑣ଵ, 𝑣ଶ, … , 𝑣ହ) is normalized, 𝑣∗ ⋅ 𝑣 = 1, then ∑ ห𝑣ห
ଶ

ୀଵ,…,ହ = 1, i.e., 

 |𝑣ଵ|ଶ + |𝑣ଶ|ଶ + ⋯ |𝑣ହ|ଶ = 1 

Expectation value: Similarly, the expectation value of 𝐴 is defined in a 
shortcut as: 

⟨𝐴⟩ ≡ න Ψ∗𝐴Ψ 𝑑𝑥 

So based on the expansion of Ψ we get 

⟨𝐴⟩ = න ቌ 𝑏𝜙



 ቍ

∗

𝐴  𝑏𝜙



 𝑑𝑥  

i.e., 

⟨𝐴⟩ =   𝑏
∗𝑏



න 𝜙
∗𝐴𝜙  𝑑𝑥
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But we chose a basis of eigenfunctions of 𝐴, so 𝐴𝜙 = 𝑎𝜙 

න 𝜙
∗𝐴𝜙  𝑑𝑥 = 𝑎 න 𝜙

∗𝜙  𝑑𝑥 = 𝑎𝛿 

So 

⟨𝐴⟩ =   𝑏
∗𝑏



𝑎𝛿



 

i.e. 

⟨𝐴⟩ = ห𝑏ห
ଶ

𝑎



 

In words, the average (expectation) value of 𝐴 is given by a weighted sum 
over all the eigenvalues (possible measured values) of 𝐴,  the weights 
being determined by the contributions of the eigenfunctions of 𝐴,   as 
measured by the expansion coefficients  𝑏 , to the system’s wavefunction,   

Ψ. 

Now, recall that in general the average of any observable quantity can be 
written as:  

⟨𝑥⟩ =  𝑥𝑃(𝑥)



 

where 𝑃൫𝑥൯ is the probability of observing  𝑥   when making a 

measurement of  𝑥  

Comparing this with the above expression for  

⟨𝐴⟩ =  𝑃൫𝑎൯𝑎



= ห𝑏ห
ଶ

𝑎



 

we see that 𝑃൫𝑎൯ = ห𝑏ห
ଶ
 

The probability of measuring  𝑎  is given by the square of the coefficient of     
in the expansion of  Ψ. i.e., 𝑏 is a probability amplitude. 

Measurements – Conclusion 



61 
 

Note the probabilistic nature of Q.M.  Generally, in any given measurement 
of 𝐴 it is possible to observe numerous values.  (Only when Ψ = 𝜙 i.e., a 

single eigenstate of 𝐴 A  can we know definitively what will be observed) . 

 Generally, the best we can do is determine the probability that a 
particular eigenvalue of 𝐴  will be measured. 

On the other hand we can determine ⟨𝐴⟩  definitively . That is because          
is the average value of 𝐴 is  obtained by 𝑁 → ∞ separate measurements 
on identical systems. 

Summary:  Quantum Mechanics at Work --Two 
Steps. 

Step #1: Solve the Schrodinger equation to obtain the spatial distribution + 
time evolution of the quantum wavefunction  

Step #2: Use Max Born's statistical interpretation (Postulate II-V above) to 
interpret the resulting quantum wavefunction  

See also: 

https://www.youtube.com/watch?v=uq1h6jg61yI&playnext=1&list=PLFCF1FC91BEF2D365 

 
 

Henceforth: let’s solve simplified and real systems! 
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Time-Dependent Wavepackets and Norm 
Conservation. 

We talked a lot about the interpretation of a wavefunction as a probability 
amplitude, i.e., 

𝑃(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|ଶ 

and 

∫ 𝑃(𝑥, 𝑡)𝑑𝑥 = 1 

i.e., the probability for the particle (or particles in the case of a multi-particle 
wavefunction) to be somewhere in space is 1. 

We actually need to do a consistency check, to prove that the Schrödinger 
equation “respects” the conservation of the norm.  Let’s do that in two 
different ways.  The first is more general and based directly on the 
Schrödinger equation, while the 2nd will be based on expansion in 
eigenstates 

1st Norm conservation Proof: From the Schrödinger 
wavefunction directly: 

Let’s define the “total probability” (which we want to show is constant, does 
not change in time) 

𝑄(𝑡) ≡ න 𝑃(𝑥, 𝑡)𝑑𝑥 = න|Ψ(𝑥, 𝑡)|ଶ𝑑𝑥 = න Ψ∗(𝑥, 𝑡)Ψ(𝑥, 𝑡)𝑑𝑥 

Let’s differentiate 𝑄(𝑡) to show that its derivative (in time) is zero, i.e., it 
does not change.  (Our proof will make some assumptions on the form of H 
so we could prove things faster, i.e., our result will be general but the proof 
will not be): 

𝑑

𝑑𝑡
𝑄(𝑡) = න

𝜕

𝜕𝑡
൫Ψ∗(𝑥, 𝑡)Ψ(𝑥, 𝑡)൯𝑑𝑥 

𝑑

𝑑𝑡
𝑄(𝑡) = න

𝜕Ψ∗(𝑥, 𝑡)

𝜕𝑡
Ψ(𝑥, 𝑡)𝑑𝑥 + න Ψ∗(𝑥, 𝑡)

𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥 

But  
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𝜕Ψ

𝜕𝑡
= −

𝑖

ℏ
𝐻Ψ 

And therefore when we conjugate (presuming the Hamiltonian is real, there 
are some cases it isn’t  but we won’t worry about them now): 

𝜕Ψ∗

𝜕𝑡
=

𝑖

ℏ
𝐻Ψ∗ 

(where we used the fact that when we multiply two complex numbers, the 
conjugate of the product is the product of the conjugate – and here one of 
the complex numbers is −𝑖 so its conjugate is 𝑖). 

Inserting these two “blue” equations into the expression for 
ௗ

ௗ௧
𝑄(𝑡) gives: 

𝑑

𝑑𝑡
𝑄(𝑡) = −

𝑖

ℏ
න Ψ(𝑥, 𝑡)൫𝐻Ψ∗(𝑥, 𝑡)൯𝑑𝑥 +

𝑖

ℏ
න Ψ∗(𝑥, 𝑡)(𝐻Ψ(𝑥, 𝑡))𝑑𝑥 

and changing the order gives 

𝑑

𝑑𝑡
𝑄(𝑡) =

𝑖

ℏ
൬න Ψ∗(𝑥, 𝑡)𝐻Ψ(𝑥, 𝑡)𝑑𝑥 − න Ψ(𝑥, 𝑡)𝐻Ψ∗(𝑥, 𝑡)𝑑𝑥 ൰ 

I claim that the term in parentheses is zero.  The Hamiltonians we are 
usually dealing with are either a local potential or a second derivative.  For 
the local potential this is simple: 

න Ψ∗(𝑥, 𝑡)𝑉(𝑥)Ψ(𝑥, 𝑡)𝑑𝑥 − න Ψ(𝑥, 𝑡)𝑉(𝑥)Ψ∗(𝑥, 𝑡)𝑑𝑥 = 0 

For the 2nd derivative (kinetic) term, −
ℏమ

ଶெ

பమ

డ௫మ
 this is slightly more 

complicated, but is still true 

න Ψ∗(𝑥, 𝑡)
∂ଶ

𝜕𝑥ଶ
Ψ(𝑥, 𝑡)𝑑𝑥 − න ൭

∂ଶ

𝜕𝑥ଶ
Ψ∗(𝑥, 𝑡)൱ Ψ(𝑥, 𝑡)𝑑𝑥 = 0 

as you can show by integration by parts. 

Therefore, to conclude, the “green” equation above is zero, so 𝑄(𝑡) is 
conserved, so ∫ 𝑃(𝑥, 𝑡)𝑑𝑥 is conserved, so if initially it is 1 (as it should be) 
it remains 1. 
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2nd Norm conservation Proof: Expansion in eigenstates 

To warm up on the other proof, let’s prove first that if we expand the 
wavefunction and the sum of the abs-squared expansion coefficients is 1, 
the wavefunction is normalized: 

Ψ(𝑥, 𝑡) = ∑ 𝑎(𝑡)𝜙 (𝑥),     ∑ ห𝑎(𝑡)ห
ଶ

= 1     → ∫ Ψ∗(𝑥, 𝑡)Ψ(𝑥, 𝑡)𝑑𝑥 = 1   

To exemplify even that “warmup” proof, let’s take a specific case.  For 
example, say we prepared (experimentalists could do that now) the initial 
wavefunction to be an equal combination of the 1st and 2nd eigenstates 

Ψ(𝑥, 𝑡 = 0) =
1

√2
𝜙ଵ(𝑥) +

1

√2
𝜙ଶ(𝑥) 

(which is a specific case of the general proof, with 𝑎ଵ = 𝑎ଶ =
ଵ

√ଶ
, 𝑎ଷ = 𝑎ସ =

⋯ = 0 ). 

First, let’s see that this combination is normalized, like a wavefunction 
should be: 

න Ψ(𝑥, 𝑡 = 0)∗Ψ(𝑥, 𝑡 = 0)𝑑𝑥 = 

න ൭
1

√2
𝜙ଵ(𝑥) +

1

√2
𝜙ଶ(𝑥)൱

∗

൭
1

√2
𝜙ଵ(𝑥) +

1

√2
𝜙ଶ(𝑥)൱ 𝑑𝑥 

=
1

2
න൫𝜙ଵ(𝑥) + 𝜙ଶ(𝑥)൯

∗
൫𝜙ଵ(𝑥) + 𝜙ଶ(𝑥)൯𝑑𝑥 

=
1

2
൬න 𝜙ଵ

∗(𝑥)𝜙ଵ(𝑥)𝑑𝑥 + න 𝜙ଵ
∗(𝑥)𝜙ଶ(𝑥)𝑑𝑥 + න 𝜙ଶ

∗(𝑥)𝜙ଵ(𝑥)𝑑𝑥

+ න 𝜙ଶ
∗(𝑥)𝜙ଶ(𝑥)𝑑𝑥൰ =

1

2
(1 + 0 + 0 + 1) = 1   𝑄. 𝐸. 𝐷. 

Now we can prove our assumption (“green” equation above) for the general 
case.  Say 

Ψ(𝑥, 𝑡) =  𝑎𝜙



(𝑥) 
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and ∑ ห𝑎(𝑡)ห
ଶ

= 1 .  Then: 

න Ψ(𝑥, 𝑡)∗Ψ(𝑥, 𝑡)𝑑𝑥 = න ൮ 𝑎(𝑡𝜙



(𝑥)൲

∗

ቌ 𝑎(𝑡)𝜙



(𝑥)ቍ 𝑑𝑥 

=  𝑎(𝑡)𝑎
∗(𝑡) න 𝜙(𝑥)𝜙(𝑥)𝑑𝑥



=  𝑎
∗(𝑡)



𝑎(𝑡)𝛿 =  𝑎
∗(𝑡)



𝑎(𝑡)

= ห𝑎(𝑡)ห
ଶ



= 1   𝑄. 𝐸. 𝐷. 

So that proves the “green” equation above. 

Now note, that if we choose states we use to be the eigenstates (a different 
word for eigenfunctions) of 𝐻 then 

𝑎(𝑡) = exp ൬−
𝑖𝐸𝑡

ℏ
൰ 𝑎(0) 

I.e., 

Ψ(𝑥, 𝑡) =  𝑎(0)

௧

exp ൬−
𝑖𝐸𝑡

ℏ
൰ 𝜙(𝑥) 

i.e., the amplitude of each wavefunction is multiplied by a time-dependent 
phase exp൫−𝑖𝐸𝑡൯.  The proof of this “yellow” equation (expansion of the 
time-dependent wavefunction in terms of eigenstates) is not difficult, we 
just apply the Schrödinger equation: 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝑖ℏ

𝜕

𝜕𝑡
 𝑎(0)

௧

exp ൬−
𝑖𝐸𝑡

ℏ
൰ 𝜙(𝑥) 

𝑖ℏ
𝜕Ψ

𝜕𝑡
=  𝑎(0)

௧

൬−𝑖ℏ
𝑖𝐸

ℏ
൰ exp ൬−

𝑖𝐸𝑡

ℏ
൰ 𝜙(𝑥) 

𝑖ℏ
𝜕Ψ

𝜕𝑡
=  𝑎(0)

௧

𝐸 exp ൬−
𝑖𝐸𝑡

ℏ
൰ 𝜙(𝑥) 

And on the other hand,  
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𝐻Ψ = 𝐻  𝑎(0)

௧

exp ൬−
𝑖𝐸𝑡

ℏ
൰ 𝜙(𝑥) 

𝐻Ψ =   𝑎(0)

௧

exp ൬−
𝑖𝐸𝑡

ℏ
൰ 𝐻𝜙(𝑥) 

𝐻Ψ =  𝑎(0)

௧

exp ൬−
𝑖𝐸𝑡

ℏ
൰ 𝐸𝜙(𝑥) 

So the two new “blue” equations are equal so indeed 𝐻Ψ =
ℏడஏ

డ௧
.  Therefore 

indeed 𝑎(𝑡) = exp ቀ−
ாೕ௧

ℏ
ቁ 𝑎(0), and therefore (since the absolute value of 

exp ቀ−
ாೕ௧

ℏ
ቁ is one): 

ห𝑎(𝑡)ห = |𝑎(0)| 

Therefore, if ∑ ห𝑎ห
ଶ

 = 1 initially, it will be 1 at all times, and then, based on 
the “green” equation above, the norm of the wavefunction will be 
conserved. 

Now we can finally get to the simplest (yet quite rich) world of piecewise 
constant potentials: 
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Constant potential & piecewise-constant 
potentials. 

Introduction: relevance to chemistry 

Piecewise-constant potentials are both simple and contain a lot of the 
physics and chemistry of many relevant problems. 

For example, a bowl-shaped potential: 

 

 

Describes the potential that electrons feel in a metal – a low value inside 
and a higher potential outside.  Similarly, a potential with a finite barrier, 

 

Describes pre-dissociation where a particle (electron or proton or a 
molecule) needs to “tunnel” through a barrier to leave. 

We’ll therefore devote some time to such potentials, as the math is either 
trivially or easily solvable and there’s a lot of science. 

Let’s warmup with the simplest math description.  

In a region where the potential is constant, 𝑉(𝑥) = 𝑉 = 𝑐𝑜𝑛𝑠𝑡.,  the solution 
of the time-intendent Schrödinger equation  

𝐻𝜓 = 𝐸𝜓 

i.e., of: 

−
ℏଶ

2𝑀

𝜕ଶ𝜓(𝑥)

𝜕𝑥ଶ
+ 𝑉𝜓(𝑥) = 𝐸𝜓(𝑥) 
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depends on whether 𝑉 < 𝐸  ror 𝑉 > 𝐸. 

Oscillating region 

For 𝑉 > 𝐸 we can write 𝜓 as an oscillating combination of sin and cos or of 
exp(ikx) and exp(-ikx) 

𝜓(𝑥) = 𝑎 cos 𝑘𝑥 + 𝑏 sin 𝑘𝑥 = 𝑐 exp(𝑖𝑘𝑥) + 𝑑 exp(−𝑖𝑘𝑥)      (for 𝑉 < 𝐸) 

where 𝑎, 𝑏, 𝑐, 𝑑 are constants, and I leave it up to you to find "𝑐" and "𝑑" 
here in terms of "𝑎" and “b”, and 

𝑘 =
𝑝

ℏ
 

and "𝑝" is the “local momentum”: 

𝑝 = ඥ2𝑀(𝐸 − 𝑉) . 

Proof: take, e.g., 𝜓(𝑥) = cos (𝑘𝑥)  

−
ℏଶ

2𝑀

𝜕ଶ𝜓(𝑥)

𝜕𝑥ଶ
= −

ℏଶ

2𝑀

𝜕ଶ cos(𝑘𝑥)

𝜕𝑥ଶ
=

ℏଶ𝑘ଶ

2𝑀
cos(𝑘𝑥) = (𝐸 − 𝑉)𝜓(𝑥)  𝑄. 𝐸. 𝐷. 

Tunneling region 

For 𝑉 > 𝐸 the w.f. is in the so-called tunneling region: 

𝜓(𝑥) = 𝛼 exp(−𝜅𝑥) + 𝛽 exp (𝜅𝑥)        𝑉 > 𝐸 

𝜅 =
ඥ2𝑀(𝐸 − 𝑉) 

ℏ
 

Boundary conditions: 

The discussion above makes it seem as if there’s always a solution to the 
Schrödinger equation.  But in reality some energies are allowed, some are 
not – this is a consequence of the boundary conditions.  Rather than detail 
it mathematically, we’ll consider some cases and details will emerge as we 
go along. 

EXAMPLES: 
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I. Flat potential (free particle): 

If 𝑉(𝑥) = 𝑉 = 𝑐𝑜𝑛𝑠𝑡 everywhere, then the solution must be (we use the exp 
functions, not cos and sin): 

𝜓(𝑥) = 𝑐 exp(𝑖𝑘𝑥) + 𝑑 exp(−𝑖𝑘𝑥) 

NOTE THAT the exp(𝑖𝑘𝑥) wave is “rightward propagating”, while the 
exp(−𝑖𝑘𝑥) wave is “leftward propagating”; to see it lets multiply by the time-
dependent phase factor: 

Ψ(𝑥, 𝑡) = exp ൬−𝑖𝑡
𝐸

ℏ
൰ 𝜓(𝑥) =  𝑐 exp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯ + 𝑑 exp൫−𝑖(𝑘𝑥 + 𝜔𝑡)൯,      

 𝜔 ≡
𝐸

ℏ
 

Note that the kx-ωt factor indicates that indeed the wave is rightward 
propagating (when the phase is, for example, 0, then when t increases x 
increases). 

Such a solution is feasible for ALL energies above V,  𝐸 > 𝑉.   

Uncertainty principle example: 

Note that these wavefunctions are “extended”, and have large amplitude 
everywhere. 

This is an example of the uncertainty principle (which we do not devote a 
lot of time to, but you should be aware of it):  

𝛿𝑥 ∗ 𝛿𝑝 >
ℏ

4
 

where 𝛿𝑥 is the uncertainty in position, etc. for 𝛿𝑝. 

 

Energy must be higher than the potential at least somewhere 

BTW, if the potential is flat everywhere, then a tunneling solution is not 
possible since  𝛼 exp(−𝜅𝑥) + 𝛽 exp (𝜅𝑥)  will explode at both positive and 
negative x (exp(𝜅𝑥) explodes at positive x, and exp (−𝜅𝑥) explodes at 
negative x). 
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This is an example of a principle which I won’t prove, that the energy needs 
to be higher than the potential in at least some region of space.  
(Classically, it must be of course higher than the potential everywhere the 
particle is; quantum mechanically the energy can be lower the potential 
somewhere, but not everywhere – see discussion below of semi-infinite 
well and infinite-well with a barrier inside) 

II. Infinite well 

The opposite case to an everywhere-flat potential is an infinite well, 

𝑉(𝑥) = 𝑉ଵ        for  0 < 𝑥 < 𝐿 

𝑉(𝑥) = ∞         for 𝑥 < 0  or   𝐿 < x 

Where 𝑉ଵ is some constant.   

Such a potential (in black) and the associated eigenvalues we’ll derive 
(blue) is shown below: 

 

We know from our initial discussion that in the flat region (between 0 and L) 
the wavefunction must be some combination of sin(𝑘𝑥) and cos (𝑘𝑥) for 
some k’s.   

But here we have also boundary conditions.  The wavefunction cannot live 
(i.e., is zero) in the regions of infinite potential, and it can be shown that it is 
always continuous, therefore, 

𝜓(𝑥 = 0) = 𝜓(𝑥 = 𝐿) = 0 
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The condition that 𝜓 is zero at the origin implies that it cannot have a 
“cos(kx)” term, i.e., it is of the form sin(𝑘𝑥).  The condition that it vanishes 
at 𝑥 = 𝐿 implies therefore that the 𝑘 values are discretized: 

𝑘 =
𝜋

𝐿
,
2𝜋

𝐿
,
3𝜋

𝐿
, … . =

𝜋

𝐿
𝑛       𝑛 = 1,2, …. 

since sin(𝑘 ∗ 𝐿) = sin ቀ
గ


∗ 𝑛 ∗ 𝐿ቁ = sin(𝑛𝜋) = 0. 

This is, BTW, exactly the same for waves in a violin or guitar, etc. 

Thus, the wavefunctions are proportional to sin(𝑘𝑥): 

𝜓(𝑥) = ඨ
2

𝐿
sin(𝑘𝑥) 

The proportionality constant ට
ଶ


 ensures that the wavefunctions are 

normalized: 

න|𝜓(𝑥)|ଶ𝑑𝑥 =
2

𝐿
න sinଶ(𝑘𝑥) 𝑑𝑥





 

But  

sinଶ 𝑦 =
1 − cos(2𝑦)

2
 

So 

න|𝜓(𝑥)|ଶ𝑑𝑥 =
2

𝐿
∗

1

2
∗ ቆන 𝑑𝑥





− න cos(2𝑘𝑥) 𝑑𝑥




ቇ =
1

𝐿
൬𝐿 +

1

2𝑘
sin(2𝑘𝐿)൰ 

But sin(2𝑘𝐿) = sin(2𝑛𝜋) = 0 so 

න|𝜓(𝑥)|ଶ𝑑𝑥 = 1 

 

BTW, we don’t even have to prove that the eigenstates are orthogonal 
(∫ 𝜙(𝑥)𝜙(𝑥)𝑑𝑥 = 0  if 𝑛 ≠ 𝑚), that comes automatically from the fact that 
these functions are eigenstates of 𝐻. 
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What about the eigenvalues?  Plugging to  

𝐻𝜓 = 𝐸𝜓 

It is easy to see (we’ve actually seen it earlier) that  

𝐸 =
ℏଶ

2𝑀
𝑘

ଶ + 𝑉ଵ 

i.e., in this case 

𝐸 =
ℏଶ𝜋ଶ

2𝑀𝐿ଶ
𝑛ଶ + 𝑉ଵ =       𝛾 + 𝑉ଵ, 4 𝛾 + 𝑉ଵ, 9 𝛾 + 𝑉ଵ …. 

𝛾 ≡
ℏଶ𝜋ଶ

2𝑀𝐿ଶ
 

Example: Say we approximate very roughly the potential in a 
semiconductor cluster as being flat, of size typically 5eV (i.e., the potential 
is about -5eV in the cluster).  Such clusters can be made at different sizes.  
Say we take a diameter of 𝐿 = 2nm = 20 Angstrom~38 bohr,  Of course, 
such cluster is 3D and we solved for 1D problems but let’s dare and apply 
what we learned. 

It turns out that for 𝑀 we should not take the electron mass since the mass 
is “modified” due to the interaction of an electron with all the other ones.  
The correct mass to take is the “effective mass”, which for Si is about  
0.19𝑚.  Then: 

𝛾 =
ℏଶ𝜋ଶ

2 ∗ 0.19𝑚 ∗ (40 𝑏𝑜ℎ𝑟)ଶ
 

Side note: Atomic units: 

The good news is that if we use atomic units, i.e., units where the 
fundamental energy unit is 1 Hartree (=27.2114 eV), the fundamental 
length is 1 bohr and the fundamental mass is 𝑚 (the mass of the electron), 
then in these units ℏ = 1.  (BTW, the fundamental time unit in atomic unit is 

ℏ

ு௧
= 2.4 ∗ 10ିଵ 𝑠 = 0.024 fs ) 

 

Therefore, we can calculate 𝛾 in atomic units, so 
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𝛾 = 1 ∗
𝜋ଶ

2 ∗ 0.19 ∗ 1 ∗ (40ଶ)
= 0.018 

This 𝛾 has energy units, i.e.,  

𝛾 = 0.018 Hartree 

= 0.018 ∗ 27 eV~0.48eV~0.5eV 

So we’ll expect that the energy levels will be about 

𝐸 = 𝑉 + 0.5eV ∗ 𝑛ଶ,    𝑛 = 1,2,3 … 

i.e., (𝑉 = −5eV): 

𝐸ଵ = −4.5eV,   

𝐸ଶ = −5 + 4 ∗ 0.5 = −3eV,  

    𝐸ଷ = −5 + 9 ∗ 0.5eV = −0.5eV,    etc 

Obviously, already by the 3rd level we really cannot expect these energy 
levels to be accurate since the quantum dot is not an infinite well but is a 
finite well, of depth 5eV, as mentioned (close to the picture in page 63), but 
for the lowest two levels it should be more or less OK (at most in the right 
ballpark, since we used 1D rather than 3D). 

So for example if we de-excite an electron from 𝑛 = 2 to 𝑛 = 1 we expect 
that the energy difference will be 1.5eV.  That means that the photon will 
have an optical frequency, and a red color (or near IR).1 

Our whole derivation was of course not completely quantitative, i.e., we are 
probably wrong by a factor of ~2, since a quantum dot is 3D; but it does 
teach us that quantum dots with different diameters will emit at different 
wavelengths, i.e., will have different colors.   

                                      
1 This is because red photons, with wavelength of 700nm, have a 

frequency of 𝜈 =


ఒ
=

ଷ∗ଵఴౣ

౩

∗ଵషవ୫
= 4.3 ∗ 10ଵସHz  and therefore, since ℎ =

4.13 ∗ 10ିଵହeV ∗ Hz, an energy of ℎ𝜈 = 1.8eV;  purple photons with 𝜆 =

400 nm will have an energy that 7/4 times higher, i.e., 3eV. 
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Such dots actually find much use now in LED-replacement type TV’s and 
much of the achievements in that field are based on an initial work by Prof. 
Shimon Weiss (from our department!) and his colleagues in the late 1990’s 
and early 2000’s. 

 END OF EXAMPLE.  

Wavepackets in an infinite well and recurrences. 

Interesting things happen when we consider functions that are originally a 
combination of eigenstates.  Such states are called “Wavepackets” 

Recall that we proved in the earlier chapter that the norm of such 
wavepackets is conserved.  But the wavepackets themselves will change in 
time, sloshing back and forth. 

Let’s start in a combination  

Ψ(𝑥, 𝑡 = 0) =
1

√2
𝜙ଵ +

1

√2
𝜙ଶ 

and let’s assume for simplicity that the well-range is 1, i.e., 𝐿 = 1 (simplifies 
the math below).  Then: 

Ψ(𝑥, 𝑡 = 0) =
1

√2
√2 sin(𝜋𝑥) +

1

√2
√2 sin(2𝜋𝑥) 

i.e., 

Ψ(𝑥, 𝑡 = 0) = sin(𝜋𝑥) + sin(2𝜋𝑥) 

I plot this wavepacket  below:
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You notice that it is mostly on one side (left), as is even more evident when 
we plot the density associated with it, |Ψ(𝑥, 𝑡 = 0)|ଶ 

 

 

Now let’s see what happens are a time 𝑡 = ℏ
గ

ଶாభ
.  Then,  

exp ൬−
𝑖𝐸ଵ𝑡

ℏ
൰ = exp ቌ−

𝑖ℏ
𝜋

2𝐸ଵ
𝐸ଵ

ℏ
 ቍ = exp ൬−

𝑖𝜋

2
൰ = −𝑖 

While, since in our case 𝐸ଶ = 4𝐸ଵ 

exp ൬−
𝑖𝐸ଶ𝑡

ℏ
൰ = exp ൬−4

𝑖𝐸ଵ𝑡

ℏ
൰ = exp(−2𝑖𝜋) = 1. 

 So at that time 

Ψ ൬𝑥, 𝑡 = ℏ
𝜋

2𝐸ଵ
൰ = −𝑖 sin(𝜋𝑥) + sin(2𝜋𝑥) 

So the real part of the wavefunction is essentially (up to sqrt(2)) 𝜙ଶ(𝑥) and 
the imaginary part is −𝜙ଵ(𝑥)).   The density of that wavefunction is then 

ฬΨ ൬𝑥, 𝑡 = ℏ
𝜋

2𝐸ଵ
൰ฬ

ଶ

= sinଶ(𝜋𝑥) + sinଶ(2𝜋𝑥) 

And is plotted below; it is symmetric, the wavefunction “spread” to the 
whole well equally on the left and right: 
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Finally, at 𝑡 = ℏ
గ

ாభ
  (i.e., twice the previous time), the wavefunction sloshed 

all the way to the right, i.e., is a mirror image of the initial wavefunction, 
since 

exp ൬−
𝑖𝐸ଵ𝑡

ℏ
൰ = exp(−𝑖𝜋) = −1 

exp ൬−
𝑖𝐸ଶ𝑡

ℏ
൰ = exp(−4𝜋𝑖) = 1 

So 

Ψ ൬𝑥, 𝑡 = ℏ
𝜋

𝐸ଵ
൰ = −sin(𝜋𝑥) + sin(2𝜋𝑥) 

   

i.e., the wavefunction looks like: 
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And if we plot its negative, you’ll see that it is the same wavefunction 
initially, except for the mirror image: 

 

 

In conclusion: this simple example has shown us how a general 
wavepacket sloshes back and forth in time! 

 

HALF INFINITE WELL: 

The last case we’ll consider is the half-infinite well 
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i.e., 

𝑉(𝑥) = 

∞           𝑥 < 0 

𝑉ଵ     0 < 𝑥 < 𝐿 

𝑉ଶ           𝐿 < 𝑥 

(where of course 𝑉ଵ < 𝑉ଶ) 

We know that again 𝜓(𝑥 = 0) = 0 since the w.f. is zero in the infinite 
potential region.  Therefore, for the well region 

𝜓(𝑥) = 𝑎 sin(𝑘ଵ𝑥)      0 < 𝑥 < 𝐿 

where 𝑎 is some constant, and 𝑘ଵ =
భ

ℏ
,    𝑝ଵ = ඥ2𝑀(𝐸 − 𝑉ଵ) 

What about the region to the right of 𝑥 = 𝐿?  For that we need to separate  
two cases (see figure below) 
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(i)    𝐸 < 𝑉ଶ  (and of course always 𝐸 > 𝑉ଵ, since we learned that the energy 
must be higher the potential at least somewhere) 

Then, we know that  

𝜓(𝑥) = 𝛽exp (−𝜅ଶ𝑥)    𝑥 > 𝐿 

𝜅ଶ =
ඥ2𝑀(𝑉ଶ − 𝐸)

ℏ
 

How to determine E? The idea is quite simple.  It turns out that even though 
the potential is discontinuous at 𝑥 = 𝐿, the wavefunction and its derivative 
are both continuous at 𝑥 = 𝐿  (formally, the derivative is continuous since 
the potential is not infinite on either side; this is in contrast to 𝑥 = 0 where 
the potential is infinite on the left so the derivative is not continuous at 𝑥 =

0). 

The wavefunction continuity at 𝑥 = 𝐿  means that 

𝑎 sin(𝑘ଵ𝑥) = 𝑏 exp(−𝜅ଶ𝑥)      for  𝑥 = 𝐿 

i.e., 

𝑎 sin(𝑘ଵ𝐿) = 𝑏 exp (−𝜅ଶ𝐿) 

And the continuity of the derivative means that 

𝑑

𝑑𝑥
𝑎 sin(𝑘ଵ𝑥) =

𝑑

𝑑𝑥
𝑏 exp(−𝜅ଶ𝑥)      for 𝑥 = 𝐿 

i.e., 
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𝑎 𝑘ଵcos(𝑘ଵ𝐿) = −𝜅ଶ exp(−𝜅ଶ𝐿) 

By dividing both “blue” equations by each other (LHS by LHS, and RHS by 
RHS) we get: 

𝑘ଵcot(𝑘ଵ𝐿) = −𝜅ଶ 

Note that for a given system, i.e., for a given 𝑀, 𝐿, 𝑉ଵ and 𝑉ଶ, the only 
unknown in both sides of the equation is the energy 𝐸  (once we know the 
energy we can determine 𝑘ଵ and 𝜅ଶ) so in principle we can just plot the 
LHS as a function of energy and the RHS too; then: 

The values of energy where there will agreement, i.e., the eigenvalues, will 
be those where the LHS and RHS of the yellow equation match! 

Exercise (at home);  consider an electron (𝑀 = 𝑀௧ = 1 in atomic 
units) in a  well of depth   

𝑉ଵ = −8.68𝑒𝑉~ − 0. 32 𝐻𝑎𝑟𝑡𝑟𝑒𝑒,  

and 𝑉ଶ = 0, and a well length of 𝐿 =5.3Angstrom≃ 10 bohr.  Plot (e.g., 
using excel or Wolfram Alpha online) the RHS and left hand side of the 
yellow equation above and use them to determine the numerical values of 
the eigenvalues that are below 𝑉ଶ, i.e., below 0.  How many such 
eigenvalues are there?  Of course use atomic units in your calculation to 
simplify them. 

Physical relevance. 

The case we just considered is physically kind of similar to the scanning 
tunneling microscope.  In the microscope, you can imagine that we put a 
probe on the x-axis far to the right of 𝐿, i.e., where the wavefunction is 
deeply tunneling.  A probe of such wavefunction is in the figure below 
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Where the red arrow points to a position where we measure the probability 
to find an electron. (In practice we will measure the current of the electrons, 
when we inject them from the left, but the idea is similar). 

The probability to find an electron at a point “x” where the arrow is, i.e., to 
the right of 𝑥 = 𝐿, is  

𝑃(𝑥) = |𝜓(𝑥)|ଶ = |𝑏|ଶ exp(−2𝑥𝜅ଶ) 

Let’s see how much the probability falls when we increase 𝑥 by 1 angstrom, 
i.e., by 1.9 bohr.  Since 𝑃(𝑥) falls exponentially with x, then clearly P will fall 
by 

𝑃(𝑥 + 1𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚)

𝑃(𝑥)
 

=
|𝑏|ଶ exp(−2(𝑥 + 1.9 𝑏𝑜ℎ𝑟 )𝜅ଶ)

|𝑏|ଶ exp(−2𝑥𝜅ଶ)
 

= exp(−2 ∗ 1.9𝑏𝑜ℎ𝑟 ∗ 𝜅ଶ) 

Now if we assume that 𝑉ଶ − 𝐸~ 4eV~0.15 Hartree (a typical number for how 
much the energy of the state is lower than the outside potential); also, for 
this purpose, use the mass of an electron, i.e., ignore the effects that other 
electrons have on its mass – which is OK since we consider how does the 
electron tunnel out in a region where there are few other electrons.  Then 



82 
 

𝜅ଶ = ඥ2𝑀(𝑉ଶ − 𝐸) = ඥ2 ∗ 𝑚 ∗ 0.15Hartree  

Again, in atomic units Hartree is 1 and 𝑚 = 1, so 

𝜅ଶ = √2 ∗ 0.15 = √0.3~0.55 

Thus (all units fall out when we use atomic units consistently) 

𝑃(𝑥 + 1𝐴𝑛𝑔𝑠𝑡𝑟𝑜𝑚)

𝑃(𝑥)
~ exp(−2 ∗ 1.9 ∗ 0.55) = 0.12 

Thus, the probability falls off steeply with distance.   

This is the basis of the STM (scanning tunneling microscope): (see 
Wikipedia picture below): 

 

A feedback loop is set to point a needle at a fixed distance (typically 5 
angstrom or so) above a surface: 

When the needle is not at the right distance, there will be too much 
current (if it is closer than the desired 5 angstrom) or too little (if it is 
too far).   

The needle position is recorded exactly, which means that we know 
exactly the height of the surface. 

BTW, the idea for STM floated around for many years, but nobody took it 
seriously since nobody thought it could work.  But in the 80’s Gerd Binnig 
and Heinrich Rohrer (at IBM Zürich) tried and made it work, and the STM 
(and its many analogs) became the main tool for nanostudies henceforth. 
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Now we turn to the other case: 

(ii) 𝐸 > 𝑉ଶ 

In that case the wavefunction on the right is 𝑏 sin(𝑘ଶ𝑥) + 𝑐 cos (𝑘ଶ𝑥) where 
you should be clear by now what’s 𝑘ଶ. Now every energy is allowed (that’s 
the blue strip in the figure, extending to all energies). The coefficients 𝑎, 𝑏, 𝑐 
are again related by the continuity of the wavefunction and its derivative, 
but we won’t get into that.  BTW, such case is called “scattering”, and there 
are interesting ramifications of the existence of the well. 

Below we show one example – you see that the w.f. oscillates much in the 
left region (where the kinetic energy is higher since the potential is deeper) 
and is less oscillating and of higher amplitude in the right region.  The w.f. 
and its derivative are continuous along the border point (at x=L) 

 

 

By the way, the physical reason that the w.f. has a lower amplitude in the 
region where it oscillates more is something called “conservation of flux”.  
We won’t go into that, but it is the same as a freeway motion – in a region 
where the traffic is faster the density of cars is smaller. 

BTW the same thing is responsible for the bigger devastation from 
earthquake in sandy lands (like Santa-Monica ) than in mountainous 
regions – the earthquake wave is much faster in the granite of the 
mountains than in the sandy regions, so it has a lower amplitude in the 
mountains (less devastation).  Luckily, much of UCLA is on bedrock… 
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OTHER EXAMPLES:   

There are so many other examples and aspects of the 1D piecewise-
constant potentials that we could have spent the whole course on them.  I 
therefore just, for conclusion, quickly draw two examples without too much 
discussion. 

Splitting in Finite Barrier,  

 

 

 

The black lines show an infinite well potential with a barrier inside.  The 
blue lines indicate typical energy diagram. 

You notice that the lowest two state in this diagram are almost degenerate; 
as chemists we understand that they correspond to approximately a 
symmetric and antisymmetric combinations of the lowest eigenstates 
in each well (see below for the lowest two eigenstates, in red): 
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Symmetric(lowest energy) 

 

And: shown below, antisymmetric combination, slightly higher energy 

 

The energy splitting can be shown to be, in the limit that the barrier is high, 
proportional to the tunneling matrix element, i.e., 

exp(−𝜅 𝐴) 

where 𝐴 is the width of the barrier, 𝜅~
ଵ

ℏ
ඥ2𝑀(𝑉 − 𝐸), and I introduced the 

barrier height, and the energy of the ground state in each well.  We’ll 
hopefully have a chance to discuss this type of perturbation theory (the 
perturbation here is that there is a finite barrier between the two wells, 
instead of an infinite barrier) at the end of the course. 

Finally: 

Transmission in a lattice with periodicity: 

A very important case is potential with periodic perturbations 
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It turns out that the splittings we saw in the case of a single barrier become 
now energy bands  (allowed energy ranges are denoted in blue below): 

 

 

I.e., if the coupling between the wells is not large we’ll see a whole range of 
allowed energy which will not be too wide (its width is essentially the 
coupling between two adjacent wells).  If you take classes on solid state 
chemistry or physics you’ll see more of that. 

 

Epilogue: now that we finish our too-short discussion of piecewise 
constant potentials, we have two directions: the Harmonic Oscillator (HO), 
and 3D potential (with an eye to the Hydrogen atom).  We’ll start with the 
HO, as the tools we’ll get there (raising and lowering operators) will be 
invaluable for 3D, i.e., for the discussion of S, P, D , etc. states in 3D.   
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Harmonic Oscillator 

Harmonic oscillator (HO) is an ideal spring where the force is proportional 
to the deviation from equilibrium: 

𝐹𝑜𝑟𝑐𝑒 = −𝜅 ∗ (𝑥 − 𝑥) 

 (This 𝜅 has no relation to the 𝜅 in tunneling).  HO’s are extremely important 
since they are, for both classical and quantum mechanics, the main 
problem that’s exactly solvable in many dimensions.   

I.e., a general system of coupled harmonic oscillators can be converted (if 
the coupling is of certain form, called linear coupling) to a set of separable 
harmonic oscillators, each of which can be solved independently. 

Chemical dynamics, e.g. the dynamics of the motion of atoms in a molecule 
or in solution, is often based on describing them the vibrations as 
oscillators. 

Here we’ll therefore learn to solve a single oscillator, and then later we may 
if we have time briefly show how to solve in more dimensions or for more 
particles 

Another very important feature of harmonic oscillators is that, if they are not 
damped (or if the damping is very weak), they will respond mostly to forces 
with a frequency 𝜔 which is the same as the intrinsic frequency of the 
oscillator,  

𝜔 = ට
𝜅

𝑀
 

To see that, think what happens when you push your young nephew/niece 
on a swing.  If you apply the pushes on the spring at the “right rate”, i.e., 
the same frequency as the “internal frequency” of the occupied-swing, then 
the swing will oscillate higher and higher; at other frequencies (too fast or 
too slow) it will barely move. 

This 𝜔 ~𝜔 requirement is true in both classical mechanics and 
quantum mechanics.  In fact, there’s a lot of similarity between classical 
and quantum oscillators.  The differences, which you learned about in 20A, 
are that 
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 There is a zero-point energy for quantum oscillators 

𝐸 =
1

2
ℎ𝜈 =

1

2
ℏ𝜔 

 The energies are equispaced 

𝐸 = ൬𝑛 +
1

2
൰ ℏ𝜔,     𝑖. 𝑒. ,   𝐸 =

1

2
ℏ𝜔,  𝐸ଵ =

3

2
ℏ𝜔, …. 

 so 

𝐸 − 𝐸ିଵ = ℏ𝜔 
In fact, this last property makes a lot of sense; if we act on a 
Harmonic oscillator with light of frequency 𝜔  (we use the 
subscript in 𝜔   since light is really an electromagnetic wave, i.e. it 
applies a force)  then a photon will be absorbed or emitted, i.e., the 
oscillator at a level "𝑛" will respond, only if 𝐸 − 𝐸ିଵ = ℏ𝜔 ,  i.e., 
only if 𝜔 = 𝜔, like we mentioned.  (We’ll see later that for HO, 
radiation usually can only cause jumps of one level up or down). 
 

 

So let’s solve HO’s quantally. 

Formally the potential energy of a spring is 
ଵ

ଶ
𝜅(𝑥 − 𝑥)ଶ.  Then the 

Hamiltonian is 

𝐻 = 𝐾𝑖𝑛𝑒𝑡𝑖𝑐 + 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = −
ℏଶ

2𝑀

𝑑ଶ

𝑑𝑥ଶ
+

1

2
𝜅(𝑥 − 𝑥)ଶ 

(where I use 𝑑𝑥  and not 𝜕𝑥 since I only use now 1D, and we solve the 
time-independent Schrödinger equation, so there are no other variables 
such as time). 
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So formally we need to solve 

𝐻𝜙(𝑥) = 𝐸𝜙(𝑥) 

i.e., 

−
ℏଶ

2𝑀

𝑑ଶ𝜙(𝑥)

𝑑𝑥ଶ
+

1

2
𝜅𝑥ଶ𝜙(𝑥) − 𝐸𝜙(𝑥) = 0 

The first order of business is to “absorb” as much as possible all the 

constants.  So, recalling that 𝜔 = ට


ெ
, we get 𝜅 = 𝑀𝜔ଶ.  Inserting to H we 

get 

𝐻 = −
ℏଶ

2𝑀

𝑑ଶ

𝑑𝑥ଶ
+

1

2
𝑀𝜔ଶ(𝑥 − 𝑥)ଶ 

Let’s divide and multiply by ℏ𝜔 and pullting the ½ we get 

𝐻 =
ℏ𝜔

2
ቆ−

ℏ

𝑀𝜔

𝑑ଶ

𝑑𝑥ଶ
+

𝑀𝜔

ℏ
(𝑥 − 𝑥)ଶቇ 

Note that we have the factor of 
ெఠ

ℏ
 in front of (𝑥 − 𝑥)ଶ and the inverse of 

that factor in front of the 2nd derivative.  So all we need to do now is define 
a new dimensionless variable 

𝑞 ≡ ඨ
𝑀𝜔

ℏ
 (𝑥 − 𝑥) 

By the way, it is better to define now the “natural width” of the oscillator 

𝜎 ≡
1

ට𝑀𝜔
ℏ

= ඨ
ℏ

𝑀𝜔
 

So we get that 𝑞 is the dimensionless length 

𝑞 =
𝑥

𝜎
 

In terms of this variable, the kinetic energy term in the parentheses is 
simple 



90 
 

ℏ

𝑀𝜔

𝑑ଶ

𝑑𝑥ଶ
=

𝑑ଶ

𝑑𝑞ଶ
 

So the overall Hamiltonian is  

𝐻 =
ℏ𝜔

2
ቆ−

𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶቇ 

Thus, we need to solve 

𝐻𝜙 =
ℏ𝜔

2
ቆ−

𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶቇ 𝜙 = 𝐸𝜙 

At this stage we need to make a choice: 

 We could open a differential equation book and look for the solution 
of this yellow highlighted equation, or worse yet, even do it ourselves, 
with methods of differential equations.  We’ll get that the solutions are 
something called “Hermite Polynomials”.  This is the usual thing to do 
at 113A, but is both nauseating and non-general, so you’ll forget the 
details (like I did) immediately after the quarter is done. 
 

 Instead, we’ll use the more abstract but very elegant, powerful and 
general approach of Heisenberg with raising and lowering operators.   
 

Raising and Lowering Operators for Harmonic Oscillators 

The essence of the proof is simple and beautiful.  We’ll show two 
seemingly contradictory things:  

 Any energy eigenvalue 𝐸 (i.e., eigenvalue of the H.O. Hamiltonian) 
must be positive. 
 

 Given any eigenfunction 𝜙ா(𝑥) with an associated eigenvalue 𝐸 we’ll 
show that we can make a new eigenfunction  𝜙ாିℏఠ(𝑥) with an 
energy that’s lower by ℏ𝜔.   
This new eigenfunction will be obtained by applying a lowering 
operator: 
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𝑎𝜙ா ∝ 𝜙ாିℏఠ 
i.e., when we apply the lowering operator we get a function that is an 
eigenfunction of 𝐻 but with an eigenvalue lower from 𝐸 by ℏ𝜔. 
 
(Incidentally, this this lowering operator is actually very simple -- it is 

just proportional to  𝑞 +
ௗ

ௗ
 ). 

Do you see the problem?  
Say we had an eigenfunction with an associated eigenvalue that equals, 
say, 13.72 ℏ𝜔.   

Then we’ll apply the lowering operator once, get an eigenfunction with an 
energy of  13.72 ℏ𝜔 − ℏ𝜔 = 12.72ℏ𝜔. 

Then apply the lowering operator once more, get an eigenfunction with an 
energy of 11.72ℏ𝜔 

Etc.… apply it 11 more times and get an eigenfunction with an eigenvalue  
0.72ℏ𝜔.   And now the problem:  Apply it once more, and get an 
eigenvalue 0.72 ℏ𝜔 − ℏ𝜔 =  −0.28ℏ𝜔…i.e., a negative eigenvalue! 

Thus the “ladder” of eigenvalues (see below) extends to negative 
eigenvalues, which we just said is impossible!  
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So what’s the solution?  Well it is the “proportionality” factor in 𝑎𝜙ா ∝

𝜙ாିℏఠ. 

I.e., when we apply the lowering operator we get an unnormalized function, 

which we need to normalize.  But for one value of 𝑬, i.e., 𝐸 =
ℏఠ

ଶ
  it turns 

out that we could not normalize.  I.e., when we apply the lowering operator 

on a function with 𝐸 =
ℏఠ

ଶ
 then we get 0! 

𝑎𝜙
ாୀ

ℏఠ
ଶ

= 0 ! 

 Thus, the ladder stops (which it must!), if and only if, our energy is 

𝐸 =
ℏఠ

ଶ
, or of course 𝐸 = 1.5 ℏ𝜔, or 𝐸 = 2.5ℏ𝜔 ….(see picture above). 

Thus the energy has to be of this form, i.e., 

𝐸 =
1

2
ℏ𝜔,

3

2
ℏ𝜔,

5

2
ℏ𝜔 ….  

i.e., counting (due to historical notation) the eigenstates from 𝑛 = 0 (not 
starting from 𝑛 = 1 as we usually do), the energy must be of the form 

𝐸 = ൬𝑛 +
1

2
൰ ℏ𝜔,       𝑛 = 0,1,2, …. 

and of course the ground-state (here 𝑛 = 0) has a “zero-point” energy of 
ℏఠ

ଶ
 

as you learned in 20A/20B. 

That’s it with the “big picture!” 

Now we need to prove the two “yellow” assertions above. 

 First assertion: the energy needs to be positive. 

Proof: 

Given a normalized 𝜙ா(𝑞)  such that  

𝐻𝜙ா(𝑞) = 𝐸 𝜙ா(𝑞) 

Multiply by 𝜙ா
∗ (𝑞) and integrate 

න 𝜙ா
∗ (𝑞) 𝐻𝜙ா(𝑞) 𝑑𝑞 = 𝐸 න 𝜙ா

∗ (𝑞) 𝜙ா(𝑞) 𝑑𝑞 
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The RHS is simple, 𝐸 ∫ 𝜙ா
∗ (𝑞) 𝜙ா(𝑞) 𝑑𝑞 = 𝐸 ∫|𝜙ா(𝑞)|ଶ𝑑𝑞 = 𝐸 (since 𝜙ா(𝑞) 

is normalized, so ∫|𝜙ா(𝑞)|ଶ𝑑𝑞 = 1), so 

න 𝜙ா
∗ (𝑞) 𝐻𝜙ா(𝑞) 𝑑𝑞 = 𝐸 

The LHS of the gray equation is  

න 𝜙ா
∗ (𝑞) 𝐻𝜙ா(𝑞) 𝑑𝑞 = න 𝜙ா

∗ (𝑞)
ℏ𝜔

2
ቆ−

𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶቇ 𝜙ா(𝑞) 𝑑𝑞 

i.e., 

න 𝜙ா
∗ (𝑞) 𝐻𝜙ா(𝑞) 𝑑𝑞 =

ℏ𝜔

2
ቆ− න 𝜙ா

∗ (𝑞)
𝑑ଶ

𝑑𝑞ଶ
𝜙ா(𝑞) 𝑑𝑞 + න 𝜙ா

∗ (𝑞)𝑞ଶ𝜙ா(𝑞) 𝑑𝑞 ቇ 

The 2nd term on of this “green” RHS of the eq. is automatically positive 

න 𝜙ா
∗ (𝑞)𝑞ଶ𝜙ா(𝑞) 𝑑𝑞 = න |𝜙ா

∗ (𝑞)|𝑞ଶ 𝑑𝑞 > 0 

The 1st term on the RHS is also positive, as we can show by integration by 
parts, in the same way we did earlier for the kinetic energy 

− න 𝜙ா
∗ (𝑞)

𝑑ଶ

𝑑𝑞ଶ
𝜙ா(𝑞) 𝑑𝑞

= −[𝜙ா
∗ (𝑞)

𝑑

𝑑𝑞
𝜙ா(𝑞)]ୀିஶ

ୀஶ
  + න ቆ

𝑑𝜙ா(𝑞)

𝑑𝑞
ቇ

∗
𝑑𝜙ா(𝑞)

𝑑𝑞
 𝑑𝑞 

i.e., 

− න 𝜙ா
∗ (𝑞)

𝑑ଶ

𝑑𝑞ଶ
𝜙ா(𝑞) 𝑑𝑞 = 0 + න ቤ

𝑑𝜙ா(𝑞)

𝑑𝑞
ቤ

ଶ

 𝑑𝑞 > 0 

Taken together, we see that  

න 𝜙ா
∗ (𝑞) 𝐻𝜙ா(𝑞) 𝑑𝑞 > 0 

i.e., due to the “gray” equation above: 

𝐸 > 0,   𝑄. 𝐸. 𝐷 ! 
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(II) Rewriting the Hamiltonian as (almost) a product of raising 
and lowering operators 

Now we’re ready for the ladder assertion, i.e., given 𝜙ா then we’ll show that 
𝑎𝜙ா  is an eigenstate with eigenvaluye 𝐸 − ℏ𝜔  (and we’ll show what 𝑎  is, of 
course). 

The key will be to try to write the Hamiltonian as (almost) a product 
instead of a sum of two terms  

Actually it will be a product of two operators plus a constant, which 
will turn out to be the zero-point energy! 

To start, look again at 

𝐻 =
ℏ𝜔

2
ቆ−

𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶቇ 

Now if these were not operators but numbers, this will resemble 
something like 

−𝛼ଶ + 𝛽ଶ 

where 𝛼 and 𝛽 are numbers.  And we can write 

−𝛼ଶ + 𝛽ଶ = (𝛽 − 𝛼)(𝛽 + 𝛼) 

Let’s try to write 𝐻 similarly.  What’s  

൬−
𝑑

𝑑𝑞
+ 𝑞൰ ൬

𝑑

𝑑𝑞
+ 𝑞൰ =? 

Well, expand: 

൬−
𝑑

𝑑𝑞
+ 𝑞൰ ൬

𝑑

𝑑𝑞
+ 𝑞൰ = −

𝑑

𝑑𝑞

𝑑

𝑑𝑞
+ 𝑞ଶ + 𝑞

𝑑

𝑑𝑞
−

𝑑

𝑑𝑞
𝑞 = −

𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶ + 𝑞,

𝑑

𝑑𝑞
൨ 

where we used 
ௗ

ௗ

ௗ

ௗ
=

ௗమ

ௗమ
  (derivative of derivative is 2nd derivative), and 

we introduced the commutator of the two operators 

[𝐴, 𝐵] ≡ 𝐴𝐵 − 𝐵𝐴 

which means that when acting on a function, 
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[𝐴, 𝐵]𝑓 ≡ 𝐴𝐵𝑓 − 𝐵𝐴𝑓 

Note: 

[𝐴, 𝐵] = −[𝐵, 𝐴] 

(proof: [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 = −(𝐵𝐴 − 𝐴𝐵) = −[𝐵, 𝐴] ). 

Let’s see here 

𝑞,
𝑑

𝑑𝑞
൨ = 𝑞

𝑑

𝑑𝑞
−

𝑑

𝑑𝑞
𝑞 

i.e., acting on a function 

𝑞,
𝑑

𝑑𝑞
൨ 𝑓 = ൬𝑞

𝑑

𝑑𝑞
−

𝑑

𝑑𝑞
𝑞൰ 𝑓 = 𝑞

𝑑

𝑑𝑞
𝑓 −

𝑑

𝑑𝑞
(𝑞𝑓) 

i.e., since 
ௗ

ௗ
(𝑞𝑓) =

ௗ

ௗ
𝑓 +

ௗ

ௗ
= 𝑓 + 𝑞

ௗ

ௗ
  

𝑞,
𝑑

𝑑𝑞
൨ 𝑓 = 𝑞

𝑑

𝑑𝑞
𝑓 − 𝑓 − 𝑞

𝑑

𝑑𝑞
𝑓 = −𝑞𝑓 

i.e., we get the simple and extremely important result 

𝑞,
𝑑

𝑑𝑞
൨ = −1 

or equivalently, 


𝑑

𝑑𝑞
, 𝑞൨ = 1 

NOTE:I am sure this is not trivial the 1st time you see it, so let’s 
concentrate again on one strange thing.  What’s, as an operator, 

𝑑

𝑑𝑞
𝑞 =? 

Well, formally it means that when acting on a function, 𝑓,  you first 
multiply by 𝑞 and then take the derivative of the whole thing 

𝑑

𝑑𝑞
𝑞𝑓 =

𝑑

𝑑𝑞
(𝑞𝑓) =

𝑑𝑞

𝑑𝑞
𝑓 +

𝑞𝑑𝑓

𝑑𝑞
= 𝑓 + 𝑞

𝑑𝑓

𝑑𝑞
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 END OF NOTE. 

Lowering and raising operators: 

Going back to our expansion 

൬−
𝑑

𝑑𝑞
+ 𝑞൰ ൬

𝑑

𝑑𝑞
+ 𝑞൰ = −

𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶ + 𝑞,

𝑑

𝑑𝑞
൨ = −

𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶ − 1 

and therefore: 

−
𝑑ଶ

𝑑𝑞ଶ
+ 𝑞ଶ = ൬−

𝑑

𝑑𝑞
+ 𝑞൰ ൬

𝑑

𝑑𝑞
+ 𝑞൰ + 1 

and therefore, recalling that 𝐻 =
ℏఠ

ଶ
ቀ−

ௗమ

ௗమ
+ 𝑞ଶቁ, we get: 

𝐻 = ℏ𝜔𝑎ା𝑎 +
ℏ𝜔

2
 

where we defined the lowering operator (a name to be justified later) 

𝑎 =
1

√2
൬

𝑑

𝑑𝑞
+ 𝑞൰ 

Note that 𝑎 is an operator; we usually reserve upper case letters for 
most operators, but for historical reason we use a lower case here. 

We also wrote 

𝑎ା =
1

√2
൬−

𝑑

𝑑𝑞
+ 𝑞൰ 

Actually, there is a reason we used the symbol 𝑎ା.  The plus-superscript 
stands for a Hermitian conjugate and we’ll prove that 𝑎ା is indeed the 
Hermitian conjugate of 𝑎.   

But first let’s define what a Hermitian conjugate (you’ll need to read the 
appendix first).  Formally, for any linear operator 𝐴 its Hermtian conjugate, 
𝐴ା, is defined as the operator such that for any two funcitons, 𝑓(𝑥) and 
𝑔(𝑥), 

න 𝑔∗𝐴ା𝑓 𝑑𝑥 ≡ ൬න 𝑓∗𝐴𝑔 𝑑𝑥 ൰
∗
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Of course, Hermitian operators (which we defined earlier) exactly those 
where 𝐴ା = 𝐴, i.e., ∫ 𝑔∗𝐴𝑓 𝑑𝑥 ≡ (∫ 𝑓∗𝐴ା𝑔 𝑑𝑥 )∗.   But a general operator 
need not be Hermitian. 

Here, specifically, 𝑎 is not Hermitian; let’s prove that indeed the last light-
blue equation is correct; indeed (and using 𝑞 rather than 𝑥) 

න 𝑓∗ 𝑎ା 𝑔  𝑑𝑞 ≡ ൬න 𝑔∗ 𝑎 𝑓   𝑑𝑞൰
∗

=
1

√2
൬න 𝑔∗   ൬

𝑑

𝑑𝑞
+ 𝑞൰ 𝑓  𝑑𝑞  ൰

∗

 

=
1

√2
൬න 𝑔∗

𝑑

𝑑𝑞
 𝑓 𝑑𝑞  ൰

∗

+
1

√2
൬න 𝑔∗𝑞 𝑓 𝑑𝑞  ൰

∗

 

which, using integration by parts, gives 

න 𝑓∗ 𝑎ା 𝑔  𝑑𝑞 =
1

√2
൬− න ൬

𝑑

𝑑𝑞
 𝑔∗൰ 𝑓 𝑑𝑞  ൰

∗

+
1

√2
൬න 𝑔∗𝑞 𝑓 𝑑𝑞  ൰

∗

 

i.e., 

න 𝑓∗ 𝑎ା 𝑔  𝑑𝑞 =
1

√2
൬න 𝑓∗   ൬−

𝑑

𝑑𝑞
+ 𝑞൰ 𝑔  𝑑𝑞  ൰

∗

 

i.e., indeed 

𝑎ା =
1

√2
 ൬−

𝑑

𝑑𝑞
+ 𝑞൰      

as we wrote earlier. 

Commutation relations 

First, let’s calculate the commutator of 𝑎, 𝑎ା: 

[𝑎, 𝑎ା] = 𝑎𝑎ା − 𝑎ା𝑎 =
1

2


𝑑

𝑑𝑞
+ 𝑞, −

𝑑

𝑑𝑞
+ 𝑞൨ 

It is easy to show that generally for any three operators 

[𝐴, 𝐵 + 𝐶] = [𝐴, 𝐵] + [𝐴, 𝐶] 

 proof:  

 [𝐴, 𝐵 + 𝐶] = 𝐴(𝐵 + 𝐶) −  (𝐵 + 𝐶)𝐴 = 𝐴𝐵 − 𝐵𝐴 + 𝐴𝐶 − 𝐶𝐴 = [𝐴, 𝐵] + [𝐴, 𝐶] 
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So applying these relations give: 

[𝑎, 𝑎ା] =
1

2
൬

𝑑

𝑑𝑞
, −

𝑑

𝑑𝑞
+ 𝑞൨ + 𝑞, −

𝑑

𝑑𝑞
+ 𝑞൨൰ 

but since [𝐴, 𝐴] = 0 for any operator, ቂ
ௗ

ௗ
, −

ௗ

ௗ
+ 𝑞ቃ = ቂ

ௗ

ௗ
, 𝑞ቃ, and similarly 

for the 2nd term, so 

[𝑎, 𝑎ା] =
1

2
൬

𝑑

𝑑𝑞
, 𝑞൨ + 𝑞, −

𝑑

𝑑𝑞
൨൰ 

And since ,   ቂ
ௗ

ௗ
, 𝑞ቃ = 1 , ቂ𝑞,

ௗ

ௗ
ቃ = −1 we get 

[𝑎, 𝑎ା] =
1

2
(1 + 1) 

[𝑎, 𝑎ା] = 1 

i.e., 

𝑎𝑎ା − 𝑎ା𝑎 = 1 

Let’s follow some conclusion of this commutation relation.  Specifically, 

we’ll soon need to calculate 

𝑎𝐻 − 𝐻𝑎 = [𝑎, 𝐻] 

which is  

[𝑎, 𝐻] = 𝑎, ℏ𝜔 ൬𝑎ା𝑎 +
1

2
൰൨ = ℏ𝜔 𝑎, 𝑎ା𝑎 +

1

2
൨ = ℏ𝜔[𝑎, 𝑎ା𝑎] 

but 

[𝑎, 𝑎ା𝑎] = 𝑎𝑎ା𝑎 − 𝑎ା𝑎𝑎 = (𝑎𝑎ା − 𝑎ା𝑎)𝑎 = [𝑎, 𝑎ା]𝑎 

i.e.,  

[𝑎, 𝑎ା𝑎] = 𝑎 

And therefore 

[𝑎, 𝐻] = ℏ𝜔𝑎 

Now we can show what we looked for all along: 
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Lowering operators lower the energy 

Let’s start with a function 𝜙ா fulfilling 

𝐻𝜙ா = 𝐸𝜙ா 

Now define a function (which is not necessarily normalized) 

𝑓 = 𝑎𝜙ா 

i.e., 

𝑓(𝑞) =
1

√2
൬

𝑑

𝑑𝑞
+ 𝑞൰ 𝜙ா(𝑞) =

1

√2

𝑑𝜙ா(𝑞)

𝑑𝑞
+

1

√2
𝑞𝜙ா(𝑞) 

What happens when we apply 𝑯 on this function? For this we’ll need a 
trivial property of commutators we’ll use often; i.e., for any two operators 

𝐴𝐵 = 𝐴𝐵 − 𝐵𝐴 + 𝐵𝐴 

i.e., 

𝐴𝐵 = [𝐴, 𝐵] + 𝐵𝐴 

Here this means specifically,  using what we learned ([𝐻, 𝑎] = −ℏ𝜔𝑎) we 
get that: 

𝐻𝑎 = [𝐻, 𝑎] + 𝑎𝐻 = −ℏ𝜔𝑎 + 𝑎𝐻 

i.e., 

𝐻𝑓 = 𝐻𝑎𝜙ா = (−ℏ𝜔𝑎 + 𝑎𝐻)𝜙ா = −ℏ𝜔𝑎𝜙ா + 𝑎𝐻𝜙ா 

i.e., 

𝐻𝑓 =  −ℏ𝜔𝑎𝜙ா + 𝑎𝐸𝜙ா = (𝐸 − ℏ𝜔)𝑎𝜙ா 

i.e., 

𝐻𝑓 = (𝐸 − ℏ𝜔)𝑓 

That’s what we looked for!  By applying the lowering operator on an 
eigenfunction, we got a new eigenfunction with a lower energy!  I.e., we 
proved that each eigenvalue gives indeed a “ladder” of lower energy 
eigenfunctions. 
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The only ingredient we need now is to prove that the ladder can stop 
indeed. 

I.e., we need to see when will applying 𝑎 give a function which is zero! 

i.e., we look for a solution of  

𝑎𝜙 = 0 

Where 𝐸 is the yet-unknown energy of this state 𝜙(𝑞).   

Amazingly, we don’t even need to solve this for 𝜙(𝑞) to get 𝐸 
(we will actually solve soon for how this wavefunction look, but interestingly 
we don’t need the solution to just get 𝐸)  

I.e., once we know that 𝑎𝜙 = 0  we can immediately get what 𝐸 is: 

That’s because we said that 𝜙ாబ
 is an eigenstate with energy 𝐸 

𝐻𝜙 = 𝐸𝜙 

But we said that  

𝐻 = ℏ𝜔 ൬𝑎ା𝑎 +
1

2
൰ 

So 

ℏ𝜔 ൬𝑎ା𝑎 +
1

2
൰ 𝜙 = 𝐸𝜙 

i.e., 

ℏ𝜔𝑎ା𝑎𝜙 +
ℏ𝜔

2
𝜙 = 𝐸𝜙 

But we said that 𝐸 is the energy such that 𝑎𝜙 = 0. So the 1st term on the 
LHS vanishes! 

i.e., 

0 +
ℏ𝜔

2
𝜙 = 𝐸𝜙 

i.e., 
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𝐸 =
ℏ𝜔

2
 

I.e., the energies are  

𝐸 =
ℏ𝜔

2
,    𝐸ଵ = 𝐸 + ℏ𝜔 =

3

2
ℏ𝜔, 𝐸ଶ =

5

2
ℏ𝜔, … 

i.e., 

𝐸 = ൬𝑛 +
1

2
൰ ℏ𝜔         𝑛 = 0,1,2, …. 

Note that we did all that without even knowing what 𝜙(𝑞) is!  I.e., the 
commutation relation gave us the energies! 

Now that we have the energies we could start solving for the 
wavefunctions. 

It turns out to be simplest to solve for 𝜙 directly from the fact that applying 
a lowering operator on it gives 0. 

I.e., we need to solve 

𝑎𝜙 = 0 

i.e., 

൬
𝑑

𝑑𝑞
+ 𝑞൰ 𝜙(𝑞) = 0 

i.e., 

𝑑𝜙

𝑑𝑞
= −𝑞𝜙 

It is easy to show (even by guessing) that the solution is  

𝜙(𝑞) = 𝑐𝑜𝑛𝑠𝑡 ∗ exp ቆ−
𝑞ଶ

2
ቇ 

where the constant is for normalization. 

Going back to our original coordinates, i.e., recalling that  

𝑞 ≡
𝑥 − 𝑥

𝜎
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and the natural width of the Hamiltonian is 

𝜎 = ඨ
ℏ

𝑀𝜔
 

we get that 

𝜙(𝑥) = 𝑐𝑜𝑛𝑠𝑡.∗ exp ቆ −
(𝑥 − 𝑥)ଶ

2𝜎ଶ
ቇ  

i.e., an harmonic oscillator has a natural width in its ground state. 

Now let’s calculate the: 

Higher lying states 

Now let’s use the raising operator, and prove that applying it on a state 

𝜙(𝑞) with energy 𝐸 = ቀ𝑛 +
ଵ

ଶ
ቁ ℏ𝜔 gives a state 𝑎ା𝜙 with energy 𝐸ାଵ =

ቀ(𝑛 + 1) +
ଵ

ଶ
ቁ ℏ𝜔,  

i.e., we’ll prove that 

𝜙ାଵ(𝑞) = 𝑎ା𝜙 

i.e., we need to prove 

𝐻𝑎ା𝜙 = (𝐸 + ℏ𝜔)𝜙 

For this, we’ll prove the commutation relation of 𝐻 with the raising operator, 
analogous to what we did for the lowering operator: 

[𝐻, 𝑎ା] = ℏ𝜔 ൬𝑎𝑎ା +
1

2
൰ , 𝑎ା൨ = ℏ𝜔[𝑎ା𝑎, 𝑎ା] = 

= ℏ𝜔(𝑎ା𝑎𝑎ା − 𝑎ା𝑎ା𝑎) = ℏ𝜔𝑎ା(𝑎𝑎ା − 𝑎ା𝑎) = ℏ𝜔𝑎ା[𝑎, 𝑎ା] 

 

And using again 

[𝑎, 𝑎ା] = 1 

We get  
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[𝐻, 𝑎ା] =  ℏ𝜔𝑎ା[𝑎, 𝑎ା] = ℏ𝜔𝑎ା 

This means that  

𝐻𝑎ା = [𝐻, 𝑎ା] + 𝑎ା𝐻 =  ℏ𝜔𝑎ା + 𝑎ା𝐻 = 𝑎ା(ℏ𝜔 + 𝐻) 

So  

𝐻𝑎ା𝜙 = 𝑎ା(ℏ𝜔 + 𝐻)𝜙 = 𝑎ା(ℏ𝜔 + 𝐸)𝜙 

i.e., 

𝐻𝑎ା𝜙 = (ℏ𝜔 + 𝐸)𝑎ା𝜙 

i.e., what we wanted to show, i.e., 

𝐻𝑎ା𝜙 = 𝐸ାଵ𝑎ା𝜙 

with  

𝐸ାଵ = 𝐸 + ℏ𝜔 

i.e., 𝒂 lowers the wavefunctions through the ladder, 𝒂ା raises them 
through the ladder! 

Note on Normalization: 

The states we get by applying repeatedly the raising operator are not 
normalized to unit norm. 

We could actually use operator algebra, very simply, to even get the correct 
normalization, but we won’t worry about it, and just recognize that applying 
the raising operator gives an unnormalized state at higher energy which we 
need to multiply by a constant to make into a normalized eigenstate. 

First few excited states: 

Let’s apply the raising operator. 

First, apply it once on 𝜙(𝑞) 

𝜙ଵ(𝑞) = 𝑐𝑜𝑛𝑠𝑡.∗ 𝑎ା𝜙(𝑞) = 𝑐𝑜𝑛𝑠𝑡.∗ ൬𝑞 −
𝑑

𝑑𝑞
൰ 𝜙(𝑞) 

𝜙ଵ(𝑞) = 𝑐𝑜𝑛𝑠𝑡.∗ ൬𝑞 −
𝑑

𝑑𝑞
൰ exp ቆ−

𝑞ଶ

2
ቇ 
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𝜙ଵ(𝑞) = 𝑐𝑜𝑛𝑠𝑡. ൭𝑞 exp ቆ−
𝑞ଶ

2
ቇ − ቀ−2 ∗

𝑞

2
ቁ ቆ−

𝑞ଶ

2
ቇ൱

= 𝑐𝑜𝑛𝑠𝑡.∗ 2 ∗ 𝑞 exp ቆ−
𝑞ଶ

2
ቇ   

and absorbing the “2” in the constant finally gives 

𝜙ଵ(𝑞) = 𝑐𝑜𝑛𝑠𝑡.∗ 𝑞 exp ቆ−
𝑞ଶ

2
ቇ 

Note that this function has a node – it is positive in some area of space, 
and negative in another.  This is a general property – since ∫ 𝜙ଵ𝜙𝑑𝑞 = 0 
and 𝜙 is everywhere of one sign, the next state needs to be positive in 
some reigon of space and negative in another so the integral vanishes. 

Now for the next high one, we’ll be less detailed in the math: 

𝜙ଶ(𝑞) = 𝑐𝑛𝑠𝑡.∗ ൬𝑞 −
𝑑

𝑑𝑞
൰ 𝜙ଵ(𝑞) = 𝑐𝑛𝑠𝑡.∗ ൬𝑞 −

𝑑

𝑑𝑞
൰ ቆ𝑞 exp ቆ−

𝑞ଶ

2
ቇ ቇ 

𝜙ଶ(𝑞) = 𝑐𝑛𝑠𝑡. (2𝑞ଶ − 1) exp ቆ−
𝑞ଶ

2
ቇ  

Note that this state has two nodes (at ±
ଵ

√ଶ
  so it it negative for 𝑞 between 

−
ଵ

√ଶ
 and 

ଵ

√ଶ
, positive elsewhere) 

And in general 

𝜙(𝑞) = 𝑐𝑛𝑠𝑡.∗ ൬𝑞 −
𝑑

𝑑𝑞
൰



exp ቆ−
𝑞ଶ

2
ቇ  

Of course, we have seen these functions before – these are just the 
Hermite polynomials times the exponential function that we used as a 
simple basis (in the Appendix) before! 
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Graphics:  The following  (from Wikipedia) 2 shows the eigenfunctions of 
a perfect harmonic oscillator. 

 

 
 

Note: the figure shows clearly that 

 As we rise in energy, the wavefunctions have more nodes 
 The first few eigenfunctions have significant amplitude also in values 

of x which are above the “classical turning points”, defined as the 

                                      
2 https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator#/media/File:HarmOsziFunktionen.png 

 

Wavefunction representations for the first eight bound eigenstates, n = 0 to 7.   
The horizontal axis shows the position x. Note: The graphs are not normalized. 

The red arrows show the classical “turning points” where the potential exceeds 
the energy.   
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points where the potential V(x) equals the energy 𝐸.  
I denote classical turning points for three values by red arrows. 
 
 Note that a classical particle could not exist in areas where the 
potential exceeds the energy, and therefore, any non-zero value of 
the wavefunction outside the classical turning point (in this case, for 
values of x above the corresponding red arrow or below the mirror 
image of it at negative x) is a purely quantum effect. 
 

 Note that as we go higher in energy most of the wavefunction is 
constrained to be within the “classically allowed” region, i.e., within 
the red arrows. 
 
This is an indication that classical mechanics becomes relatively 
more valid for higher energies.   

We’ll talk about that later when we discuss wavepackets for the 
Harmonic oscillator.  

EXAMPLE: vibrations of H-Cl 

Treatment based on Harmonic Oscillators: 
The frequency of vibrations is in the infrared.  In spectroscopic units, 
“wavenumbers”, it is 2990 cmିଵ  

Now the wavenumber is defined as 

𝜈 =
𝜈

𝑐
 

i.e., the frequency is 

𝜈 = 𝑐𝜈 = 3 ∗ 10ଵ
cm

s
∗ 2990 (cm)ିଵ = 89.7 Thz = 8.97 ∗ 10ଵଷHz 

(don’t cry foul that I am using many digits  for the wavenumber and none 
for the velocity of light 𝑐 that’s because 𝑐 is incidentally really this round 
number to 1 part in 10,000). 

So the angular frequency is  
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𝜔 = 2𝜋𝜈 = 5.63 ∗
10ଵସ

s
  

I like to convert everything to atomic units; in atomic units the frequency is 
written in terms of energy, i.e., using (Google it): 

ℏ = 2.4188 ∗ 10ିଵ
Hartree

s
 

we find that  

ℏ𝜔 = 2.4188 ∗ 10ିଵ
Hartree

s
∗ 5.63 ∗

10ଵସ

s
= 0.0136 Hartee 

i.e., 

𝜔 = 0.0136
Hartree

ℏ
 

Further, what’s the relevant mass of the H-Cl vibration?  

To a good approximation Cl does not move since it is heavy, so the mass is 
approximately that of H.  We would be more accurate and use the reduced 
mass, i.e. 

𝑀 =
𝑀ு𝑀

𝑀ு + 𝑀
 

We know that the atomic mass of H is 1.008amu, and for Cl is 35.453 AMU 
(well, that’s wrong since it is an averaged mass over several chlorine 
isotopes; we really should have done the calculation of the reduced mass 
and vibrational frequency for each isotope separately but let’s not worry 
about it). 

So therefore 

𝑀 =
1.008 ∗ 35.453

1.008 + 35.453
= 0.980 𝑎𝑚𝑢 

(it is of course smaller than the mass of the lightest element in the pair, the 
H) 

Also, it is easier if we write everything in terms of 𝑚 , the mass of the 
electron; googling we find that 
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1𝑎𝑚𝑢 = 1822.9 𝑚 

So the reduced mass is 

𝑀 = 0.980 ∗ 1822.9 ≃ 1787 𝑚 

So therefore, putting it together gives: 

𝜎 = ඨ
ℏ

𝑀𝜔
= ඨ

ℏ

1787 𝑚  0.0136
Hartree

ℏ

= 0.203 ∗ ඨ
ℏଶ

 𝑚  Hartree
 

 

Now in atomic units, ℏ is 1, the mass of electron is 1, and Hartree is 1, so 

the remaining ට
ℏమ

  ୌୟ୰୲୰ୣୣ
 term must be “1” in atomic units, i.e., 1bohr=1𝑎. 

 

Therefore,  

𝜎 = 0.203 𝑎 

i.e. (since 1bohr=0.529 Angstrom) 

𝜎 ≃ 0.11 Angstrom 

Note that this is a small but non insignificant width. 

The zero-point energy of this vibration is  

𝐸 =
ℏ𝜔

2
=

0.0136

2
 Hartree = 0.0068 Hartree = 0.185eV 

(we used 1-Hartree=27.2114 eV). 

This is of course a highly non-trivial amount of energy; 𝑘𝑇 = 0.026eV 
so the zero point energy is 7 times higher than the vibrational energy. 

So in accounting for chemical reactions energies one needs to 
account for the zero point energy. 

For example if in a reaction a NaH bond is replaced by NaBr, then when we 
calculate the energy difference we also need to account for the different 
zero-point energies of the two bods. 
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Note that for very heavy atoms (e.g., for NaBr vibrations) the width will be 
much smaller due to the heavier reduced mass. 

Actual HCl molecular vibrations: 

Note that the levels become denser, as the frequency is getting smaller.  
The first few levels can be approximated reasonably as that of an Harmonic 
oscillator.  But then due to the fact that eventually the potential cannot rise 
forever when we extend the bond (i.e., at one point the bond “breaks”) the 
levels become denser and the eigenfunctions are not anymore those of a 
harmonic oscillator. 

  

 

Vibrational Energy levels of HCl in wavenumbers  (1eV~8000 wavenumbers).  

Picture by: "Anharmonic oscillator" by Darekk2 - Own work. Licensed under CC BY-SA 3.0 via Commons - 
https://commons.wikimedia.org/wiki/File:Anharmonic_oscillator.gif#/media/File:Anharmonic_oscillator.gif 

Taken from:  https://en.wikipedia.org/wiki/Molecular_vibration 
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Harmonic Oscillator: Conclusions 

To conclude let’s note a few things: 

 In an ideal Harmonic oscillator ANY wavepacket will be periodic 
just like a classical particle.  

Specifically, given any wavepacket (which is a generic name for a 
wavefunction that is usually not just a single eigenstate) at t=0, Ψ(𝑟, 𝑡 = 0), 

we can calculate the wavepacket  after a single period, i.e., at 𝑡 = 𝑇 ≡
ଶగ

ఠ
.  

We do it by first writing the wavepacket as a sum of the eigenfunctions, 

Ψ(𝑟, 𝑡 = 0) =  𝑏𝜓(𝑟)



, 

where  𝑏 are the expansion coefficients, obtained of course as usual as 

𝑏 = න 𝜓
∗ (𝑟)Ψ(𝑟, 𝑡 = 0)𝑑𝑡. 

Then, the wavefunction at latter times will be given, as before, by 
multiplying each eigenstate by a phase factor 

Ψ(𝑟, 𝑡) =  𝑏𝜓(𝑟) exp ൬−
𝑖𝐸𝑡

ℏ
൰



 

Prove that this is true by proving that indeed  

𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐻𝜓 

 

So far our derivation was general, for any system. 

Now specialize to the harmonic oscillator: 

Take 𝑡  to be a classical period, 𝑡 = 𝑇 =
ଶగ

ఠ
.   

And recall that 𝐸 = ቀ𝑛 +
ଵ

ଶ
ቁ ℏ𝜔 

 So 
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exp ൬−
𝑖𝐸𝑇

ℏ
൰

= exp ൬−
𝑖

ℏ
൬𝑛 +

1

2
൰ ℏ𝜔 ∗

2𝜋

𝜔
൰

= exp ൬−𝑖 ൬𝑛 +
1

2
൰ ∗ 2𝜋൰ = exp(−𝑖2𝜋𝑛) exp(−𝑖𝜋) 

And since for any 𝑛 

exp(−𝑖2𝜋𝑛) = cos(2𝜋𝑛) − 𝑖 sin(2𝜋𝑛) = 1 − 𝑖 ∗ 0 = 1 

while 

exp(−𝑖𝜋) = cos(𝜋) − 𝑖 sin(𝜋) =  −1 − 𝑖 ∗ 0 =  −1 

We get that 

exp ൬−
𝑖𝐸𝑇

ℏ
൰ = −1 

i.e., the phase factor is the same (and is −1) for all states after a single 
oscillation period.  Therefore 

Ψ(𝑟, 𝑡 = 𝑇) =  𝑏𝜓(𝑟) exp ൬−
𝑖𝐸𝑇

ℏ
൰



=  𝑏𝜓(𝑟) ∗ (−1) =



−  𝑏𝜓(𝑟)



 

I.e., 

Ψ(𝑟, 𝑡 = 𝑇) = −Ψ(𝑟, 𝑡 = 0) 

i.e., the wavepacket is completely the same (except for an interesting 
overall minus factor) after one cycle, no matter what its shape (i.e., what 
are the 𝑏). 

 Another strange thing is that, no matter what happens to the 
wavepacket and how it spreads of contracts, for H.O. the center and 
momentum of the wavepacket behave as if they were classical 
particles! 

i.e., defining: 

⟨𝑥⟩ ≡ න Ψ∗(𝑥, 𝑡) 𝑥 Ψ(𝑥, 𝑡)  𝑑𝑥 
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⟨𝑝⟩ ≡ න Ψ∗(𝑥, 𝑡)  (−𝑖ℏ)
𝑑

𝑑𝑥
Ψ(𝑥, 𝑡)  𝑑𝑥 

It turns out to fulfil the classical equation of motion 

𝑑⟨𝑥⟩

𝑑𝑡
=

⟨𝑝⟩

𝑀
 

𝑑⟨𝑝⟩

𝑑𝑡
= −𝜅⟨𝑥⟩ 

Note that you proved the 1st of these “green” equations for any 
Hamiltonian in your week 2 H.W.; but the 2nd green equation is only 
valid for a H.O.  

 
 In Harmonic oscillators there are even special wavepackets that look 

like at t=0 somebody shifted the ground state to be away from 
equilibrium.  These wavepackets, called “Gaussian wavepackets”, 
turn out to even move (subject to the green equations above) as if 
their shape is “frozen”, i.e., the wavepacket center moves but its 
shape in unchanged. 
 
 

 Quantum Harmonic Oscillators are important for radiation, for two 
different reasons: 

o Electromagnetic fields are Harmonic Oscillators.  For 
example, a laser can be thought of being, in each mode of 
radiation, a wavepacket.   
For example, such a wavepacket, for a specific mode of 
radiation, may have a high amplitude to contain 1,000,000 
photons, a somewhat lesser amplitude to contain 999,999 and 
1,000,001 photons, and so forth, and overall it may have a non-
zero amplitude to have between, say, 999,950 and 1,000,050 
photons. 
In fact with lasers or without them it is exceedingly difficult to 
prepare radiation with a very specific number of photons. 
BTW, for most of our purposes as chemist we can usually 
ignore the quantum nature of the photons, and just approximate 



113 
 

the radiation as a classical function of space and time, typically 
of the form 

𝐸(𝒙, 𝑡)~𝐸 cos(𝑘𝑥 − 𝜔𝑡) ∗ (𝒑𝒐𝒍𝒂𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓. ) 
This is true of course only if the radiation is strong; if it is weak it 
does not apply (i.e., see the black body radiation problem) but if 
it is weak we don’t need to worry about it anyway usually, since 
then it will not affect the molecules we deal with. 
  

o Harmonic Oscillators are also important if we want to 
understand the interaction of radiation with molecules.  That’s 
because, to first approximation, the vibrations in molecules 
can be described as Harmonic Oscillators (see the H-Cl 
example above).   
We will see later that for an electromagnetic field that fulfils the 
following two conditions (observed in 99.9% of the experiments 
you’ll deal with) 
 Is not extremely strong and  
 is not part of a specialized experiment on tiny scales 

where we localize the radiation to nanometer size probes 
(is not a “near field”) 

then, when such a field impinges on a molecule, then usually it 
will only cause excitations and deexcitations by 1 level, i.e., 
if the molecule is in the 4th vibration in one of the modes, the 
field will typically cause strong excitation (or de-excitation) of 
the molecule to the 3rd and 5th levels. 

Hopefully we’ll cover this in the last week or two of classes. 
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Hydrogen Atom – and begin Angular Momentum 

Now finally we’ll get the quantum mechanics equivalent of the Bohr model. 

Instead of x,y,z let’s use spherical coordinates, 

𝑟, 𝜃, 𝜙 

where 𝑟  is the length of the vector 𝒓, 𝜃 is the angle between 𝒓 and the z-
axis, and 𝜙 is the angle that the projection of 𝒓 to the x-y plane makes 
with the x-axis, i.e., 

𝑟 = ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ 

cos(𝜃) =
𝑧

𝑟
  

𝑡𝑔(𝜙) =
𝑦

𝑥
 

(so  

𝑥 = 𝑟 sin (𝜃)cos (𝜙) 

𝑦 = 𝑟 sin(𝜃) sin(𝜙) 

𝑧 = 𝑟 cos (𝜃) 

See picture:3 

 

SIDE NOTE: Spherical coordinates Volume element: 

                                      
3 http://en.citizendium.org/wiki/File:Spherical_polar.png   Copyright © [[User:Paul Wormer|Paul Wormer]].    
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In Cartesian 3D coordinates an overlap integral of two functions reads 

⟨𝑓|𝑔⟩ = න 𝑓∗(𝑥, 𝑦, 𝑧)𝑔(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 

In spherical coordinates the volume element is different; it turns out to be 

𝑑𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑟ଶ𝑑𝑟 sin(𝜃) 𝑑𝜃 𝑑𝜙 

I.e., a 3D integral reads 

⟨𝑓|𝑔⟩ = න 𝑓∗(𝑟, 𝜃, 𝜙)𝑔((𝑟, 𝜃, 𝜙)𝑟ଶ𝑑𝑟 sin(𝜃) 𝑑𝜃 𝑑𝜙 

We’ll need to use that later. 

END OF SIDE NOTE. 

So Let’s start classically: 

Classical treatment. 

Now classically the energy is (where H is the Hamiltonian, as usual) 

𝐸 = 𝐻 = 𝐾 −
𝑒ଶ

𝑟
 

where 𝐾 is the kinetic energy of the electron (we assume the proton is 
infinitely massive, for simplicity).  In Cartesian coordinates we wrote 

𝐾 =
𝒑𝟐

2𝑀
=

𝑝௫
ଶ + 𝑝௬

ଶ + 𝑝௭
ଶ

2𝑀
 

It turns out we can write the classical kinetic energy very simply in 
Cartesian coordinates, by separating the momentum vector to a part that is 
along the coordinate (a parallel part, 𝑝) and a perpendicular part (𝑝ୄ). 

I.e., 

𝒑𝟐 = 𝑝
ଶ + 𝑝ୄ

ଶ  

The perpendicular part is related to the angular momentum.  Recall that the 
angular momentum is  

𝑳 = 𝒓 × 𝒑 
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i.e., its squared norm is the value of 𝑟 times the part of p that’s 
perpendicular to r, i.e., 

𝐿ଶ = 𝑟ଶ𝑝ୄ
ଶ 

Therefore  

𝑝ୄ
ଶ =

𝐿ଶ

𝑟ଶ
 

So finally  

𝐾 =
𝑝

ଶ

2𝑀
+

𝐿ଶ

2𝑀 𝑟ଶ
 

i.e., 

𝐸 =
𝑝

ଶ

2𝑀
+

𝐿ଶ

2𝑀 𝑟ଶ
−

𝑒ଶ

𝑟
 

This is important since classically we know that L is conserved, so in a 
sense we can convert the classical 3D problem of moving under a central 

potential −
మ


 to a 1-D problem, where the kinetic energy is 1-dimensional 

ೝ
మ

ଶெ
,  and instead of the true potential the 1-d distance “feels” an “effective 

potential” which is 
మ

ଶெ మ
−

మ


, i.e., let’s use colors:         

𝐸 =
𝒑𝒓

𝟐

𝟐𝑴
+

𝑳𝟐

𝟐𝑴 𝒓𝟐
−

𝒆𝟐

𝒓
 

Very analogous properties follow for QM. 

Quantum electron-in-hydrogen Hamiltonian and Angular 
Momentum 

Formally we know 

𝐻 = −
ℏଶ

2𝑀
∆ + 𝑉(𝑟) 

where 

𝑉(𝑟) = −
𝑒ଶ

𝑟
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In Cartesian coordinates, of course, acting with the on a function 𝜓 means 

∆𝜓 =
𝜕ଶ𝜓

𝜕𝑥ଶ
+

𝜕ଶ𝜓

𝜕𝑦ଶ
+

𝜕ଶ𝜓

𝜕𝑧ଶ
 

and it turns out that in 3D  

∆𝜓 =
1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝜓) +

1

𝑟ଶ
ቆ

1

sin 𝜃
൬sin 𝜃

𝜕𝜓

𝜕𝜃
൰ +

1

sinଶ 𝜃

𝜕ଶ𝜓

𝜕𝜙ଶ
ቇ 

Luckily we can make some sense of this mess using the angular 
momentum operator. 

We’ll discuss the angular momentum operator in more detail later, but for 
now accept that in spherical coordinates it has exactly the form that the 
non-r parts in the 3D spherical-coordinates Laplacian in 3D have, i.e.,  

𝐿ଶ = −ℏଶ ቆ
1

sin 𝜃
൬sin 𝜃

𝜕𝑓

𝜕𝜃
൰ +

1

sinଶ 𝜃

𝜕ଶ𝑓

𝜕𝜙ଶ
ቇ 

(we won’t prove this… let’s accept it… but believe me, it could be proven 
from the definition of the Cartesian components of L and from converting 
from Cartesian components to spherical components). 

So therefore, we can write that the action of the kinetic energy on a general 
function f  is  

𝐾𝜓 ≡ −
ℏଶ

2𝑀
∆𝜓 

i.e., 

𝐾𝜓 = −
ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝜓) +

1

2𝑀𝑟ଶ
𝑳ଶ𝜓 

(Note that the factor of ℏଶ and the minus sign were both absorbed into the 
definition of 𝑳𝟐). 

Therefore, the Schrodinger equation for the three dimensional molecular 
orbitals, 𝜓(𝑟, 𝜃, 𝜙) becomes 

𝐾𝜓 + 𝑉𝜓 = 𝐸𝜓 

i.e., 
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−
ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝜓) +

1

2𝑀𝑟ଶ
𝑳ଶ𝜓 + 𝑉(𝑟)𝜓 = 𝐸𝜓 

Note how similar this is to the classical Hamiltonian expression we derived 

earlier,  
𝒑𝒓

𝟐

𝟐𝑴
+

𝑳𝟐

𝟐𝑴 𝒓𝟐
−

𝒆𝟐

𝒓
= 𝑬 

As usual when handling multidimensional equation, we postulate (i.e., 
hope) that we can find solutions which are separable, i.e., are product of a 
function of r, times another function of theta and phi, i.e., we write 

𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙) 

Later we’ll add of course indices to distinguish different for 𝑅 eigenfunctions 
and different 𝑌 eigenfunctions. 

So let’s insert this choice and hope that we get a solution.  Of course a 
general wavefunction solving the Schrodinger equation does not need to be 
of this separable product form, but it will be the sum of separable terms 
(just like the Schrodinger wavefunction in x,t will be the sum of terms of the 

form exp ቀ−
ா௧

ℏ
ቁ 𝜙(𝑥) ) 

So inserting the product form  

−𝑌
ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝑅) +

𝑅

2𝑀𝑟ଶ
𝑳ଶ𝑌 + (𝑉(𝑟) − 𝐸)𝑅𝑌 = 0 

(since 𝑌(𝜃, 𝜙) is not a function of 𝑟 we pulled it to the left in the 1st term. 
Similarly, since 𝐿ଶ is written purely in terms of derivatives of the angles,  
𝑳ଶ𝑅𝑌 = 𝑅𝑳ଶ𝑌) 

Now without doing too much math, you see that this equation will be 
possible if  

𝑳ଶ𝑌 = 𝜆𝑌 

i.e., if 𝑌  is an eigenstate of 𝑳ଶ.  In that case the blue equation becomes 

−𝑌
ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝑅) +

𝑅

2𝑀𝑟ଶ
𝜆𝑌 + (𝑉(𝑟) − 𝐸)𝑅𝑌 = 0 

Now there are no more derivatives w.r.t. the angular coordinates, so we 
can divide 𝑌 and get 
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−
ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝑅) +

𝑅

2𝑀𝑟ଶ
𝜆 + (𝑉(𝑟) − 𝐸)𝑅 = 0 

Interlude – Eigenvalues of 𝑳𝟐 

We are looking for, as mentioned  a solution of an eigenvalue equation for 
𝑳ଶ 

𝑳ଶ 𝑌(𝜃, 𝜙) = 𝜆 𝑌(𝜃, 𝜙) 

We’ll talk about the formal and general solution of that equation later; 
suffice it is to say that the eigenvalues of 𝑳ଶ have the form 

λ = ℏଶ𝑙(𝑙 + 1),        𝑙 = 0,1,2, … 

i.e., (since 1*2=2, 2*3=6, 3*4=12, etc.) 

λ = 0, 2ℏଶ, 6ℏଶ, 12ℏଶ, ….   

We note in passing that this result is similar but not equal to the Bohr model 
assumption  

Bohr:  𝐿 = 𝑙ℏ  (𝑤𝑟𝑜𝑛𝑔!) 

More later on that.  For now, back to: 

The radial equation 

Multiply by 𝑟 and plug in the allowed values of 𝜆 to get (I insert also the 
explicit form of 𝑉(𝑟)) 

−
ℏଶ

2𝑀

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝑅) + ቆ−

𝑒ଶ

𝑟
+

ℏଶ𝑙(𝑙 + 1)

2𝑀𝑟ଶ
− 𝐸ቇ 𝑟𝑅 = 0 

You’ll notice that I labeled the radial function by two indices, 𝑛, 𝑙.  The latter 
is the index associated with the eigenvalue of the angular momentum, 
since for each 𝑙 we’ll have a different radial equation. 

The 𝑛 index is related to the number of nodes in the radial eigenfunctions.  
More precisely,  

𝑛 = 1 + 𝑙 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑙 𝑤𝑎𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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The reason we use this strange notation, and not label 𝑅 idirecrly by the 
number of radial ndoes, is that it turns out that the energy depends only on 
𝑛, not on 𝑙, as we’ll explain. 

Put differently, the number of nodes in the angular part is 𝑙, so we can write 

𝑛 = 1 + 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 (𝑟𝑎𝑑𝑖𝑎𝑙 + 𝑎𝑛𝑔𝑢𝑙𝑎𝑟) 

For example, a 4p state will have  

𝑙 = 1 

And 

𝑛 = 4 

i.e., 2  radial nodes, 1 angular nodes, so totally 3 nodes, so 𝑛 = 1 + 3 = 4. 

You know this solution (and a lot of info on the radial and angular 
wavefunction) already from 20A, let’s discuss a little more in depth the 
solution of the radial equation. 

Let’s accept (it will take a few lectures to prove otherwise) what you learned 
in 20A on the solution of the eigenvalues of the radial equation, i.e., that 
they are 

𝐸 = 𝐸 = −
𝑒ଶ

2𝑎
∗

1

𝑛ଶ
,      𝑛 = 1,2, … 

i.e.., depend only on the total number of nodes, not whether they are 

angular or radial.   remind you that 𝑎 =  bohr =
ℏమ

ெమ
=0.529Angstrom so  

𝑒ଶ

2𝑎
=

1

2
Hartree = 13.6eV 

i.e.,  

𝐸 =  −13.6 eV ∗ (1,
1

4
,
1

9
,

1

16
, … . ) 

Now that we were told the eigenvalues, let’s get some info. on the 
eigenfunctions. 

Let’s rewrite the yellow equation above by inserting the energies; and 
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Then  

−
1

𝑟

ℏଶ

2𝑀

𝜕ଶ

𝜕𝑟ଶ
൫𝑟𝑅(𝑟)൯ + ቆ−

𝑒ଶ

𝑟
+

ℏଶ𝑙(𝑙 + 1)

2𝑀𝑟ଶ
+

𝑒ଶ

2𝑎𝑛ଶ
ቇ 𝑅(𝑟) = 0 

Note that by specifying the angular momentum we converted the 
Schrödinger equation to be a 1-D like equation in the radial coordinate --- in 
a sense analogous to what we had in the classical case, where we ended 
up with a single equation in the radial coordinates. 

We’ll first 

Present the formal solutions for the for a few cases (low n’s) 
Explain the reasons the solutions look the way they do. 

Lowest radial Solutions 𝑹𝒏𝒍(𝒓)  

s  (𝑙 = 0): 

𝑅ଵ(𝑟) = 𝑐𝑜𝑛𝑠𝑡.∗ exp ൬−
𝑟

𝑎
൰ 

𝑅ଶ(𝑟) = 𝑐𝑜𝑛𝑠𝑡.∗ ൬2 −
𝑟

𝑎
൰ exp ൬−

𝑟

2𝑎
൰ 

𝑅ଷ(𝑟) = 𝑐𝑜𝑛𝑠𝑡.∗ ቆ3 −
2𝑟

𝑎
+

2𝑟ଶ

9
ቇ exp ൬−

𝑟

3𝑎
൰ 

Let’s first prove, for the simplest of these functions, 𝑅ଵ(𝑟),  that it indeed 
solves the radial Schroedinger equation.  So without the 𝑙(𝑙 + 1) term since 
𝑙 = 0, and using 𝑛 = 1, we need to prove that 

−
1

𝑟

ℏଶ

2𝑀

𝜕ଶ

𝜕𝑟ଶ
൬𝑟 exp ൬−

𝑟

𝑎
൰൰ + ቆ−

𝑒ଶ

𝑟
+

𝑒ଶ

2𝑎
ቇ exp ൬−

𝑟

𝑎
൰  =? ?  0 

To simplify we’ll use atomic units, where 𝑀 = ℏ = 𝑎 = 𝑒ଶ. So we need 
to prove that 

−
1

2𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟 exp(−𝑟)) + ൬−

1

𝑟
+

1

2
൰ exp(−𝑟) = ? ? 0 

Multiply by −2𝑟 to get 

𝜕ଶ

𝜕𝑟ଶ
(𝑟 exp(−𝑟)) + (−2 + 𝑟) exp(−𝑟) = ? ? 0 
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But since  

𝜕ଶ

𝜕𝑟ଶ
(𝑟 exp(−𝑟)) =

𝜕

𝜕𝑟

𝜕

𝜕𝑟
(𝑟 exp(−𝑟)) =

𝜕

𝜕𝑟
൫(1 − 𝑟) exp(−𝑟)൯

= (2 − r)exp(−𝑟) 

then indeed the “gray” equation is correct, and the form we had for 𝑅ଵ(𝑟) is 
correct.   

Q.E.D. 

 Let’s plot: (red:1s, green: 2s; blue: 3s 

Note that the plots of these s-functions and the p- and d- functions soon  
are not of the normalized functions, as otherwise it would have been too 
hard to view by eye. 

 

Let’s see some properties 

Long distance:  Let’s start by considering the asymptotic behavior of 
𝑅(𝑟) as 𝑟 → ∞.  For large 𝑟,  the potential and angular momentum 

term vanish (as they are proportional to 
ଵ


  and 

ଵ

మ
, so at large r the 

difference between the potential (𝑽(𝒓 → ∞) = 𝟎) and the energy 

(𝑬 = −
𝟏

𝟐𝒏𝟐
  in atomic units) becomes, in atomic units: 

𝐸 − 𝑉 = −
1

2𝑛ଶ
− 0 = −

1

2𝑛ଶ
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Because the difference is negative (at far distance the energy is below the 
potential, as is always true for bound states), the wavefunction is damped, 
and the damping constant κ  

𝜅 =
1

ℏ
ඥ2𝑀(𝑉 − 𝐸) = (in a. u. , ℏ = 𝑀 = 1)  = ඥ2(𝑉 − 𝐸)  = ඨ2 ∗

1

2𝑛ଶ
 

i.e., at far distances 

𝜅 =
1

𝑛
 

I.e., at far distances the wavefunctions decay more or less as: 

𝑅(𝑟)~ exp ቀ−
𝑟

𝑛
ቁ 

which is what you see in the blue/turquoise list above (there we had 

exp ቀ−


బ
ቁ , exp ቀ−



ଶబ
ቁ , exp ቀ−



ଷబ
ቁ, etc., and it is the same since in atomic 

units 1bohr =1). 

The point is that as you go to higher n, the energy gets higher so the 
bound-state wavefunction damps slower. 

I.e., higher-n wavefunctions are more extended! 

Furthermore, it is not surprising when we think on the slower and slower 
long-distance exponential fall off 𝑅(𝑟) with higher n, that the average size 
(not just the fall off) of the wavefunction follows exactly this behavior, i.e., 

⟨𝑟⟩ =  𝑛 𝑎 

This is exactly like the 𝑟 = 𝑛 𝑎 prediction of the Bohr model!! 

Warning – this is for an isolated hydrogen atom; in a molecule and 
especially in liquids and solids the hydrogen wavefunction cannot extend in 
the same way significantly in direction of other atoms – there we need to 
take linear combination of atomic orbitals from different atoms to get MO, 
as you know and we’ll learn about. 

Small radius and general solutions for 𝒍 = 𝟎 (s states). 

The “s” (𝑙 = 0) states extend all the way into the nucleus.  
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You may wonder what happens near the nucleus since the potential is −
మ


, 

i.e., it becomes negative more and more and is formally infinitely negative 
at r=0. 

So what balances out the infinitely negative potential energy, i.e., what 
prevents the wavefunction from collapsing to the nucleus? 

The answer is: the kinetic energy  

You may think that the solutions we have above look smooth so how come 
it has kinetic energy which becomes infinitely positively large at 𝑟 = 0 (so it 
can cancel the infinitely negativey charged potential?) 

To see, let’s do a cut of our radial function at 𝑦 = 𝑧 = 0.,  but at all 𝒙, i.e., at 
both and positive and negative 𝒙: 

  

 

You see that the 3D wavefunction is not smooth at x=0, i.e., at r=0 in this 
case (since y=z=0, so x=0 is the origin). 

Its non-smoothness translates to infinitely positive kinetic energy (minus of 
the second derivative), which cancels the infinitely negative potential 
energy at the origins. 

As you go to higher quantum numbers, the radial 
eigenfunctions extend and have more and more nodes: 

Look at the three 𝑙 = 0 eigenstates. 
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The first has (𝑅ଵ(𝑟)) no radial nodes. 

The next (𝑅ଶ(𝑟)) has one node. 

The third one (𝑅ଷ(𝑟)) has two nodes. 

This is a general property.  It follows since the eigenstates have to be 
orthogonal within each 𝐥: 

න 𝑅 (𝑟)𝑅(𝑟) 𝑟ଶ𝑑𝑟 = 𝛿 

(the 𝑟ଶ comes from the volume element, 𝑑𝑉 =  𝑟ଶ 𝑑𝑟 sin(𝜃) 𝑑𝜃). 

For example, the 1s function 𝑅ଵ(𝑟), is all of one sign (positive, although 
that does not matter, it could have been all negative, it is just a convention).   

So for the 2s function 𝑅ଶ(𝑟) to be orthogonal to 𝑅ଵ(𝑟)  it needs to have 
positive and negative regions, i.e., it needs to have a node. 

Note that the orthogonality only applies to the same 𝒍.   If  the 𝑙ᇱ𝑠 are 
different then the angular overlap (we’ll see that later) will be zero, so then 
the radial overlap does not need to vanish.    

For example, the 2p, 3p, 4p, etc. radial functions will not be orthogonal to 
any of the s functions 

න 𝑅(𝑟)𝑅ଵ(𝑟)𝑟ଶ𝑑𝑟 ≠ 0       

Higher “p, d, etc.”  (𝒍 > 𝟎) radial eigenstates: 

The next “p” (𝑙 = 1), “d”(𝑙 = 2) eigenstates, etc. 𝑅ଵ(𝑟), 𝑅ଶ(𝑟), 𝑒𝑡𝑐.  are 
different in one major category – they do not extend to 𝑟 = 0. 

Let’s write a few of them down, plot, and then understand why they don’t 
extend to the nucleus. 

First, the two lowest radial p states: 

𝑅ୀଶ,ୀଵ(𝑟) = 𝑅ଶଵ(𝑟) = 𝑐𝑜𝑛𝑠𝑡 ∗  𝑟 ∗ exp ൬−
𝑟

2𝑎
൰ 

𝑅ୀଷ,ୀଵ(𝑟) = 𝑅ଷଵ(𝑟) = 𝑐𝑜𝑛𝑠𝑡 ∗ ൬1 −
𝑟

6𝑎
൰ ∗  𝑟 ∗ exp ൬−

𝑟

3𝑎
൰ 
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And their plot 

 

d-states:  

Then, the two lowest radial d states 

𝑅ୀଷ,ୀଶ(𝑟) = 𝑅ଷଶ(𝑟) = 𝑐𝑜𝑛𝑠𝑡 ∗  𝑟ଶ ∗ exp ൬−
𝑟

3𝑎
൰ 

𝑅ୀସ,ୀଶ(𝑟) = 𝑅ସଶ(𝑟) = 𝑐𝑜𝑛𝑠𝑡 ∗ ൬1 −
𝑟

12𝑎
൰ ∗  𝑟ଶ ∗ exp ൬−

𝑟

4𝑎
൰ 

 

We see a pattern from the equations and from comparing all three plots: 

With each higher 𝑙, we get an 𝑟  factor.  
That factor forces them to extend further and further from the nucleus 
(I.e., for 𝑙 = 1 𝑟 = 𝑟 is linear in r;  𝑙 = 2,  𝑟 = 𝑟ଶ is smaller near the 
nucleus, etc.) 
We’ll use that 𝑟 factor later to simplify the angular functions. 
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At very far-away distances they also damp exponentially, for the 
same reason that the s functions damp exponentially – since the 
energy is negative and the potential far away is zero. 
Of course, the higher the n the slower they damp (since the higher 
the energy is, i.e., the closer to zero).  
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Angular Momentum and Angular eigenfunctions 
for the Hydrogen atom (and in general). 

Now it is time to deal with the angular part, i.e., with angular Momentum. 

To recall, we said that the kinetic energy of the electron in a central 

potential has an angular part (times 
ଵ

ଶெమ
 ) which we highlight below 

−
ℏଶ

2𝑀
∆𝜓 =

ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝜓) +

1

2𝑀𝑟ଶ
(−ℏଶ) ቆ

1

sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕𝜓

𝜕𝜃
൰ +

1

sinଶ 𝜃

𝜕ଶ𝜓

𝜕𝜙ଶ
ቇ 

And we also said that it can be proved that this green part of the kinetic 
energy can be written as 𝑳ଶ 

−
ℏଶ

2𝑀
∆𝜓 = −

ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕𝑟ଶ
(𝑟𝜓) +

1

2𝑀𝑟ଶ
𝑳ଶ𝜓 

i.e., given a function 𝑌(𝜃, 𝜙), 

𝑳ଶ𝑌 = (−ℏଶ) ቆ
1

sin 𝜃

𝜕

𝜕𝜃
൬sin 𝜃

𝜕𝑌

𝜕𝜃
൰ +

1

sinଶ 𝜃

𝜕ଶ𝑌

𝜕𝜙ଶ
ቇ 

We further said that it can be proved that the eigenstates of 𝑳ଶ fulfil 

𝑳ଶ𝑌 = ℏଶ𝑙(𝑙 + 1)𝑌     𝑙 = 0,1,2, … 

Now we’ll expand on this. 

First, recall that in classical mechanics  

𝑳 = 𝒓 × 𝒑 

This definition turns out to be true also quantum mechanically!  

I.e., 

𝑳 = 𝒓 × (−𝑖ℏ𝛁) = −𝑖ℏ 𝒓 × 𝛁 

i.e., 

𝐿௭ = −𝑖ℏ ൬𝑥
𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
൰ 
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and similarly for 𝐿௫ , 𝐿௬ (the trick to remember the indices when changing 
from the z to the y to the x components is to circle around the list of 
components of 𝐿, 𝑟, 𝑝 that appear, ie.,  𝑧𝑥𝑦  𝑥𝑦𝑧𝑦𝑧𝑥 ):  

𝐿௫ = −𝑖ℏ ൬𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
൰ 

𝐿௬ = −𝑖ℏ ൬𝑧
𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
൰ 

and of course we define the squared angular momentum operator: 

𝑳ଶ ≡ 𝐿௫
ଶ + 𝐿௬

ଶ + 𝐿௭
ଶ  

Also, 𝑳 designates henceforth the angular-momentum operator, not a 
general operator). 

The usual thing at this stage is to just solve for the green highlighted 
equation above.  The solution is a little nauseating, and worse, this way of 
solving hides the very general properties of the eigenstates of the 
momentum operator which comes about directly from the relations 
between different components (the commutation relation). 

I will take a middle road: 

I’ll half-prove half-tell you what the regular solutions are, 

And then later  

I’ll mention a few facts about the general operator-relations that the 
angular momentum operator fulfills so you can see the generality of 
the properties of the eigenvalues. 

So let’s start. 

As mentioned, with some painful replacement of Cartesian with spherical 
coordinates could prove that the  

Two (yellow and green) definitions above of 𝑳ଶ are equal – the 
Cartesian and spherical coordiantes defintions are equal. 
Further, we could prove that in spherical coordinates 𝐿௭ has a 
particularly simple form: 
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𝐿௭ = −𝑖ℏ
𝜕

𝜕𝜙
  

Eigenfunctions and eigenvalues of 𝑳ଶ 

The derivatives w.r.t. 𝜙 and 𝜃 in the definition of 𝐿ଶ are separated (even 

though the 2nd derivative w.r.t. 𝜙 is multiplied by 
ଵ

ୱ୧୬మ ఏ
) so this hints that we 

should again try to separate the coordinate. 

Further, the only term associated with 𝜙 is a 2nd derivative w.r.t. it, 
డమ

డథమ
 and 

we have seen that the eigenfunctions of such terms are of the form 
exp (𝑖𝑚𝜙) 

I.e., we write the solution as 

𝑌(𝜃, 𝜙) = 𝑔(𝜃) ∗ exp(𝑖𝑚𝜙)  

where we need to determine what 𝑔(𝜃) is. 

Now comes the 1st key point: 𝒎 must be integer. This is so that if we 
rotate by 360 degrees the wavefunction comes back to its same value! (i.e., 
exp൫𝑖𝑚(𝜙 + 2𝜋)൯ = exp(𝑖𝑚𝜙). 

(Actually, it is a weak argument, which for spin will not be valid – we are 
really never observing the wavefunction so we have to be careful on 
assigning to it as “single value”… we’ll explain the true argument later). 

Obviously, exp(−𝑖𝑚𝜙) is also an eigenstate of 𝐿௭,  i.e.,  

𝐿௭ exp(𝑖𝑚𝜙) = −𝑖ℏ
𝜕

𝜕𝜙
exp(𝑖𝑚𝜙) 

i.e., 

𝐿௭ exp(𝑖𝑚𝜙) = 𝑚ℏ exp(𝑖𝑚𝜙)  

so the eigenvalues of 𝐿௭ are of the form 𝑚ℏ with m integer, i.e., 
0,±ℏ, ±2ℏ, etc.  

Inserting these equations to the green equation above we get that the 
eigenvalue equation 

𝑳ଶ(𝑔(𝜃) exp(𝑖𝑚𝜙)) = 𝜆 exp(𝑖𝑚𝜙) 
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becomes 

−ℏଶ

sin 𝜃
ቆsin 𝜃

𝜕𝑔(𝜃) exp(𝑖𝑚𝜙)

𝜕𝜃
ቇ −

ℏଶ

sinଶ 𝜃

𝜕ଶ𝑔(𝜃) exp(𝑖𝑚𝜙)

𝜕𝜙ଶ
= 𝜆𝑔(𝜃) exp(𝑖𝑚𝜙) 

i.e., since 
డమ(ఏ) ୣ୶୮(థ)

డథమ
= −𝑚ଶ𝑔(𝜃) exp(𝑖𝑚𝜙), we get that we’re looking for 

solutions of  

−ℏଶ

sin 𝜃

𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑔(𝜃)

𝜕𝜃
ቇ −

ℏଶ

sinଶ 𝜃
𝑚ଶ𝑔(𝜃) = 𝜆 𝑔(𝜃) 

I’ll spare you the details of solving the equations and just state the results 
(many of which you essentially know already): 

The eigenvalues 𝜆 are indeed of the form 
𝜆 = ℏଶ𝑙(𝑙 + 1), 𝑙 = 0,1,2, … 

The eigenstates depend on the eigenvalue of 𝑳ଶ and on 𝑚, the 
eigenvalue of 𝑳௭; so we lbale them as 𝑔(𝜃) 
There’s a restriction on 𝑙 

|𝑚| ≤ 𝑙,     𝑖. 𝑒. ,   𝑚 = −𝑙, −𝑙 + 1, … , 𝑙 
That restriction clearly could be understood based on the fact that  

𝑳ଶ − 𝐿௭
ଶ = 𝐿௫

ଶ + 𝐿௬
ଶ  

We’ll show soon (quite easily) that the expectation value and 
eigenvalues of 𝐿௫

ଶ , 𝐿௬
ଶ  are positive, so that means that the eigenvalue 

of the LHS must be all positive, and that will imply that 𝑙 ≥ |𝑚| 
And most interestingly, while the eigenstates depend on m (which 
determines the direction) the eigenvalues don’t depend on it! 
So 
 for 𝑙 = 1 there’s a three-fold degeneracy between: 
 𝑚 = −1, 𝑚 = 0, 𝑚 = 1   
A fivefold degeneracy for 𝑙 = 2, etc. 

The lowest eigenstates  are: 

“s” state : 𝑙 = 0: a constant: 

𝑌(𝜃, 𝜙) ≡ 𝑌ୀ,ୀ(𝜃, 𝜙) =
1

√4𝜋
 

The reason for this specific constant is normalization, i.e., 
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න|𝑌(𝜃, 𝜙)|ଶ sin(𝜃) 𝑑𝜃 𝑑𝜙 =
1

4𝜋
න sin(𝜃) 𝑑𝜃 𝑑𝜙 

Integrate over 𝜙 (∫ 𝑑𝜙 = 2𝜋) to get 

න|𝑌(𝜃, 𝜙)|ଶ sin(𝜃) 𝑑𝜃 𝑑𝜙 =
1

4𝜋
2𝜋 න sin(𝜃) 𝑑𝜃 

and since  

න sin(𝜃) 𝑑𝜃
ఏୀగ

ఏୀ

= −[cos(𝜃)]ఏୀ
ఏୀగ = −(−1 − 1) = 2 

we get 

න|𝑌(𝜃, 𝜙)|ଶ sin(𝜃) 𝑑𝜃 𝑑𝜙 =
1

4𝜋
2𝜋 ∗ 2 = 1   𝑄. 𝐸. 𝐷. 

Similarly: 

𝑙 = 1:  three states 

𝑌 ଵ,ଵ(𝜃, 𝜙) ≡ 𝑌ୀିଵ,ୀଵ(𝜃, 𝜙) = ඨ
3

8𝜋
sin(𝜃) exp(−𝑖𝜙) 

𝑌,ଵ(𝜃, 𝜙) ≡ 𝑌ୀ,ୀଵ(𝜃, 𝜙) = ඨ
3

4𝜋
cos(𝜃) 

𝑌ଵ,ଵ(𝜃, 𝜙) ≡ 𝑌ୀଵ,ୀଵ(𝜃, 𝜙) = ඨ
3

8𝜋
sin(𝜃) exp(𝑖𝜙) 

These expression seems difficult, but it is trivial to remember them 
(except for the normalization constants) once we realize that 

𝑥 = 𝑟 sin(𝜃) cos(𝜙) 
𝑦 = 𝑟 sin(𝜃) sin (𝜙) 

𝑧 = 𝑟 cos(𝜃) 
and therefore 

sin(𝜃) exp(−𝑖𝜙) =
𝑥 − 𝑖𝑦

𝑟
 

and therefore 

𝑌 ଵ,ଵ(𝜃, 𝜙) = ඨ
3

8𝜋
 
𝑥 − 𝑖𝑦

𝑟
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𝑌,ଵ(𝜃, 𝜙) = ඨ
3

4𝜋
 
𝑧

𝑟
 

𝑌 ଵ,ଵ(𝜃, 𝜙) = ඨ
3

8𝜋
 
𝑥 + 𝑖𝑦

𝑟
 

This strange combinations (x-iy,  x+iy) are there because we looked 
for the eigenstates of 𝐿ଶ (in this case with 𝑙 = 1, i.e., eigenvalue 
ℏଶ𝑙(𝑙 + 1) = ℏଶ ∗ 1 ∗ 2 = 2ℏଶ) that are also eigenvalues of 𝐿௭. 
Rotations around the axis: 
It turns out that such eigenstates are in a certain sense rotating 
around the z-axis;  
𝑌ଵଵ rotates counterclockwise, 
 𝑌 ଵ,ଵ rotates clockwise,  
and 𝑌ଵ does not rotate. 

More generally, we can think that: 

𝑌   𝑟𝑜𝑡𝑎𝑡𝑒𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 z 𝑎𝑥𝑖𝑠: 

 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑖𝑓 𝑚 > 0, 

  𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑖𝑓 𝑚 < 0 

𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑎 speed 𝑡ℎ𝑎𝑡ᇱ𝑠 ℎ𝑖𝑔ℎ𝑒𝑟 𝑎𝑠 |𝑚| 𝑔𝑟𝑜𝑤𝑠. 

Proof (sort of):   

𝜙  is the angle of rotations around the z-axis.  And the 𝜙 −dependent part 
of 𝑌(𝜃, 𝜙) is, as we learned, exp(𝑖𝑚𝜙). 

So if we include the time-dependent phase factor the time-dependent 

wavefunction is exp ቀ𝑖𝑚𝜙 −
ா௧

ℏ
ቁ  .   

This is reminiscent of exp൫𝑖(𝑘𝑥 − 𝜔𝑡)൯. 

Like there, here too the for phase in the exponent (in blue) to remain 
constant means 𝑚𝜙 − 𝐸𝑡/ℏ=0,  i.e., 𝜙 grows in time if m>0, i.e., a 
counterclockwise rotations 

(You may be confused since 𝜙 is a coordinate so how can it grow; all I 
mean for now is that the phase at one time at a value of phi will become, a 
little later in time, the phase at a slightly higher value of phi (if m>0)). 
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Real combinations: 
In chemistry, when solving the time-independent Schrodinger 
equation(to get molecular orbitals)  we don’t want to deal, unless we 
have to, with complex quantities.  Therefore, we’ll take linear 
combinations and define the real p states (of course, no relation to 
p the momentum operator) 

𝑌௫ଵ(𝜃, 𝜙) ≡
𝑌 ଵ,ଵ(𝜃, 𝜙) + 𝑌ଵ,ଵ(𝜃, 𝜙)

√2
= ඨ

3

4𝜋
sin(𝜃) cos(𝜙) = ඨ

3

4𝜋

𝑥

𝑟
 

𝑌௭ଵ(𝜃, 𝜙) ≡ 𝑌,ଵ(𝜃, 𝜙) = ඨ
3

4𝜋

𝑧

𝑟
  

𝑌௬ଵ(𝜃, 𝜙) ≡
−𝑌 ଵ,ଵ(𝜃, 𝜙) + 𝑌ଵ,ଵ(𝜃, 𝜙)

√2 𝑖
= ඨ

3

4𝜋
sin(𝜃) sin(𝜙) = ඨ

3

4𝜋

𝑦

𝑟
 

 
These are perfectly fine combinations, it is easy to prove that they are 
orthonormal; and since they are combination of eigenvalues of 𝑳𝟐 
with the same eigevanlue (𝑙 = 1, i.e., eigenvalue 2ℏଶ) they will also be 
eigenstates of 𝑳𝟐 with the same eigenvalue.   
But they are not (except for 𝑌௭ଵ(𝜃, 𝜙)) eigenstates of 𝐿௭ !  They don’t 
have a definite value of the z-angular momentum! 

To conclude let’s look quickly at this table, which includes also write the 𝑙 =

2 (i.e., “d”) states and 𝑙 = 3 (“f”) states. 

Note: d states involve product of two components from x,y,z,  
f states involve product of three terms from x,y,z 
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While here are real combinations of these states: 
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And here are some models for these states, where “s” is in front, then the 
Cartesian “p’s”, etc.4 

 

Now to conclude we note that these angular functions we introduced 
should be multiplied by the radial functions.     

For the “s” states there is no angular factor to multiply by (except for a 
constant 1/sqrt(4pi).  ) 

For the p states the multiplication cancels the “r” from the radial; function 
and the “1/r” in the Cartesian form of the angular function, for example 

𝜓ୀଵ,ୀଵ,ୀ(𝑟, 𝜃, 𝜙) = 𝑐𝑜𝑛𝑠𝑡.∗  𝑟 exp ൬−
𝑟

2𝑎
൰ ∗

𝑧

𝑟
 

𝜓ୀଵ,ୀଵ,ୀ(𝑟, 𝜃, 𝜙) = 𝑐𝑜𝑛𝑠𝑡.∗  exp ൬−
𝑟

2𝑎
൰ ∗ 𝑧 

The same for all other combinations. 

  

                                      
4 Taken from http://web.physics.ucsb.edu/~lecturedemonstrations/Composer/Pages/88.18.html, where I 
also took the tables from. 
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Operator Approach to Angular Momentum 

So far you learned that the solution to the blue equation a few pages ago,  

−ℏଶ

sin 𝜃

𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑔(𝜃)

𝜕𝜃
ቇ −

ℏଶ

sinଶ 𝜃
𝑚ଶ𝑔(𝜃) = 𝜆 𝑔(𝜃) 

yields that the eigenvalues are 𝜆 = −ℏଶ𝑙(𝑙 + 1).   

We could have shown it with quite a bit of differential equations solving-
skills.  But viewing it this way does a disservice to angular momentum, as it 
is hard to generalize (to many particles, spin etc.).  

I’ll therefore quickly enumerate the main steps over the more advanced and 
elegant operator approach to angular momentum.  The key will be that the 
properties we will find will depend only on the commutation relations: 

Let’s enumerate these properties (some of which we touched on earlier); 
we won’t prove many of them. 

The angular momentum operator is Hermitian 𝐿௫
ା = 𝐿௫, 𝑒𝑡𝑐 

Each element of the angular momentum does not commute with the 
other elements, ൣ𝐿௫, 𝐿௬൧ = −𝑖ℏ𝐿௭, etc. 

All individual elements do commute however with 𝑳𝟐,  

[𝐿ଶ, 𝐿௫] = ൣ𝐿ଶ, 𝐿௬൧ = [𝐿ଶ, 𝐿௭] = 0 

Conservation of the angular momentum is because the potential does 
not depend on the angle; formally it translates to  

[𝐻, 𝐿௫] = ൣ𝐻, 𝐿௬൧ = [𝐻, 𝐿௭] = [𝐻, 𝑳𝟐] = 0 

Properties (ii) and (iii) imply that we cannot find a complete common 
set of eigenfunctions of 𝐿௭ ajnd 𝐿௫ 𝑜𝑟 𝐿௬, but we can find a set of 

eigfenfunctionof 𝐿ଶ and one of the compoents, tradinally taken as 𝐿௭ 
These eigenfunctions will fulfill therefore 

𝐿ଶ𝑌 = 𝜆𝑌 

𝐿௭𝑌 = 𝑚ℏ𝑌 
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Because 𝐿௫ has real eigenvalues, 𝐿௫
ଶ  is positive definitie, as is 𝐿௬

ଶ .  

This implies that the eigenvalues of 𝐿ଶ − 𝐿௭
ଶ = 𝐿௫

ଶ + 𝐿௬
ଶ  are positive.  

This implies that the eigenvalue of the total angular momentum is 
higher or equal to the square of the eigenvalue of 𝐿௭: 

𝜆 ≥ 𝑚ଶℏଶ 
The next stage will be to do something similar to the ladder for 
Harmonic oscillators.  I.e., we define a raising operator 

𝐿ା ≡ 𝐿௫ + 𝑖𝐿௬ 

     and its Hermitian conjugate, the lowering operator 

𝐿ି ≡ 𝐿௫ − 𝑖𝐿௬ 

The raising operator does not change the energy of the state it acts on 
(unlike in the harmonic oscillator case).  But  

it raises m by 1 (keeping 𝝀 fixed).  I.e., it raises the angular 
momentum in the z direction, keeping the total angular momentum 
fixed.    
And it multiplies the resulting state (with m+1) by an important factor, 

ඥ𝜆 − ℏଶ𝑚(𝑚 + 1), i.e. 

Similarly, the lowering operator 

Lowers  m by 1 (keeping ; 𝝀 fixed). 

Multiplies the state with (m-1) by ඥ𝜆 − ℏଶ𝑚(𝑚 = 1) 

So now comes an argument analogous to the ladder in the harmonic 
oscillator:  given any m, we can make a state, with the same 𝜆, but  with 
m+1, m+2, m+3, … 

Eventually m will be so 𝑚ଶℏଶ will be bigger than 𝜆! 

The only solution, as in the Harmonic oscillator case, is that when acting 
with 𝐿ା on the highest state possible for a given 𝜆, (a state we’ll label as 
𝑚௧) we’ll get a zero!  

But we know what the factor is (I wrote it above), so we can write it: 

ට𝜆 − ℏଶ𝑚௧൫𝑚௧ + 1൯ = 0 
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i.e., 

𝜆 = ℏଶ𝑙(𝑙 + 1) 

And 

𝑚௧ = 𝑙 

Furthermore, if we apply the lowering operator on a state with a given m, 
we’ll go to m-1,m-2,m-3,…. and since m could be negative eventually we 
will reach a state with a large negative m such that ℏଶ𝑚ଶ > 𝜆 unless 
applying 𝐿ି on the lowest possible state, 𝑚௧will give 0. 

I.e., in addition to the equation above we’ll need  

ඥ𝜆 − ℏଶ𝑚௧(𝑚௧ − 1) = 0 

The only way for this to be true is  

𝑚௧ =  −𝑚௧ 

But since when we move from one m to the other we step down by an 
integer, it must be that 

𝑚௧ − 𝑚௧ = 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 

i.e., 

2𝑚௧ = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

i.e., 

2𝑙 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 
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MADE-UP EXAMPLES. 

Let’s make up numbers, so you can see.  I’ll use atomic units, ℏ = 1 , for 
simplicity. 

Say we had 𝜆 = 32.6  (a made up value, which you’ll soon see is 
impossible). 

And say there was a state with 𝑚 = −1.3  (again, a made up value which is 
impossible, you’ll soon see). 

Then we can make using a lowering operators several times, states with 

𝑚 = −2.3, −3.3, −4.3, −5.3,   − 6.3 , …   

And by applying the raising operator, we’ll have states with 

𝑚 = −0.3, 0.7, 1.7, 2.7, 3.7, 4.7, 5.7, 6.7, … 

Well, that creates a problem! Since 𝑚ଶ for the state with m=5.7 is already 
high (5.7ଶ =32.49), i.e., higher than  𝜆. 
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So we may think that all we have to do is change 𝜆, to be for example, 
5.7ଶ =32.49. 

But that won’t work, since when we use the negative m, we get that the 
most negative m we have on the list already has  

𝑚௧
ଶ =  (−6.3)ଶ > 32.49,     𝑖. 𝑒.,  

𝑚௧
ଶ > 𝜆 

So the only way to have a solution will be for 𝑚 to be either  

𝑚 = 0, ±1, ±2 

Or 

𝑚 = ±
1

2
, ±

3

2
, …. 

As shown in the figure, and therefore 

𝜆 = ℏଶ𝑙(𝑙 + 1) 

𝑙   𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑜𝑟 ℎ𝑎𝑙𝑓 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

|𝑚| ≤ 𝑙 
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Some comments on angular momentum 

Before going on to spin (which is also a form of angular momentum) note a 
few important points: 

Never confuse 𝜙 in the spherical coordinates with 𝜙 used for 
eigenfunctions… not enough letters in the alphabet! 
Angular momentum is related to rotation.  We see it in  

𝐿௭ = −𝑖ℏ
𝜕

𝜕𝜙
 

and a derivative is related to difference, i.e., change. 
This implies (with some math) that when a wavefunction is rotated, or 
when the axis are rotated, the components of 𝑳 are invoved. 
Since the components of 𝑳 don’t commute among themselves, they 
cannot share the same list of eigenfunctions.   
We can prove this in general, before seeing implications 
Two operators that share the same eigenfunction must commute. 
Proof:   
If 𝐴, 𝐵 share the same eigenfunctions, 𝜙(𝑥), with eigenvalues 𝑎 , 𝑏 
then a general function 𝑓(𝑥) can be written (assuming the set of 
eigenfunctions is complete) as  

𝑓 =  𝑐𝜙



 

Therefore: 

𝐴𝐵𝑓 = 𝐴(𝐵𝑓) = 𝐴 ൭𝐵  𝑐𝜙



൱ = 𝐴 ൭ 𝑐𝐵𝜙



൱ = 𝐴 ൭ 𝑐𝑏𝜙



൱

= ൭ 𝑐𝑏𝐴𝜙



൱ 

i.e., putting back the coordinates so we remember what are constants 
and what are functions (or vectors) 

𝐴𝐵𝑓(𝑥) =  𝑐𝑏𝑎𝜙(𝑥)



 

Clearly we’ll get the same result if we were to apply it in the reverse order, 
𝐵𝐴𝑓, i.e., 
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𝐴𝐵𝑓 = 𝐵𝐴𝑓 

i.e., 

[𝐴, 𝐵]𝑓 = 0 

Since f is a general function, it proves that in general 

[𝐴, 𝐵] = 0 

END OF PROOF. 

The implications are here that, for example, 𝐿௫ and 𝐿௭ don’t share the same 
list of eigenfunctions. 

This is easy to see, e.g., look at the “pz” eigenstate of 𝐿௭, i.e., 

𝑌ଵ(𝜃, 𝜙) = ඨ
3

4𝜋

𝑧

𝑟
 

(i.e., 𝐿௭𝑌,ଵ = 0 ∗ 𝐿,ଵ, i.e., a state with m=0, i.e., an eigenstate of 𝐿௭ with 
eigenvalue 0.) 

Clearly, the eigenstate of 𝐿௫ with eigenvalue 0 must be “px”, i.e., 𝑥/𝑟  

But recall that  

𝑌±ଵ,ଵ(𝜃, 𝜙) = ඨ
3

8𝜋

𝑥 ± 𝑖𝑦

𝑟
 

so 

ඨ
3

4𝜋

𝑥

𝑟
=

𝑌 ଵ,ଵ(𝜃, 𝜙)

√2
+

𝑌ଵ,ଵ(𝜃, 𝜙)

√2
 

i.e., “px”, a state with an eigenvalue 0 for 𝐿௫ ,is a specific combination of: 
             a state with an +1 ∗ ℏ eigenvalue  𝐿௭ , and  
             a state with eigenvalue −1 ∗ ℏ of 𝐿௭. 

 I.e., the eigenfunction of one operator 𝐿௫ is not the eigenfunction of 
another operator, 𝐿௫ 
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Meaning of rotation – interaction with magnetic field 

Finally, I want to come back to the meaning of 𝑚 < 0 or 𝑚 > 0. 

Let’s say we have a magnetic field.  Classically, this magnetic field will 
interact with rotating currents; 

Therefore, a magnetic field (B) would raise or lower the energy of particle 
that rotates clockwise or anticlockwise around the axis of the magnetic 
field. 

So if we have a magnetic field then this field will interact differently with 
wavefunction that’s rotating clockwise, not rotating, or rotating 
anticlockwise. 

Formally, the interaction will be of the form 

𝑐𝑜𝑛𝑠𝑡.∗ 𝑩 ⋅ 𝑳 

So if we define the z-axis to be along the field (𝑩 = 𝐵௭𝒛ො), then the field will 
be: 

𝑐𝑜𝑛𝑠𝑡.∗ 𝐵௭𝐿௭ 

So you see that when acting on 𝑌(𝜃, 𝜙)states then the energy will be  

𝑐𝑜𝑛𝑠𝑡.∗ 𝐵௭ 𝑚 

i.e., the energies will split (be different for different m states).  This 
(“Zeeman”) split is small, but it could be measured.  We’ll talk about  a 
similar split when we talk about spin and about perturbation theory. 

Adding up angular momenta 

This is a very important subject. 

BTW, we’ll use atomic units (ℏ = 1) in this section 

Angular momentum addition crops up in three major places 

Adding up the angular momenta of two particles, labeled I and II;  
𝑳𝒕𝒐𝒕 = 𝑳(𝑰)+𝑳(𝑰𝑰); for examples, what is the angular mometa of a 
molecular where the only contribution to the angular momenta are 
from two electrons, on with 𝑙ூ = 4 and the other with 𝑙ூூ = 1. 
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First of all, the sum of two angular momenta for each particle is also 
an angular momentum operator, i.e., it satisfies for example 

claim:   [𝐿௫
௧௧ , 𝐿௬

௧௧] = 𝑖ℏ𝐿௭
௧௧ 

This is because the angular momenta for one particle and for the 
other commute, e.g.,  ൣ𝐿௫

ூ , 𝐿௬
ூூ൧ =0 (they involve coordinate and 

derivatives of two different particles, so the derivative w.r.t. the 
position of one does not affect the coordinate other).  Therefore 

[𝐿௫
௧௧ , 𝐿௬

௧௧] = ൣ𝐿௫
ூ + 𝐿௫

ூூ , 𝐿௬
ூ + 𝐿௬

ூூ൧ = 

= ൣ𝐿௫
ூ , 𝐿௬

ூ ൧ + ൣ𝐿௫
ூ , 𝐿௬

ூூ൧ + ൣ𝐿௫
ூூ , 𝐿௬

ூ ൧ + ൣ𝐿௫
ூூ , 𝐿௬

ூூ൧ = 

𝑖ℏ𝐿௭
ூ + 0 + 0 + 𝑖ℏ𝐿௭

ூூ 
= 𝑖ℏ𝐿௭

௧௧     𝑄. 𝐸. 𝐷. 

Because the angular momentum fulfills the commutation relations, it also is 
guaranteed to have integer values of 𝑙௧௧, i.e., the eignevalues of 𝑳𝒕𝒐𝒕

𝟐  will be 
ℏଶ𝑙௧௧(𝑙௧௧ + 1), etc.  Further 

𝑚௧௧ = 𝑚ூ + 𝑚ூூ 

 and 

−𝑙௧௧ ≤ 𝑚௧௧ ≤ 𝑙௧௧ 

 What values will 𝒍𝒕𝒐𝒕 take? 

It turns out the allowed values, here and in the other case, are the 
same as in classical addition of vectors, i.e., for two vectors which 
can point each in any direction, the length of their sum can range 
between the sum of their value to the difference in their value, i.e., 
classically if we add a “red” and “brown” vector to get a “blue” vector 

𝑳 = 𝑳𝑰 + 𝑳𝑰𝑰 

Then   the length of the blue vector is within the range: 

ቚห𝑳𝑰ห − ห𝑳𝑰𝑰หቚ ≤ | 𝑳| ≤ ห𝑳𝑰ห + ห𝑳𝑰𝑰ห 

(see picture) 
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Quantally the same rule (known as the triangle rule) applies 
|𝑙ூ − 𝑙ூூ| ≤ 𝑙௧௧ ≤ 𝑙ூ + 𝑙ூூ 

So in our case ( 𝑙ூ = 4 , 𝑙ூூ = 1)  3 ≤ 𝑙௧௧ ≤ 5,

𝑖. 𝑒. , 𝑖𝑡𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 3,4,5. 
Next, turn to adding up the orbital angular momenta (𝑳 = 𝒓 × 𝒑)that 
we learned about, together with angular momenta due to spin (𝑺), 
which as we’ll see in the next chapter, has only one possible 

eigenvalue, 𝑠 =
ଵ

ଶ
  (i.e., the eigenvalue of 𝑺𝟐  is  

ℏଶ ∗
1

2
∗ ൬

1

2
+ 1൰ =

3

4
ℏଶ 

The total angular momentum is labeled 𝑱 = 𝑳 + 𝑺.  We’ll see that the 

eigenvalue of the spin from one electron is 𝑠 =
ଵ

ଶ
  (no relation of this 𝑠 

to yhe “1s” , “2s”, etc).   So say 𝑙 = 4,  what’s the allowed values of 
J? 
The triangle rule is valid here too, telling us that 

3.5 ≤ 𝑗 ≤ 4.5 
i.e., 𝑗 = 3.5 or 𝑗 = 4.5 (the eigenvalues have to be shifted by 1, which 
we won’t prove, so 𝒋 = 𝟒 is not allowed). 
Adding up two spins  (spin for one electron and for another): same 
story. 

𝑠ூ =
1

2
,      𝑠ூூ =

1

2
,    

 And therefore the total spin is: 

𝑠 = ൬
1

2
−

1

2
൰   or   ൬

1

2
+

1

2
൰     𝑖. 𝑒, 0  or 1. 
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   i.e., either: 

𝑠 = 0 → 𝑠௭ = 0  

𝑠 = 1 →   𝑠௭ = −1,0,1    

If the two spins add up to a total spin of 0, we’ll call this singlet (since only 
one value of 𝑠௭ is present) 

And when the two spins add up to a total spin of 1, it’s a triplet (three 
values of 𝑠௭ possible). 

We’ll construct the explicit eigenfunctions of the total spin for this case in 
the next chapter. 
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SPIN 

When a beam of electrons is passed through a magnet some will be 
repelled and some will be attracted. 

This points out that there’s an underlying angular momentum “spin” to the 
electrons, since we said earlier that the interaction of a magnetic field with 
a system is of the form 

𝑐𝑜𝑛𝑠𝑡. 𝑩 ⋅ 𝑳 

Since the beam splits to two sub-beams, we need to have an angular 
momentum with only two eigenvalues, i.e.,  

𝑠 =
1

2
 

𝑠௭ = −
1

2
,   +

1

2
 

This is exactly the ½ integer angular momenta we talked about. 

But it turns out we cannot find internal coordinates for the spin of the 
electron (i.e., an electron is not a rigid three-D body where it is meaningful 
to talk about it spinning around). 

Instead, we’ll have to be content with a matrix description.  

That’s ok since we learned before that any function can be described in 
terms of a basis set times coefficients. 

I.e., when we describe a function 𝑓(𝑥) we can talk about 𝑓(𝑥) or the 
expansion coefficients 𝑓 in terms of an orthogonal basis, 𝑓(𝑥) =
∑ 𝑓𝜙(𝑥) . 

So here we will say that an electron spin wavefunction (or more precisely 
the spin part of the wavefunction) can be written as a linear combination of 
“spin-up” and “spin-down” states.   

What do we mean by up and down? That’s relative to a specific axis, i.e., 
as we’ll see later an “up” for one axis is not “up” for another axis, just like a 
2pz function is not an m=0 function if we measure relative to another axis. 
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So anyway, choose an axis (usually we use the z-axis), and then we’ll write 
in abstract notation two states, a spin up state denoted usually as 𝛼,  

|𝛼⟩ ≡ ฬ𝑠௭ =
1

2
 

And an analogous spin-down state 

|𝛽⟩ ≡ ฬ𝑠௭ = −
1

2
 

Any spin wavefunction could be written as a linear combination 

𝑐ା|𝛼⟩ + 𝑐ି|𝛽⟩ 

i.e., a spin wavefunction can be represented as a length-two vector 

ቀ
𝑐ା

𝑐ି
ቁ 

That’s as far as the wavefunction.  But what’s the spin operator,  S?  

Well each of the spatial components of S (i.e., 𝑆௫, 𝑆௬ , 𝑆௭) needs, when it 
acts on a spin wavefunction to produce another wavefunction, i.e., if we 
use the language of column vectors and matrices, it needs to take a length-
2  column vector and transform it to another column vector. 

I.e., 𝑆௭, the z-part of the spin- angular momentum, needs to be a 2*2 
matrix (or more formally it can be represented by a 2*2 matrix).  

It is easy to see what it is.  If acting on a spin-up, 𝑆௭ should give back the 

same spin-up eigenfunction times the value of spin up, i.e., times ℏ ∗
ଵ

ଶ
 

i.e., the matrix 𝑆௭ acting on a spin up should yield 

𝑆௭ ቀ
1
0

ቁ =
ℏ

2
ቀ

1
0

ቁ 

And similarly for spin-down 

𝑆௭ ቀ
0
1

ቁ = −
ℏ

2
ቀ

0
1

ቁ 

This implies immediately that 
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𝑆௭ =
ℏ

2
 ቀ

1 0
0 −1

ቁ 

When I was at your stage I was very confused by this statement.   

What does it mean that 𝑆௭ is a matrix? 

All it means actually is something very simple: in the basis which uses spin 
up and spin down along the z-axis, the action of the “formal” 𝑆௭ operator, 
i.e., the operator of the spin along the z-axis, can be represented by the 
yellow matrix above. 

Next, to 𝑆௫, 𝑆௬.  We need to find what their value should be.  Well, we know 
that they need to fulfill the commutation relation for angular momenta, 
which are 

ൣ𝑆௫, 𝑆௬൧ = 𝑖ℏ𝑆௭ 

And similarly (rotate the indices as usual, 𝑥 → 𝑦 → 𝑧 → 𝑥) 

ൣ𝑆௬, 𝑆௭൧ = 𝑖ℏ𝑆௫ 

ൣ𝑆௬ , 𝑆௫൧ = 𝑖ℏ𝑆௬ 

Pauli worked out the math and in turns out that the matrices which fulfill 
these relations (i.e., the matrices representing 𝑆௫, 𝑆௬) are 

𝑆௫ =
ℏ

2
 ቀ

0 1
1 0

ቁ 

𝑆௬ =
ℏ

2
 ቀ

0 −𝑖
𝑖 0

ቁ 

Note  

These spin matrices are Hermitian, as they should be for measurable 
operators. 
Let’s check, for example, whether  ൣ𝑆௫, 𝑆௬൧ = 𝑖ℏ𝑆௭ is fulfilled; we 
worked it out for operators but the same relation works for matrices, 
so: 

ൣ𝑆௫, 𝑆௬൧ =
ℏ

2
 ቀ

0 1
1 0

ቁ
ℏ

2
 ቀ

0 −𝑖
𝑖 0

ቁ −
ℏ

2
 ቀ

0 −𝑖
𝑖 0

ቁ ቀ
0 1
1 0

ቁ 
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=
ℏ

2

ℏ

2
ቆቀ

𝑖 0
0 −𝑖

ቁ − ቀ
−𝑖 0
0 𝑖

ቁቇ = 𝑖ℏ
ℏ

2
ቀ

1 0
0 −1

ቁ = 𝑖ℏ𝑆௭     𝑄. 𝐸. 𝐷. 

The other light-blue relations can be shown similarly. 

Let’s check on this simplest of cases (smallest angular momentum 
possible) what we wrote earlier on raising and lowering operators 
works.  For example, we said that the raising operator is 

𝑆ା ≡ 𝑆௫ + 𝑖𝑆௬ 
Which in this case will be 

𝑆ା ≡
ℏ

2
ቀ

0 1
1 0

ቁ + 𝑖
ℏ

2
 ቀ

0 −𝑖
𝑖 0

ቁ =
ℏ

2
ቀ

0 1
1 0

ቁ +  
ℏ

2
ቀ

0 1
−1 0

ቁ = ቀ
0 ℏ
0 0

ቁ 

And indeed when we act with the raising operator on a spin down state we 
get a spin up state 

𝑆ା ቀ
0
1

ቁ = ቀ
0 ℏ
0 0

ቁ ቀ
0
1

ቁ = ቀ
ℏ
0

ቁ 

But when we act on spin up state the result vanishes, as it should (we 
cannot raise a single-electron spin state above spin up) 

𝑆ି ቀ
1
0

ቁ = ቀ
0 ℏ
0 0

ቁ ቀ
1
0

ቁ = ቀ
0
0

ቁ    𝑄. 𝐸. 𝐷 

Interlude: Angular-momentum related Interactions in atoms. 

In addition to the dominant electron-nucleus electrical interaction, there are 
several weaker interaction that need to be considered. 

We’re generally considering three such static interactions at present (later 
we’ll consider also interactions with an oscillating electric field). 

They are due to the interaction of magnetic fields with currents.  Currents 
relate to angular momentum (which is an operator related to angular 
motion). 

(i) So the first is orbital-angular-momentum interaction with a magnetic 
field: 

𝐻ை.. = −𝑐𝑜𝑛𝑠𝑡.∗ 𝑳 ⋅ 𝑩 

(where “O.B.” means the interaction of the Orbital angular momentum with 
the magnetic field).  And I include the minus, which ensures that if the m-
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state (in an axis parallel to B) is positive, i.e., L is in some sense along B 
(and not anti-parallel to it) then the energy will decrease, i.e., will be more 
negative so preferable. 

(ii)   Then there’s a similar interaction with the spin  

𝐻ௌ.. = −𝑐𝑜𝑛𝑠𝑡.∗ 𝑺 ⋅ 𝑩 

As you can imagine the constants in the 𝐻ை.. , 𝐻ௌ.. interactions are quite 
similar.   

Similarly, note the 𝐻ௌ has the minus so a spin parallel to B (and not 
antiparallel to it) will be preferable (i.e., have lower energy). 

(iii) And finally, the orbital angular momentum itself creates, as it is a 
current, a magnetic field, and this magnetic field interacts with the spin (and 
of course this could be viewed the opposite, i.e., the spin current creates a 
magnetic field which interacts with the orbital angular momentum; or simply 
we know from magnetic theory that two currents will interact.   

At any rate, this leads to the spin orbit interaction. 

Turns out this interaction also depends strongly on the type of atom, due to 
a dependence on the distance from the nucleus, etc. 

𝐻ௌை = −𝑐௧𝑺 ⋅ 𝑳 

You notice the spin orbit interaction is an internal interaction, i.e., exists 
regardless of whether there’s an external field.  It is negligible for light 
atoms, but for heavy atoms, due to relativistic effects, it is very large and 
affects the spectrum of transition metals.  We’ll deal with parts of it below 
and parts at the end. 

END OF INTERLUDE 
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Spin Measurement 

Spin measurement is a very simple way to see quantum measurement at 
action. 

(I) First, a single measurement: 

Pass in a strong magnetic field 𝑩 a beam of hydrogen atoms  

They are all at their ground state, so 𝑙 = 0 so we don’t have to worry about 
magnetic-field interaction with 𝑳 (i.e., the 𝑳 ⋅ 𝑩 term is zero). 

But there is a strong 𝑺 ⋅ 𝑩 interaction. 

If the magnetic field is along the z-axis, then electrons with spin up will go 
towards the field, and electrons with spin down will go away 

I.e., a beam with a magnetic field is a measurement device which 
measures the spin component along the magnetic field. 

Say initially we had an unpolarized beam and the field is along the z-axis. 

Then after passing through the magnetic field ½ the atoms in average will 
have |𝛼⟩ state, i.e., be spin up (along z). And they will be deflected one way 
(say to the right, if the z-axis is horizontal and positive to the right).  

And another ½ will have|𝛽⟩ and be deflected the other way. 

So if an electron initially had a spin wavefunction of say,  
0.8|𝛼⟩ − 0.6 ∗ 𝑖 ∗ |𝛽⟩ 

(I am just making some numbers up) 

Then there’s a 𝟎. 𝟔𝟒 = 𝟎. 𝟖𝟐 chance that it will end up to the the right, with a 
spin wavefunction of  |𝛼⟩ 

and 0.36 chance that it will end up to the left with a spin off  |𝛽⟩ 

But it will not stay in the middle! It must make a choice! – our device 
measures the spin! 

Now a consecutive measurement 

Now we take the electrons that went to the right.  All of them have spin up,   
|𝛼⟩, which we write also as 
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ቀ
1
0

ቁ 

 

Now pass them through another region where the magnetic field is along 
the x axis,(i.e., 𝐵௫ is positive, the rest are zero). 

This field will split this right beam to two sub-beams, one that has spin-up 
along the x-axis, one that has spin-down along the x-axis!!! 

The electrons, which are in spin state |𝛼⟩ (associated with spin-up along 
the z-axis) are not in an eigenstate of 𝑆௫. 

The eigenstates of 𝑆௫ are easily shown to be (in the |𝛼⟩, |𝛽⟩ basis): 

⎝

⎜
⎛

1

√2
1

√2⎠

⎟
⎞

 

And 

⎝

⎜
⎛

1

√2

−
1

√2⎠

⎟
⎞

 

i.e., we can write them a 

|𝛼⟩ + |𝛽⟩

√2
:     𝑠𝑝𝑖𝑛 − 𝑢𝑝 − 𝑎𝑙𝑜𝑛𝑔 − 𝑥 

 
|𝛼⟩ − |𝛽⟩

√2
:       𝑠𝑝𝑖𝑛 − 𝑑𝑜𝑤𝑛 − 𝑎𝑙𝑜𝑛𝑔 − 𝑥 

 

The electrons which enter the 2nd magnetic-field region therefore with spin 

|𝛼⟩, must make a choice – some of them will end up with 
|ఈ⟩ା|ఉ⟩

√ଶ
, some with 

 
|ఈ⟩ି|ఉ⟩

√ଶ
.   
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How many? From symmetry we can guess ½ and ½ (i.e., ¼ and ¼ of the 
original beam). 

Indeed, to find out how many we need to take the electron wavefunction 
(as the entrance to the second magnetic field), and calculate the absolute-
value of its overlap with the eigenstate, i.e., 

Prob. for the spin to point eventually along the positive x-axis= square of 
overlap of the associated eigenstate of Sx 

⎝

⎜
⎛

1

√2
1

√2⎠

⎟
⎞

 

with the initial post-first-beam spin wavefunction 

ቀ
1
0

ቁ 

i.e., the overlap will be 

ฬ1 ∗
1

√2
+ 0 ∗

1

√2
ฬ

ଶ

=
1

2
 

So indeed ½ of the post-first-field beam will emerge with spin parallel to the 
positive x-axis. 

LONG Exercise: let’s repeat this exercise if the magnetic field in the 2nd 
stage points along an axis we’ll label as d, in the x-z plane at 60 degrees to 
the positive x and 30 degrees to positive z axis. 

(i.e., the first magnetic field points along the z-axis; the 2nd along the d 
axis). 

For the exercise we’ll need to determine the eigenstates of the associated 
spin-operator. 

Remember that we said that the spin is a vector, and found out what 𝑆௫ and 
𝑆௭ are (and 𝑆௬ , irrelevant here). 

So the spin along the d axis must be a (normalized) combination of these 
two vector components. 
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We know that a unit vector along d has components 

𝒅 = cos(30) 𝒙ෝ + cos(60) 𝒛ො =
√3

2
𝒙ෝ +

1

2
𝒛ො 

So 

𝑆𝒅 = cos(60) 𝑆௫ + cos(30) 𝑆௭ 

i.e., 

𝑆𝒅 =
1

2
𝑆௫ +

√3

2
𝑆௭ =

1

2

ℏ

2
 ቀ

0 1
1 0

ቁ +
√3

2

ℏ

2
ቀ

1 0
0 −1

ቁ 

i.e., 

𝑆𝒅 = ℏ

⎝

⎜
⎛

√3

4

1

4

1

4
−

√3

4 ⎠

⎟
⎞

. 

To simplify, let’s use atomic units, where ℏ = 1, so  

𝑆ௗ =

⎝

⎜
⎛

√3

4

1

4

1

4
−

√3

4 ⎠

⎟
⎞

 

What are the eigenvalues and eigenfunctions of this operator?  Actually, we 

know the eigenvalues.  They must be 
ଵ

ଶ
 and −

ଵ

ଶ
 !  This is because we are 

looking at the spin operator along a given direction, and the spin along one 
direction cannot be fundamentally different than the spin along another, i.e., 
we should get the same measurable values, i.e., eigenvalues. 

Let’s check that – I remind you of what you learned in linear algebra, i.e., 
for 𝛾 to be an eigenvalue of the matrix 𝑆ௗ, the determinant of 𝑆ௗ − 𝛾𝐼 must 
vanish! 
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0 = det(𝑆ௗ − 𝛾𝐼) = det

⎝

⎜
⎛

√3

4
− 𝛾

1

4

1

4
−

√3

4
− 𝛾

⎠

⎟
⎞

 

0 = ቆ
√3

4
− 𝛾ቇ ቆ−

√3

4
− 𝛾ቇ −

1

4

1

4
 

0 = 𝛾ଶ −
3

16
− ൬

1

4
൰

ଶ

  

0 = 𝛾ଶ −
4

16
 

i.e., 

𝛾 = ±
1

2
 

as we predicted! 

Now we can determine the eigenstates of 𝑆ௗ , as promised.   

Take 𝛾 =
ଵ

ଶ
, i.e., spin up when measured along the d direction.  That’s the 

eigenvector we’re interested in, since our measurement will be to find the 
proportion of particles that will emerge with spin up. 

Write the eigenvector as the first column 

𝑣 ≡ ቀ
𝑣ଵ

𝑣ଶ
ቁ 

So we know that 

𝑆ௗ𝑣 = 𝛾𝑣 =
1

2
𝑣 

i.e., 

⎝

⎜
⎛

√3

4

1

4

1

4
−

√3

4 ⎠

⎟
⎞

ቀ
𝑣ଵ

𝑣ଶ
ቁ =

1

2
ቀ

𝑣ଵ

𝑣ଶ
ቁ 
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Let’s look at the first row of the resulting equation 

√3

4
𝑣ଵ +

1

4
𝑣ଶ =

1

2
𝑣ଵ 

i.e., 

ቆ
√3

4
−

1

2
ቇ 𝑣ଵ +

1

4
𝑣ଶ = 0 

i.e., 

𝑣ଶ = 2 − √3 

So one choice could be, for example, choosing 𝑣ଵ = 1 and then 

ቀ
𝑣ଵ

𝑣ଶ
ቁ = ൬

1

2 − √3
൰ = ቀ

1
0.268

ቁ 

But that choice is not normalized so we need to divide by √1 + 0.268ଶ =

1.035 , i.e., 

𝑣 =
1

1.035
ቀ

1
0.268

ቁ = ቀ
0.966
0.255

ቁ 

I.e., we can think of a spin-up along d as being 

0.966|𝛼⟩ + 0.255|𝛽⟩ 

So therefore when particles come after the first detector with spin up along 
z, i.e., with spin state |𝛼⟩, the probability to emerge with spin-up along d will 
be the overlap-squared, i.e., 

overalp − squared of:  𝟎. 𝟗𝟔𝟔|𝛼⟩ + 𝟎. 𝟐𝟓𝟓|𝛽⟩    𝒘𝒊𝒕𝒉  |𝛼⟩ 

i.e., 

𝑃 = (0.966)ଶ = 0.933 

So 93% of the particles that enter the second detector (and all have spin up 
along 𝒛ො) will emerge from the second dector with spin up along d. 

I.e., since ½ only emerged from the 1st detector with spin up, we get that 
the total probability to: 

1) leave the 1st detector with spin up along 𝒛ො and then 
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2) emerge from the 2nd detector with spin up along 𝒅 

Will be  

1

2
∗ 0.933 = 46.6% 

Exercise: 

If now, after 46.6% of the particles emerge from the 2nd detector with spin 
up along d, and we add another measurement, this time again along z, how 
many particles will emerge with spin down along z? (i.e., spin up along z, 
then up along d, then down along z?) 

Answer: I leave it to you show that the answer is 

0.258ଶ = 0.067 

of the particles that enter the 3rd stage, i.e., 

0.466 ∗ 0.067 = 0.03125 

i.e., 3% of all particles 

Next back to chemistry: triplets and singlets! 
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Spin triplets and singlets: Pauli principle and 
Hund’s rules. 

The most important aspect of spins to chemistry is, of course that because 
of them two electrons can be in the same spatial state (otherwise H and B 
would have been a closed-shell entities, as they would have filled the 1S 
and the 2s-2p shells – but in reality it is He and Ne, of course) 

The essential principle guiding the placement of electrons in shells is the 
Pauli principle, which states 

The wavefunction of the full system is completely antisymmetric w.r.t. 
exchanging two electrons. 

Let’s see what this tells us on He. 

In He, to a good approximation, the two electrons (which we’ll label as “1” 
and “2” _are in the same “1s” spatial state.  (again, this 1s has nothing to 
do with spin, it just refers historically to l=0). 

 So if we were to exchange electron ‘1” and “2” then  just the spatial part 
would not change , i.e., it would be symmetric under exchange.  So where’s 
the “minus”? where’s the antisymmetry? 

It is in the spin part!  So let’s talk about: 

Spin combinations: 

Give electron 1 and electron 2, how do we write the spin state of each? 

Notation can be cumbersome, but I’ll use following notation: order the spin 
states and put in a bra-ket.  And at times label with the electron. 

I.e., 

|𝛽ଵ𝛼ଶ⟩ 

or just 

|𝛽𝛼⟩ 

will mean that the 1st electron is down (in sate |𝛽⟩) and the 2nd one is up. 
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(Similarly for 3 electrons,  |𝛽𝛼𝛽⟩ will mean that the 1st and 3rd electrons 
have spin down, and the 2nd has spin up). 

Now, let’s look (for 2 electrons) for spin combinations that are completely 
antisymmetric: 

Antisymmetric (“singlet”):   

Singlet:    
|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
 

Proof: when we exchange 1 and 2, then |𝛽𝛼⟩ becomes |𝛼𝛽⟩  (i.e., instead 
of electron 1 being in spin-down, it is in spin-up now, etc.), so 

Exchange ቆ  
|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
 ቇ =     

|𝛽𝛼⟩ − |𝛼𝛽⟩

√2
= − ቆ  

|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
 ቇ 

Side note:  The √2 is for normalization: 

  Norm sqaured of ቆ
|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
ቇ =   

⟨𝛼𝛽| − ⟨𝛽𝛼|

√2
 ⋅

|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
 

=
1

2
(⟨𝛼𝛽|𝛼𝛽⟩ − ⟨𝛽𝛼|𝛼𝛽⟩ − ⟨𝛼𝛽|𝛽𝛼⟩ + ⟨𝛽𝛼|𝛽𝛼⟩ ) 

=
1

2
(1 − 0 − 0 + 1) = 1          𝑄. 𝐸. 𝐷. 

Note: ⟨𝛽𝛼|𝛼𝛽⟩=0   since it means – overlap  of  
(spin-down for electron 1 and spin-up for electron 2) with  
(spin-up for electron 1 and spin-down for electron 1),  

Which is 0, as spin-down for electron 1 has zero overlap with spin-up for 
electron 1, etc. 

END OF SIDE NOTE 

Symmetric: Similarly, we’ll have three (triplet) states that are 
completely symmetric states 

Triplet states: 

 |𝛼𝛼⟩,        
|𝛼𝛽⟩ + |𝛽𝛼⟩

√2
,         |𝛽𝛽⟩ 
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It is trivial to see that it we exchange particles 1 and 2 these states 
don’t change, i.e., they are symmetric w.r.t particle exchange.  Let’s 
see on the middle one:  

Exchange ቆ  
|𝛼𝛽⟩ + |𝛽𝛼⟩

√2
 ቇ =     

|𝛽𝛼⟩ + |𝛼𝛽⟩

√2
= ቆ  

|𝛼𝛽⟩ + |𝛽𝛼⟩

√2
 ቇ    𝑄. 𝐸. 𝐷. 

Ground and Excited Helium wavefunction: 

Now that we have the anti-symmetric spin combinations, we see that we 
can write the w.f. of the full 2-electron system as (again, not exactly but 
to a good approximation)  

Ψୌ,୰୭୳୬ୢ = 𝜙ଵ௦(𝒓ଵ)𝜙ଵ௦(𝒓ଶ) 
|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
 

(where the 1s function is essentially what we discussed for H, although it 
may look a little different, a little compressed/stretched – we’ll discuss that 
later). 

What about the excited states? 

Let’s excite one electron from 1s2s.  (We won’t worry now about 
excitations from 1s2p, although those are similar) 

I.e., before symmetrization we’ll want something like: 

Ψୌୣ
∗ (𝑛𝑜𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑎𝑛𝑡𝑖 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) = 𝜙ଵ௦(𝒓ଵ)𝜙ଶ௦(𝒓ଶ) |𝛼𝛽⟩  

Or equally possibly 

Ψୌୣ
∗ (𝑛𝑜𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑎𝑛𝑡𝑖 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) = 𝜙ଵ௦(𝒓ଵ)𝜙ଶ௦(𝒓ଶ) |𝛼𝛼⟩  

etc. 

So let’s write possible combinations which the Pauli principle allows.    

Let’s consider combinations that are symmetric in the spin and 
antisymmetric in the spatial parts, or vice versa (in principle we don’t have 
to have both the spin and spatial part symmetric/antisymmetric, only the full 
w.f., but we won’t discuss that now). 

The combinations are: 
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Singlet excited state: 
𝜙ଵ௦(𝒓ଵ)𝜙ଶ௦(𝒓ଶ) + 𝜙ଶ௦(𝒓ଵ)𝜙ଵ௦(𝒓ଶ)

√2

|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
  

And the triplet excited states: 

Triplet excited states:  

𝑖)     
𝜙ଵ௦(𝒓ଵ)𝜙ଶ௦(𝒓ଶ) − 𝜙ଶ௦(𝒓ଵ)𝜙ଵ௦(𝒓ଶ)

√2
 |𝛼𝛼⟩  

 𝑖𝑖)     
𝜙ଵ௦(𝒓ଵ)𝜙ଶ௦(𝒓ଶ) − 𝜙ଶ௦(𝒓ଵ)𝜙ଵ௦(𝒓ଶ)

√2
  

|𝛼𝛽⟩ + |𝛽𝛼⟩

√2
  

𝑖𝑖𝑖)     
𝜙ଵ௦(𝒓ଵ)𝜙ଶ௦(𝒓ଶ) − 𝜙ଶ௦(𝒓ଵ)𝜙ଵ௦(𝒓ଶ)

√2
  |𝛽𝛽⟩  

We see that: 

All fulfill the Pauli principle; if we exchange electrons 1 and 2 then the 
spatial part will either change sign (in the triplet) and the spin part will 
not, or vice versa (in the singlet). 
Turns out the that the triplet states are degenerate (have the same 
energy).  Makes sense, since they have the same spatial part, and 
are only different by the spin functions.   
Turns out that  spin part of them all have the same spin (“1”) and 
different spin along the z-axis (-1, 0, and 1). 
Which one will have a lower (more negative) energy? Definitely 
the triplet.  Hund’s rule tells us that, and now we can understand why.   
Physically, electrons will want to be away from each other if 
possible, due to electron-electron repulsion.   
In the triplet state, the electrons are naturally away from each other.  
i.e., in the triplet state the amplitude for the electrons to be at the 
same point is zero: 

Ψ = 0    if     𝒓𝟏 = 𝒓𝟐 
That’s because the spatial part is antisymmetric, so  

  𝒓𝟏 = 𝒓𝟐      →       
𝜙ଵ௦(𝒓ଵ)𝜙ଶ௦(𝒓ଵ) − 𝜙ଶ௦(𝒓ଵ)𝜙ଵ௦(𝒓ଵ)

√2
= 0 

This symmetry explains Hund’s rules too.  Basically, if electrons can be in 
two orbitals with similar energies (e.g., 2s and 2px, or 2px and 2pz, etc.) 
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they’ll prefer the spatially antisymmetric combination, which means their 
spins will be in a triplet combination (what we think of colloquially as 
electrons having parallel spins, but that’s not accurate – for example, 
|ఈఉ⟩ା|ఉఈ⟩

√ଶ
 is a symmetric triplet eigenstate with opposite spins). 

Spin of the singlet and triplet states. 

Let’s prove what we asserted, that the singlet state has a total spin of 0 
(i.e., the two s=1/2 electron spins combine to give a total spin of 0)’ using 
similar technique we could prove that the triplet has spin 1. 

Apply 𝑆௫, 𝑆௬ , 𝑆௭ on the singlet state, and start with 𝑆௭. 

𝑆௭ = 𝑆ூ,௭ + 𝑆ூூ,௭ 

Where the “I” and “II” refer to electron one and two. 

So the singlet is 
|ఈఉ⟩ି|ఉఈ⟩

√ଶ
 and therefore 

𝑆௭ ቆ
|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
ቇ = ൫𝑆ூ,௭ + 𝑆ூூ,௭൯ ቆ

|𝛼𝛽⟩ − |𝛽𝛼⟩

√2
ቇ 

Also:. 

𝑆ூ,௭|𝛼𝛽⟩ =
1

2
|𝛼𝛽⟩            since the spin of elecron I is up in this w. f. 

𝑆ூூ,௭|𝛼𝛽⟩ = −
1

2
|𝛼𝛽⟩      since the spin of elecron II is down in this w. f. 

Therefore 

𝑆௭|𝛼𝛽⟩ = ൫𝑆ூ,௭ + 𝑆ூூ,௭൯|𝛼𝛽⟩ =
1

2
|𝛼𝛽⟩ −

1

2
|𝛼𝛽⟩ = 0 

And we can prove similarly that 𝑆௭|𝛽𝛼⟩=0, so 𝑆௭ ቀ
|ఈఉ⟩ି|ఉఈ⟩

√ଶ
ቁ = 0. 

What about 𝑆௫ and 𝑆௬ – similarly, a little more involved and interesting. 

Recall 𝑆௫ = ቀ
0 1
1 0

ቁ so  for one particle  𝑆௫|𝛼⟩ =
ଵ

ଶ
|𝛽⟩,  𝑆௫|𝛽⟩ =

ଵ

ଶ
|𝛼⟩ so if we 

act with the spin of the 1st particle on a wavefunction of two particles we get 
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𝑆ூ,௫|𝛼𝛽⟩ =
1

2
|𝛽𝛽⟩ 

And similarly when acting the with the spin the 2nd particle 

𝑆ூூ,௫|𝛼𝛽⟩ =
1

2
|𝛼𝛼⟩ 

And thus 

𝑆௫|𝛼𝛽⟩ = 𝑆ூ,௫|𝛼𝛽⟩ + 𝑆ூூ,௫|𝛼𝛽⟩ =
1

2
|𝛽𝛽⟩ +

1

2
|𝛼𝛼⟩ 

Similarly  

𝑆௫|𝛽𝛼⟩ =
1

2
|𝛼𝛼⟩ +

1

2
|𝛽𝛽⟩ 

Therefore  

𝑆௫ ∗ singlet_wf = 𝑆௫

(|𝛼𝛽⟩ − |𝛽𝛼⟩)

√2
=

1

2√2
(|𝛽𝛽⟩ + |𝛼𝛼⟩ − |𝛼𝛼⟩ − |𝛽𝛽⟩) = 0 

Similarly, 
𝑆௬ ∗ singlet_wf = 0 

Therefore 

𝑆ଶ
(|𝛼𝛽⟩ − |𝛽𝛼⟩)

√2
= ൫𝑆௫

ଶ + 𝑆௬
ଶ + 𝑆௭

ଶ൯
(|𝛼𝛽⟩ − |𝛽𝛼⟩)

√2
= 0ଶ + 0ଶ + 0ଶ = 0 

i.e., 

𝑆ଶ
(|𝛼𝛽⟩ − |𝛽𝛼⟩)

√2
= 0 ∗

(|𝛼𝛽⟩ − |𝛽𝛼⟩)

√2
 

So the singlet has zero-spin indeed! 
 
And similarly when we act on any of the three triplet functions we could 
show that 𝑆ଶ on them gives 1*(1+2) =2 times them, so 𝑠௧௧ = 1   (𝑠௧௧ is the 
equivalent of 𝑙, i.e.,the eigenvalue of 𝑆ଶ is  𝑠௧௧(𝑠௧௧ + 1).) 
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Spin Orbit 

The last topic relating to spin is spin-orbit. Basically, the spin-orbit 
interaction is a relativistic effect so it is pronounced in heavier atoms where 
the core electrons are close to nucleus and have very high velocities which 
reach a significant fraction of the velocity of light (so they are relativistic) 

The spin-orbit interaction is, as mentioned, of the general form 

𝐻ௌ.ை. = 𝑐𝑜𝑛𝑠𝑡.⋅  𝑓(𝑟) 𝑳 ⋅ 𝑺 

where 𝑓(𝑟) is some function of r and radial derivatives which we wont worry 
about (that is near the origin, i.e., is stronger for heavier nuclei). 

 The interesting part is 𝑳 ⋅ 𝑺.  The reason is that it mixes spin up and 
spin down.  (i.e., it has terms which are not just proportional to 𝑺𝟐 nor just 
to 𝑆௭, as in the interaction with magnetic field; instead it mixes spin up with 
spin down. 

Side note: total angular momentum 

Let’s define the total angular momentum 

𝑱 = 𝑳 + 𝑺 

Now the total angular momentum eigenstates will be, as we mentioned 
earlier, combination of eigenstates of L and S. 

Let’s talk about transition metals with 3𝑑 states (i.e., 𝑙 = 2)) 

Couple these 𝑙 = 2 states with 𝑠 = 0.5 from spin; as we learned without 
proof, from the triangle rule we can get states with  

𝑗 = 2 − 0.5,2 + 0.5 

i.e., states with 

𝑗 = 1.5, 2.5 

Since 𝐽௭ = 𝐿௭ + 𝑆௭ it follows that the eigenvalue of 𝐽௭, which we label as 𝑚 

will equal 𝑚 + 𝑚௦ i.e., the z-component of the angular momentum of the 
orbital motion and of the spin.   
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For example, the state with 𝑗 = 1.5,   𝑚 = 𝑗 = 1.5 will be a combination of 

two components, one with 𝑙௭ = 2 and 𝑚௦ = −0.5, and the other with 𝑙௭ = 1 
and 𝑚௦ = 0.5 the coefficients can be calculated and the final result is: 

Ψ
𝒋ୀ𝟏.𝟓,ೕୀଵ.ହ,௦ୀ

ଵ
ଶ

,ୀଶ
(𝜃, 𝜙, 𝑠𝑝𝑖𝑛)

≃ 𝟎. 𝟖𝟗 ∗ 𝑌ୀଶ,ୀଶ(𝜃, 𝜙)|𝛽⟩ − 𝟎. 𝟒𝟓 ∗ 𝑌ୀଵ,ୀଶ(𝜃, 𝜙)|𝛼⟩  

Note that the first state on the RHS has 𝑚 = 2, 𝑚௦ = −
ଵ

ଶ
,    

so 𝑚 = 2 −
ଵ

ଶ
= 1.5,  

and the second state has the same 𝑚 since 𝑚 = 1, 𝑚௦ = +
ଵ

ଶ
. 

    

So both the states in green in the RHS contribute to the total state on the 
left (i.e., they contribute to the eigenfunction of the combined angular 
momentum operator with 𝑚 = 1.5. 

It is not surprising to learn that the other combination of these two states 
will give 𝑗 = 2.5, 𝑖. 𝑒.,  

Ψ
ୀ𝟐.𝟓,ೕୀଵ.ହ,௦ୀ

ଵ
ଶ

,ୀଶ
(𝜃, 𝜙, 𝑠𝑝𝑖𝑛)

≃ 𝟎. 𝟒𝟓 ∗ 𝑌ୀଶ,ୀଶ(𝜃, 𝜙)|𝛽⟩ + 𝟎. 𝟖𝟗 ∗ 𝑌ୀଵ,ୀଶ(𝜃, 𝜙)|𝛼⟩  

 

Now back to the spin orbit. 

What we’ll show now is that these total angular momentum combination (in 
green above) which I wrote are eigenstates of the spin-orbit interaction. 

I.e., the spin orbit interaction mixes states with different L  

Now notice that for numbers, 𝑎𝑏 =  (𝑎 + 𝑏)ଶ − 𝑎ଶ − 𝑏ଶ.  This is also true 
here, i.e. 

𝑳 ⋅ 𝑺 =
1

2
(𝑱ଶ − 𝑳𝟐 − 𝑺ଶ) 

(The reason is that 𝑳 and 𝑺 commute – unlike 𝑳 with 𝑳). 
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That simplifies the spin orbit interaction.  When acting on the top green 
state, with 𝑗 = 1.5,  it follows that acting with  𝑳 ⋅ 𝑺  is the same as acting 
with 

1

2
൫𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)൯ =

1

2
൬1.5 ∗ 2.5 − 2 ∗ 3 −

1

2
∗

3

2
൰ = −1.5 

While when acting on the bottom green state we get that acting with 𝑳 ⋅ 𝑺 is 
the same as acting with 

1

2
൫𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)൯ =

1

2
൬2.5 ∗ 3.5 − 2 ∗ 3 −

1

2
∗

3

2
൰ = 2 

Therefore, the spin orbit interaction has a different sign and magnitude 
depending on which state it acts! 

This naturally leads to splitting between states with the same 𝑙 but different 
𝑗.  We’ll get back to splitting when we talk about perturbation theory. 
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He Atom 

At the H atom5 we are at the end of our ability to solve analytically the 
quantum mechanics of an atom. 

The problem is that for any species with 2 or more electrons, we have to 
include the 𝑒ି − 𝑒ି repulsive interaction in V. 

This precludes an analytical solution to the time-independent Schrödinger 
Equation. 

Specifically, the Hamiltonian for the 2 electrons in He is (I use the hat on 
the Hamiltonian operator so you don’t confuse H for Hamiltonian with H for 
Hydrogen). 

𝐻 = ቆ−
ℏଶ

2𝑀
∆ଵ −

ℏଶ

2𝑀
∆ଶ −

𝟐𝑒ଶ

𝑟ଵ
−

𝟐𝑒ଶ

𝑟ଶ
ቇ +

𝑒ଶ

𝑟ଵଶ
 

where the 2 is due to the interaction of each electron with the 𝑍 = 2 charge 
of the He nucleus 

Note that  −
ℏమ

ଶ
∆ଵ is the kinetic energy of electron #1, and similarly for 

electron #2.   

We could rewrite the Hamiltonian as 

𝐻 = 𝐻ଵ + 𝐻ଶ +
𝑒ଶ

𝑟ଵଶ
 

where 

𝐻ଵ = −
ℏଶ

2𝑀
∆ଵ −

2𝑒ଶ

𝑟ଵ
 

𝐻ଶ = −
ℏଶ

2𝑀
∆ଶ −

2𝑒ଶ

𝑟ଶ
 

                                      
5 Note: this part and the next few parts are copied almost verbatim from 
notes of Prof. Peter Felker. 
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Note that for each electron “j” (where 𝑗 = 1,2 is an index over the electrons) 

−
ℏଶ

2𝑀
∆ = −

ℏଶ

2𝑀

1

𝑟

𝜕ଶ

𝜕ଶ𝑟
+

𝑳𝒋
𝟐

2𝑀𝑟
ଶ   

See picture below: 

 

 

Note that if the e-e repulsion was not present, the He atom would be simple 
to solve since the Hamiltonian would then be the sum of two one-electron-
atom Hamiltonian’s.    

We could use separation of variables and obtain the He atom solution for  
𝐻 (where the e’s don’t interact) in terms of an H-like state: 

൫𝐻ଵ + 𝐻ଶ൯Φ = ቈቆ−
ℏଶ

2𝑀
∆ଵ −

2𝑒ଶ

𝑟ଵ
ቇ + ቆ−

ℏଶ

2𝑀
∆ଶ −

2𝑒ଶ

𝑟ଶ
ቇ Φ = 𝐸Φ 

Again postulate a separable form for Φ (i.e., hope you can find a solution in 
the form:) 

Φ = 𝜙ଵ(𝒓ଵ)𝜙ଶ(𝒓ଶ) 

Then  

൫𝐻ଵ + 𝐻ଶ൯Φ = [(𝐾ଵ + 𝑉ଵ) + (𝐾ଶ + 𝑉ଶ)]𝜙ଵ(𝒓ଵ)𝜙ଶ(𝒓ଶ) = 𝐸𝜙ଵ(𝒓ଵ)𝜙ଶ(𝒓ଶ) 

Divide by 𝜙ଵ(𝒓ଵ)𝜙ଶ(𝒓ଶ), to get, when you move one term to the right 

൬−
ℏଶ

2𝑀
∆ଵ −

2𝑒ଶ

𝑟ଵ
൰ 𝜙ଵ(𝒓𝟏)

𝜙ଵ(𝒓𝟏)
= 𝐸 −

൬−
ℏଶ

2𝑀
∆ଶ −

2𝑒ଶ

𝑟ଶ
൰ 𝜙ଶ(𝒓𝟐)

𝜙ଶ(𝒓𝟐)
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The LHS is only a function of 𝒓𝟏, while the RHS is only a function of 𝒓𝟐, so 
both sides must be constant, i.e., 

൬−
ℏଶ

2𝑀
∆ଵ −

2𝑒ଶ

𝑟ଵ
൰ 𝜙ଵ(𝒓𝟏)

𝜙ଵ(𝒓𝟏)
= 𝐸(ଵ) 

൬−
ℏଶ

2𝑀
∆ଶ −

2𝑒ଶ

𝑟ଶ
൰ 𝜙ଶ(𝒓𝟐)

𝜙ଶ(𝒓𝟐)
= 𝐸(ଶ) ≡ 𝐸 − 𝐸ଵ 

so 

𝐸(ଵ) + 𝐸(ଶ) = 𝐸 

i.e., both 𝜙ଵ and 𝜙ଶ are solutions of the Shcoredinger equation 

ቆ−
ℏଶ

2𝑀
∆ଵ −

2𝑒ଶ

𝑟ଵ
ቇ 𝜙ଵ(𝒓𝟏) = 𝐸(ଵ)𝜙ଵ(𝒓𝟏) 

and 

ቆ−
ℏଶ

2𝑀
∆ଶ −

2𝑒ଶ

𝑟ଶ
ቇ 𝜙ଶ(𝒓𝟐) = 𝐸(ଶ)𝜙ଶ(𝒓𝟐) 

Note that 𝜙ଵ and 𝜙ଶ solve a Hydorgen-like Schrodigner equation (for a 
higher charge nucleus, with Z=2, of course)   

Unfortunately the e-e repulsion, which involves both 𝒓𝟏 and 𝒓𝟐 

 (via  𝑟ଵଶ = |𝒓𝟏 − 𝒓𝟐| ),  messes up the wavefunction, which is not really a 
product state anymore. 

Other considerations: Electron spin and Indistinguishablity 
of electrons. 

As we’ve seen in the previous chapter, spin is important even without 
considering magnetic interaction because of the indistinguishability of 
electrons and the consequences of the Pauli principle.  Specifically: 

We’ll now explain the issue of symmetry, i.e., the fact that under an 
exchange of BOTH coordinates and spin the wavefunction of two identical 
particles must either be antisymmetric (e.g., for electrons) or symmetric 
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(e.g., in the case of photons).  We used it already in the previous chapter, 
but now we’ll explain more. 

Label by 𝜎ଵ the spin of electron 1, which can be 𝛼 (spin up) or 𝛽 (spin 
down).   

A complete description of the coordinate of electron 1 is labeled as  
𝑞ଵ ≡ 𝒓𝟏, 𝜎ଵ 

i.e., both the spatial coordinate and the spin coordinate. 

Similarly :   𝑞ଶ ≡ 𝒓𝟐, 𝜎ଶ 

We know (calling the full w.f. Ψ) that 

|Ψ(𝑞ଵ, 𝑞ଶ)|ଶ𝑑𝒓𝟏𝑑𝒓𝟐 

is the probability the find: 

electron 1 in a volume of size 𝑑𝒓𝟏 around 𝒓𝟏, with spin 𝜎ଵ, and   
electron 2 in a volume of size 𝑑𝒓𝟐 around 𝒓𝟐, with spin 𝜎ଶ. 

Now because of the indistinguishability of the electrons, we cannot tell 
electron #1 from electron #2.   So if we look at atom and call one electron 
#1 and the other #2,  and then look away, and finally look back again, we 
have no way of knowing which electron is the one we called #1 and which 
is #2. 

As such, any observable must not be affected by the labeling of the 
electrons. 

In short,  |Ψ(𝑞ଵ, 𝑞ଶ)|ଶ  must equal |Ψ(𝑞ଶ, 𝑞ଵ)|ଶ 

I.e., 

Ψ(𝑞ଵ, 𝑞ଶ) = ±Ψ(𝑞ଶ, 𝑞ଵ) 

So Ψ must be symmetric (+) or antisymmetric (-) w/rt the exchange of the 
coords. of any two e’s. 

It turns out that for electrons (an example of a class of particles called 
“fermions”) Ψ must be antisymmetric w.r.t. full-coordinate (spin+spatial 
coordinates) interchange.  This is the celebrated Pauli Principle which we 
mentioned before. 
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So, we get that for the electrons 

Ψ(𝒓ଵ, 𝜎ଵ, 𝒓𝟐, 𝜎ଶ) = −Ψ(𝒓𝟐, 𝜎ଶ, 𝒓ଵ, 𝜎ଵ) 

Or simply (a notation we’ll use later): 

Ψ(1,2) = −Ψ(2,1) 

Now that we understand the Pauli principle, we recall from the previous 
chapter that the combination: 

Ψ(1,2) = 𝜙ଵ௦(𝑟ଵ)𝜙ଵ௦(𝑟ଶ)
൫𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)൯

√2
=  −Ψ(2,1) 

Side-note: we’ll use slightly different notation, no bra-kets for the spin 
now – but same meaning; a combination:  spin up for electron#1 and 
spin-down for electron #2, with the opposite, spin down for #1 with 
spin up for #2. 

So the spatial part of 𝜓 us symmetric w.r.t. intechexhange of electron 
coordinates, and the spin part of 𝜓is antisymmetric and therefore renders 𝜓 
itself anysummetric w.r.t coord. Interchange. 

The main point is: the dependence of the full w.f. in spatial and spin 
coordinates must be taken into account in assessing the acceptability of an 
electronic wavefunction. 

Note finally: the form of the w.f. above is not the exact w.f. (due to the 
electron-electron interaction), even though it obeys the correct symmetry, 
i.e., Ψ(1,2) = −Ψ(2,1) (which the full w.f. also fulfills).  The form we have 
above It is an approximation.  So we need to learn about approximations 
and how to use and improve them – next chapters! 
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Approximation methods: 

Two main classes – the variational method; and perturbation theory. 

Variational Method 

We proved it in class a few weeks ago, but let’s repeat.  The claim is that if 
we pick a general wavefunction Φ then the normalized expectation value 
of the Hamiltonian will be greater than or equal to the ground-state 
(lowest energy). 

BTW, we sometimes denote the ground state as 𝑬𝟏 but we’ll follow the 
convention we used for the Harmonic oscillator and denote it as 
𝑬𝟎, i.e., enumarte the eigenstates and eigenvalues of 𝑯 as 𝝓𝒏, 𝑬𝒏 with 
𝒏 = 𝟎, 𝟏, 𝟐, … 

So the claim is that if we define the average energy associated with a w.f. 
as  

⟨𝐻⟩ ≡ (𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛) 
ൻΦห𝐻หΦൿ

⟨Φ|Φ⟩
  

(and I remind you that ൻΦห𝐻หΦൿ means ∫ Φ∗𝐻Φ 𝑑𝑥   in 1D, and similarly in 
more dimensions). 

Then 

⟨𝐻⟩ ≥ 𝐸     (where 𝐸 is the 𝐞𝐱𝐚𝐜𝐭 ground state energy). 

Proof: expand Φ in terms of the exact eigenstates of 𝐻: 

Φ =  𝑎𝜙

ஶ

ୀ

 

Then 

⟨𝐻⟩ =
ൻΦห𝐻หΦൿ

⟨Φ|Φ⟩
=

∫(∑ 𝑎
∗ 𝜙

∗
 )𝐻൫∑ 𝑎𝜙 ൯𝑑𝑥

∫(∑ 𝑎
∗ 𝜙

∗
 )൫∑ 𝑎𝜙 ൯𝑑𝑥

 

i.e. (highlighting important terms) 
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⟨𝐻⟩ =
ൻΦห𝐻หΦൿ

⟨Φ|Φ⟩
=

∑ 𝑎
∗ 𝑎 ∫ 𝜙

∗ 𝑯𝝓𝒋𝑑𝑥

∑ 𝑎
∗ 𝑎 ∫ 𝜙

∗ 𝜙𝑑𝑥
=

∑ 𝑎
∗ 𝑎 𝑬𝒋 ∫ 𝜙

∗ 𝝓𝒋𝑑𝑥

∑ 𝑎
∗ 𝑎 ∫ 𝜙

∗𝜙𝑑𝑥
 

But  

න 𝜙
∗ 𝝓𝒋𝑑𝑥 = 𝛿 = 1 if 𝑗 = 𝑛, 0 otherwise 

So the delta function means we can replace the sum over n by  
picking  𝑛 = 𝑗, so 

⟨𝐻⟩ =
∑ 𝑎

∗𝑎 𝑬𝒋

∑ 𝑎
∗𝑎

=
∑ ห𝑎ห

ଶ
 𝑬𝒋

∑ ห𝑎ห
ଶ



 

But 

𝐸 ≥ 𝐸       

So  

⟨𝐻⟩ =
∑ ห𝑎ห

ଶ
 𝑬𝒋

∑ ห𝑎ห
ଶ



≥
∑ ห𝑎ห

ଶ
 𝑬𝟎

∑ ห𝑎ห
ଶ



= 𝑬𝟎 

i.e., 

⟨𝐻⟩ ≥ 𝐸 

There will be equality of course only if the wavefunction has no contribution 
(i.e., 𝑎 = 0) for those states 𝑗 with energy higher than the ground-starte 
energy. 

The power of the variational method (as formulated here) is in determining 
the ground state of a system.   

Specifically, we are guaranteed that any choice of  Φ will give rise to ⟨𝐻⟩ ≥

𝐸.  Hence, we make provision to vary Φ in such a way to minimize ⟨𝐻⟩.   

The lower we can make ⟨𝐻⟩ by such variation, the better the approximation 
we have for the ground-state energy and the ground state eigenfunction. 
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One way to accomplish this variation is to build into the trial wavefunction, 
Φ,  one or more adjustable parameters(s)   The parameters can then be 
systematically adjusted to minimize ൻ𝐻ൿ by usual Calculus minimization. 

Example: particle in an infinite-depth box of size 𝐿 (a problem we solved 
earlier) 

For simplicity we’ll assume 𝐿 = 1 in the following.   

We know of course that the true wavefunction is  

𝑐𝑜𝑛𝑠𝑡.∗ sin ቀ
𝜋𝑥

𝐿
ቁ = 𝑐𝑜𝑛𝑠𝑡.∗ sin(𝜋 𝑥) 

But say we did not know that.  Then say we take a function which is 

symmetric around 


ଶ
=

ଵ

ଶ
  (the potential is symmetric around the midpoint, so 

it makes sense and can be proved that the ground-state w.f. is symmetric 
around the midpoint).   

The function also needs to be 0 at 𝒙 = 𝟎 , and 𝒙 = 𝑳 = 𝟏. 

One such function will be 

𝑥(1 − 𝑥) 

Say we wanted to do even better, so we can take that function in a 
combination with its square 

Φ(𝑥) = 𝑥(1 − 𝑥) + 𝛽 ൫𝑥(1 − 𝑥)൯
ଶ
 

Let’s find what the best 𝛽, i.e., the one the minimizes the expectation value 
of the Hamiltonian. 

ൻΦห𝐻หΦൿ

⟨Φ|Φ⟩
=? 

Well, first the denominator 

⟨Φ|Φ⟩ = න ቀ𝑥(1 − 𝑥) + 𝛽 ൫𝑥(1 − 𝑥)൯
ଶ

ቁ
ଶ

𝑑𝑥
ଵ



 

= න 𝑥ଶ(1 − 𝑥)ଶ𝑑𝑥
ଵ



+ 2𝛽 න 𝑥ଷ(1 − 𝑥)ଷ𝑑𝑥
ଵ



+ 𝛽ଶ න 𝑥ସ(1 − 𝑥)ସ𝑑𝑥
ଵ
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Here, all integrals are from 0 to 1 (i.e., to L) since the w.f. cannot exist 
outside that region. 

We could do the integrals analytically, but I’ll shortcut with Wolframalpha, to 
get 

න 𝑥ଶ(1 − 𝑥)ଶ𝑑𝑥
ଵ



=
1

30
 

2 න 𝑥ଷ(1 − 𝑥)ଷ𝑑𝑥
ଵ



=
1

70
 

න 𝑥ସ(1 − 𝑥)ସ𝑑𝑥
ଵ



=
1

630
 

I.e., 

⟨Φ|Φ⟩ =
1

30
+

𝛽

70
+

𝛽ଶ

630
=

1

630
(𝛽ଶ + 9𝛽 + 21) 

Similarly, 

ൻΦห𝐻|Φൿ = −
ℏଶ

2𝑀
න Φ(𝑥)

𝑑ଶΦ(𝑥)

𝑑𝑥ଶ
𝑑𝑥

ଵ



=
ℏଶ

2𝑀
න

𝑑Φ(𝑥)

𝑑𝑥

𝑑Φ(𝑥)

𝑑𝑥
𝑑𝑥

ଵ



 

But  

dΦ(𝑥)

𝑑𝑥
=

𝑑

𝑑𝑥
ቀ𝑥(1 − 𝑥) + 𝛽 ൫𝑥(1 − 𝑥)൯

ଶ
ቁ = (1 − 2𝑥)(1 + 2𝛽(𝑥 − 𝑥ଶ)) 

 

So (with ℏ = 𝑀 = 1) 

2ൻΦห𝐻|Φൿ = න (1 − 2𝑥)ଶ(1 + 4𝛽(𝑥 − 𝑥ଶ) + 4𝛽ଶ(𝑥 − 𝑥ଶ)ଶ 𝑑𝑥
ଵ



= 

න (1 − 2𝑥)ଶ𝑑𝑥
ଵ



+ 4𝛽 න (1 − 2𝑥)ଶ(𝑥 − 𝑥ଶ)
ଵ



𝑑𝑥 + 4𝛽ଶ න (1 − 2𝑥)ଶ(𝑥 − 𝑥ଶ)ଶ𝑑𝑥
ଵ



 

But  

න (1 − 2𝑥)ଶ𝑑𝑥
ଵ



=
1

3
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4 න (1 − 2𝑥)ଶ𝑥(1 − 𝑥)
ଵ



𝑑𝑥 =
2

15
 

4 න ൫𝑥(1 − 𝑥)(1 − 2𝑥)൯
ଶ

𝑑𝑥
ଵ



=
2

105
 

So  

2ൻΦห𝐻|Φൿ =
1

3
+

2𝛽

15
+

2𝛽ଶ

105
=

1

105
(2𝛽ଶ + 14𝛽 + 35) 

i.e., the expectation value is  

ൻ𝐻ൿ ≡
ൻΦห𝐻หΦൿ

⟨Φ|Φ⟩
=

1

2
∗

630

105
∗

2𝛽ଶ + 14𝛽 + 35

𝛽ଶ + 9𝛽 + 21
= 𝟑

𝟐𝜷𝟐 + 𝟏𝟒𝜷 + 𝟑𝟓

𝜷𝟐 + 𝟗𝜷 + 𝟐𝟏
  

So we’re looking for the value of the parameter that minimizes the 
expression in red. 

We would solve by differentiation 

𝑑

𝑑𝛽
ቆ

2𝛽ଶ + 14𝛽 + 35

𝛽ଶ + 9𝛽 + 21
ቇ = 0                 

But if 
ௗቀ




ቁ

ௗఉ
= 0  then 0 =




ഁ
ି



ഁ

మ
  i.e.,  𝑔

ௗ

ௗఉ
= 𝑓

ௗ

ௗఉ
.  Thus in our case 

(𝛽ଶ + 9𝛽 + 21)
𝑑

𝑑𝛽
(2𝛽ଶ + 14𝛽 + 35) = (2𝛽ଶ + 14𝛽 + 35)

𝑑

𝑑𝛽
(𝛽ଶ + 9𝛽 + 21) 

i.e., 

(𝛽ଶ + 9𝛽 + 21)(4𝛽 + 14)  = (2𝛽ଶ + 14𝛽 + 35)(2𝛽 + 9) 

Expand to get 

21 ∗ 14 + (21 ∗ 4 + 14 ∗ 9)𝛽 + (4 ∗ 9 + 14)𝛽ଶ + 𝟐𝜷𝟑 = 

35 ∗ 9 + (35 ∗ 2 + 14 ∗ 9)𝛽 + (2 ∗ 9 + 2 ∗ 14)𝛽ଶ + 𝟐𝜷𝟑 

Luckily the red terms, cubical in 𝛽, fall away, as do the blue terms,  

so after subtracting the RHS from the LHS we’re left with a 2nd order 
equation 
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𝑎𝛽ଶ + 𝑏𝛽 + 𝑐 = 0 

where   

𝑐 = 35 ∗ 9 − 21 ∗ 14 = 21 

𝑏 = 70 − 84 = −14 

𝑎 = −2 ∗ 9 + 14 = −4 

 And using that the solutions are 𝛽ଵ,ଶ = −


ଶ
±

ଵ

ଶ
√𝑏ଶ − 4𝑎𝑐 we get 

𝛽ଵ = −
28

8
+

√14ଶ + 4 ∗ 4 ∗ 21

8
= −

7

4
+

√133

4
= 1.13314 

𝛽ଶ = −
7

4
−

√133

4
= −4.63314 

Let’s evaluate to see which solution gives lower energy; I remind you that 

ൻ𝐻ൿ = 𝟑
𝟐𝜷𝟐 + 𝟏𝟒𝜷 + 𝟑𝟓

𝜷𝟐 + 𝟗𝜷 + 𝟐𝟏
 

Therefore, substituting we get   

for 𝛽 = 𝛽ଵ = 1.13314,  ൻ𝐻ൿ = 4.93487 

 for 𝛽ଶ: ൻ𝐻ൿ = 51.6.  Obviously 𝛽ଶ is a maximum, not a minimum.   

How are we doing? 

Well, if we did not have 𝛽 and tried just a function of the form   

𝑥(1 − 𝑥), i.e., 𝛽 = 0,  we would get    ൻ𝐻ൿ = 3
ଶఉమାଵସఉା

ఉమାଽఉାଶଵ
= 3 ∗

ଷହ

ଶଵ
= 5.0 

The true solution is of course 

𝑬𝒈𝒓𝒐𝒖𝒏𝒅 = ℏଶ
𝜋ଶ

2𝑀𝐿ଶ
=

𝜋ଶ

2
= 4.93480 

Note the impressive improvement! By playing with one parameter we got 
the initial error, (i.e., the error for 𝛽 = 0, which was 5-E(ground)=0.064, i.e., 
1.2% of the initial value) , all the down to 0.00007, i.e,, tiny! 
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The Variational Method and Application to the He 
atom.6 

As we wrote, the variational principle amounts to: 

 Writing the wavefunction as dependent on parameters (the more the 
better accuracy wise, but the more effort this makes). 

 Optimizing the parameter(s) to give the lowest ൻ𝐻ൿ. 

Let’s apply the variational method to the He atom, which, recall, has (where 
we use again a.u. , so 𝑒ଶ = 1, 𝑀 = 1, ℏ = 1) 

𝐻 = ൬−
1

2
∆ଵ −

1

2
∆ଶ −

𝟐

𝑟ଵ
−

𝟐

𝑟ଶ
൰ +

1

𝑟ଵଶ
 

We explained before that for the ground-state the spin-part of the 
wavefunction will be antisymmetric, so the spatial part is symmetric.  Since 
we ignore spin orbit effects the spin part drops out of the calculation and we 
can just postulate a spatial wavefunction. 

Let’s choose 

Φ =
𝜉ଷ

𝜋
exp(−𝜉𝑟ଵ) exp(−𝜉𝑟ଶ) 

This function is a product of two hydrogen-like 1s wavefunctions for a 
nuclear charge equal to 𝜉𝑒. 

I.e., recall that we said (or should have said) that the 1s ground-state for a 
single-electron system with a charge 𝑍 is  

𝜙ଵ௦ = 𝑐𝑜𝑛𝑠𝑡.∗ exp ൬−
𝑍𝑟

𝑎
൰ 

Here we set 𝑎 = 1 and instead of 𝑍 we use 𝜉. 

As written the wavefunction Φ is always normalized (i.e., ⟨Φ|Φ⟩ = 1.   
prove that!!) and it obeys the boundary conditions, i.e., it is finite 
everywhere and goes to 0 as either of two electrons goes to infinity. 

                                      
6 Copied from Peter Felker’s notes. 
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We’ll treat 𝜉 as an adjustable parameter to minimize ൻ𝐻ൿ.  

To proceed we’ll do a trick.  Rewrite the Hamiltonian as a zero-order part 
associated with a charge 𝜉 

𝐻 = 𝐻 + 𝐻′ 

where 

𝐻 = −
1

2
∆ଵ −

𝝃

𝑟ଵ
൨ + −

1

2
∆ଶ −

𝝃

𝑟ଶ
൨ 

and the “extra” 

𝐻ᇱ =
𝝃 − 𝟐

𝑟ଵ
+

𝝃 − 𝟐

𝑟ଶ
+

1

𝑟ଵଶ
 

Since the w.f. is normalized Φ then  

ൻ𝐻ൿ = ൻΦห𝐻หΦൿ = ൻΦห𝐻หΦൿ + ൻΦห𝐻′หΦൿ 

The first term on the RHS, ൻΦห𝐻หΦൿ, is easily calculated once we realize 

that the first term in 𝐻 is identical to the Hamiltonian of a one-electron 
atom in which the electron interacts with a nucleus of charge 𝜉𝑒.   

The second term in brackets is also of this form.  

Since Φ is a product of two 1s orbitals for such hydrogen like atoms, Φ is 
an eigenfunction of 𝐻 with eigenvalue equal to 

𝑊 = 2 ∗ ቆ−
𝜉ଶ𝑒ଶ

2𝑎
ቇ = −𝜉ଶ ∗ 𝐻𝑎𝑟𝑡𝑟𝑒𝑒 

Here: 

 The two is due to having two terms (one for each electron)  
 The 𝜉ଶ is because the energy is proportional to the square of the charge 

of the nucleus; to see that quickly realize that if we double the charge of 
the nucleus, then the electron will be twice as close to the nucleus in 
average, and the charge to which the electron is attracted will be twice as 
large, resulting in an increase of the energy by  2ଶ = 4. 

Next we need to find ൻΦห𝐻′หΦൿ.  Plugging in for Φ and for 𝐻′ gives 
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ൻΦห𝐻′หΦൿ = 


1

𝜋ଶ
𝜉൨ ඵ 𝑟ଵ

ଶ𝑑𝑟ଵ sin(𝜃ଵ) 𝑑𝜃ଵ 𝑟ଶ
ଶ𝑑𝑟ଶ sin(𝜃ଶ) 𝑑𝜃ଶ ∗  exp(−2𝜉𝑟ଵ) exp(−2𝜉𝑟ଶ)

∗ ൬
𝝃 − 𝟐

𝑟ଵ
+

𝝃 − 𝟐

𝑟ଶ
+

1

𝑟ଵଶ
൰ 

Where the “blue” term is the volume element for the two integrals; the gray 
term come from |Φ|ଶ, and the last term (the parenthesis) is coming from 𝐻ᇱ. 

The integrals can be simplified; each of the red terms really involves only 

one electron and can be shown to be 𝜉(𝜉 − 2)
మ

బ
, which we multiply by 2 

since there are two such terms. 

The last integral (over 
ଵ

భమ
 ) is painful but can be shown to be 𝜉

ହమ

଼బ
. 

So the combined result for ൻΦห𝐻′หΦൿ  is  

ൻΦห𝐻′หΦൿ = 2 ∗ 𝜉(𝜉 − 2)
𝑒ଶ

𝑎
+ 𝜉

5𝑒ଶ

8𝑎
= ൬2𝜉ଶ − 4𝜉 +

5

8
𝜉൰

𝑒ଶ

𝑎
= 2𝜉ଶ − 4𝜉 +

5

8
𝜉 

where the last equality is since we use a.u. 

And the total energy is, as written earlier, 

ൻ𝐻ൿ = ൻΦห𝐻หΦൿ = ൻΦห𝐻หΦൿ + ൻΦห𝐻′หΦൿ = −𝜉ଶ + 2𝜉ଶ − 4𝜉 +
5

8
𝜉 

i.e., 

ൻ𝐻ൿ = 𝜉ଶ − 4𝜉 +
5

8
𝜉 

i.e., 

 

 

ൻ𝐻ൿ = 𝜉ଶ −
27

8
𝜉 

So to minimize the energy by the variational principle we differentiate, 
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0 =
𝑑

𝑑𝜉
ൻ𝐻ൿ =

𝑑

𝑑𝜉
൬𝜉ଶ −

27

8
𝜉൰     for 𝜉௧ 

i.e., 

2𝜉௧ −
27

8
= 0 

i.e., 

𝜉௧ =
27

16
≃ 1.69 

Energies: 

Let’s look at the energies. 

If we were to employ in Φ  (the turquoise equation) a value of 𝜉 = 1, i.e., 
the product of 1s-functions of a hydrogen atom, then 

ൻ𝐻(𝜉 = 1)ൿ = 𝜉ଶ −
27

8
𝜉 +

5

8
𝜉 = 1ଶ −

27

8
∗ 1 = −2

3

8
 Hartree  

But 1 Hartree = 27.2114eV so 

ൻ𝐻(𝜉 = 1)ൿ = −64.627eV 

Conversely,  If we were to employ in Φ  a value of 𝜉 = 2, i.e., the product of 
1s-functions associated each with a He+ atom (i.e., one electron near a 
nucleus with a charge of 2 protons), then 

ൻ𝐻(𝜉 = 2)ൿ = 2ଶ −
27

8
∗ 2 = −2

3

4
 Hartree = −74.83eV 

This is a lower (and therefore better) energy.  Now let’s check the value of 
the energy at the optimal value 

ർ𝐻(𝜉 =
27

16
) = ൬

27

16
൰

ଶ

−
27

8

27

16
= −2.848 Hartree = −77.489eV 
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Comparing this last energy with the true ground-state energy of He, which 
is 𝐸௨ௗ(𝑒𝑥𝑎𝑐𝑡) = −79.01 eV, one sees that we have done pretty well with 
a relatively inflexible trial wavefunction (only one adjustable parameter). 

Note that the best value for 𝜉 is between 1 and 2.  Since the way in which 𝜉 
appears in our trial wavefunction leads one to interpret it as an effective 
nuclear charge, we conclude that the effective nuclear charge that an 
electron “feels” in helium is between that of a proton and that of proton.  We 
interpret this as arising from the shielding of each electron form the nucleus 
by the other electron.  Complete shielding would give rise to 𝜉 = 1, no 
shielding to 𝜉 = 2.  The intermediate value of 𝜉௧ = 1.69 indicates a 
partial shielding between these two extremes. 

It is also instructive to compare our results with that obtained from the He-
atom Schrödinger equation when electron repulsion is completely 
neglected.  Then the ground-state energy is the sum of the ground-state 
energies of two one-electron atoms with nuclear charge equal to 2𝑒, i.e. 

𝐸(no e − e repulsion) = 2(i. e, two electrons) ∗ ቆ−
2ଶ

2
Hartreeቇ = −4 Hartree

= −108.846 eV 

(Note that the 2ଶ in the parentheses is since the energy of an electron near 
a proton with a charge Z is proportional to 𝑍ଶ, as the Bohr model showed 
and as we mentioned above). 

Correlation effect: 

It is interesting to ask what is the origin of the difference between the true 
result (-79.01eV) and the value we found (-77.489eV). 

In principle, if we used a more flexible function then a damped exponential, 
i.e., used a function of the form 

Φ = 𝜙(𝑟ଵ)𝜙(𝑟ଶ) 

but did not constrain the wavefunction to be the damped exponential, then 
we could have got an energy lower than what we found (i.e., lower than -
77.489 but of course higher than the true ground-state energy).   

Such a solution (i.e., 𝜙) is called the Hartree-Fock, HF, (or in this case just 
the Hartree) molecular orbital, and the associated energy associated with 
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Φ, i.e., the expectation value of the energy with the “best” product form, is 
called the Hartree-Fock energy. 

Well, as a matter of pure coincidence it turns out that the 𝜙 we had, i.e., 
𝜙(𝑟) ∝ exp (−𝜉𝑟) is in this case almost the exact best form, i.e., almost 
equals to the Hartree Fock orbital.  So the Hartree Fock energy is only very 
very slightly lower than -77.489 eV. 

So what about the rest of the energy? I.e., why is the exact energy of 
Helium lower by an amount, labeled 𝐸௧  (or just 𝐸), which equals 
here 

𝐸(He) = Eୣ୶ୟୡ୲(He) − Eୌ(He) = −79.01 − (−77.489) = −1.52 eV   ? 

The reason for the correlation energy is simple: In the exact wavefunction 
Ψ௫௧(𝒓𝟏, 𝒓𝟐), the regions where 𝑟ଵଶ is small have very low probability.  
Basically, each electron avoids the other.   

Think of a classical analogue – when electron 1 is to the north of the 
nucleus, electron 2 will like to be south of the nucleus, when 1 is to the east 
of the nucleus, 2 is to the west, etc. 

This type of correlation is not captured in the Hartree Fock solution, but is 
important for chemistry. Much of the research at present on simulating 
molecules in chemistry amounts to developing numerically feasible 
correlation approaches. 
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Perturbation theory: read  Prof. Felker Notes. 

Perturbation theory applied to the He atom: 

Let’s apply perturbation theory to He, especially the ground state. 

Zero-Order Hamiltonian: 

Recall that the Hamiltonian is (with 𝑍 = 2): 

𝐻 = −
ℏଶ

2𝑀
∆ଵ −

𝑍𝑒ଶ

𝑟ଵ
  −

ℏଶ

2𝑀
∆ଶ −

𝑍𝑒ଶ

𝑟ଶ
+

𝑒ଶ

𝑟ଵଶ
 

i.e., in a.u. 

𝐻 = −
∆ଵ

2
−

𝑍

𝑟ଵ
  −

∆ଶ

2
−

𝑍

𝑟ଶ
+

1

𝑟ଵଶ
 

Let’s choose now the non-interacting part to be our zero order Hamiltonian, 
and the electron-electron interaction is the perturbation, i.e., write 

𝐻 = 𝐻 + 𝐻ᇱ 

where 

𝐻 = −
∆ଵ

2
−

𝑍

𝑟ଵ
  −

∆ଶ

2
−

𝑍

𝑟ଶ
 

𝐻′ =
1

𝑟ଵଶ
 

Now 𝐻 is the sum of two hydrogen-like Hamiltonians.  We know the 
eigenfunctions and eigenvalues of 𝐻.  The eigenfunctions are products of 
hydrogen-like eigenfunctions (e.g.,  𝜓ଵ௦(𝒓𝟏)𝜓ଵ௦(𝒓𝟐)) and the eigenenergies 
are sums of hydrogen-like energies.  Thus, we have the zeroth-order 
eigenfunctions (𝑓) and eigenvalues (denoted as 𝜖) for the problem: 

𝑓భ,భ,భ,మ,మ,మ
(𝒓𝟏, 𝒓𝟐) = 𝜓భ,భ,భ

(𝒓𝟏)𝜓మ,మ,మ
(𝒓𝟐) 

So 𝐻𝑓 = 𝜖𝑓, i.e.,  

𝐻𝑓భ,భ,భ,మ,మ,మ
= 𝜖భ,మ

𝑓భ,భ,భ,మ,మ,మ
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where the zero-order energies (i.e., energies associated with the zero-order 
Hamiltonian) are the sum of the individual energies 

𝜖భ,మ
= −

𝑍ଶ𝑒ଶ

2𝑎
ቆ

1

𝑛ଵ
ଶ +

1

𝑛ଶ
ଶቇ,        𝑛ଵ, 𝑛ଶ = 1,2,3, …. 

Let’s determine the: 

1st order perturbation to the ground-state energy 

The zeroth-order ground-state eigenfunction is 𝜙ଵ௦(𝑟ଵ) ⋅ 𝜙ଵ௦(𝑟ଶ), i.e., 
formally 

𝑢,(𝒓𝟏, 𝒓𝟐) = 𝜙(𝑟ଵ) ⋅ 𝜙(𝑟ଶ)

= ቌ
1

𝜋.ହ
൬

𝑍

𝑎
൰

ଷ
ଶ

𝑒
ି

భ
బ ቍ ⋅ ቌ

1

𝜋.ହ
൬

𝑍

𝑎
൰

ଷ
ଶ

𝑒
ି

మ
బ ቍ 

And the associated energy is  

𝜖, = −
𝑍ଶ𝑒ଶ

2𝑎
൬

1

1
+

1

1
൰ = −

𝑍ଶ𝑒ଶ

𝑎
= −𝑍ଶ  Hartree        

The correction to 1st order to the ground-state energy is denoted as 𝑊ଵ
ଵ௦మ

 

𝑊ଵ
ଵ௦మ

= ൻ𝑢,ห𝐻ᇱห𝑢,ൿ = න 𝑢,
∗ (𝑟ଵ, 𝑟ଶ)

1

𝑟ଵଶ
𝑢,

∗ (𝑟ଵ, 𝑟ଶ)𝑑ଷ𝒓𝟏𝑑ଷ𝒓𝟐 

i.e., 

𝑊ଵ
ଵ௦మ

= ቆ
1

𝜋
൬

𝑍

𝑎
൰

ଷ

ቇ

ଶ

න 𝑒
ି

భ
బ 𝑒

ି
మ
బ

1

𝑟ଵଶ
𝑒

ି
భ
బ 𝑒

ି
మ
బ 𝑟ଵ

ଶ𝑑𝑟ଵ𝑟ଶ
ଶ𝑑𝑟ଶ sin𝜃ଵ𝑑𝜃ଵ𝑑𝜙ଵsin𝜃ଶ𝑑𝜃ଶ𝑑𝜙ଶ 

We actually have seen this integral previously in conjunction with the 
variational treatment of the ground-state; I remind you that there we wrote: 

ൻΦห𝐻′หΦൿ = 


1

𝜋ଶ
𝜉൨ ඵ 𝑟ଵ

ଶ𝑑𝑟ଵ sin(𝜃ଵ) 𝑑𝜃ଵ 𝑟ଶ
ଶ𝑑𝑟ଶ sin(𝜃ଶ) 𝑑𝜃ଶ ∗  exp(−2𝜉𝑟ଵ) exp(−2𝜉𝑟ଶ)

∗ ൬
𝜉 − 2

𝑟ଵ
+

𝜉 − 2

𝑟ଶ
+

𝟏

𝒓𝟏𝟐
൰ 
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where I highlight in red the term we need now, and in the present 
perturbative calculation we don’t vary the effective charge, i.e., here 𝜉 =

𝑍 = 2 is the charge of the Helium, so the two "𝜉 − 2" in the integral drop-
out. 

So we’ll use the result we quoted there, which was  

𝑊ଵ
ଵ௦మ

=
5

8
𝑍 

𝑒ଶ

𝑎
=

5

8
𝑍  Hartree 

So adding to the zero-order energy, 𝜖 = −𝑍ଶ Hartree as mentioned 
earlier, we get the total ground-state energy to 1st order: 

𝑊ଵ௦మ
≃ 𝜖 + 𝑊ଵ

ଵ௦మ
= −𝑍ଶ +

5

8
𝑍 

So for He, Z=2, and we get 

𝑊ଵ௦మ
= ൬−2ଶ + 5 ∗

2

8
൰  Hartee = −4 Hatree +

5

4
 Hartee

= (−108.83 + 34.01)eV = −74.82 eV  

Note: 

1) In this case (and usually) perturbation theory to 1st order is not nearly 
as good as a comparable variational calculation.  There is no flexibility 
built into the perturbation-theory wavefunction, except for the initial 
choice of 𝐻 and therefore the associated zero-order eigenfunctions. 

2) Going into higher orders in perturbation theory requires systematically 
more in the way of calculations.  Usually we’ll need to go to 2nd order, 
beyond that the results may actually get worse in many cases. 

3) We only treated here the non-degenerate case, meaning that the zero-
order eigenvalue is not degenerate (or more precisely, that the strength 
of the perturbation is somehow smaller than the difference between 
the energy of the state we’re looking at, in this case the ground-state, 
and that of nearby eigenstates.) 

The degenerate perturbation theory case is more important but more 
complicated, probably we won’t treat it. 

4) A time-dependent version of perturbation theory is readily formulated 
and is very powerful in studying time-dependent problem, most of all 
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in the treatment of the absorption of radiation.  We may have enough 
time to cover that topic (next), or you may need to wait to 113B. 

 

 

 

 

 

 

 

 

 

 

 

 

 


