Chem. 221 Notes (adapted from notes by
Professor Alex .]. Levine)

Overview: These notes are a mixture of typing up of notes by Professor Alex
Levine (~75-80%) with some extras or modifications.

The notes cover much of the minimum mathematics needed for physical
chemists:

e Linear algebra, matrices and bra-kets, linear equations and least square
fitting.

e Ordinary differential equations, special functions.

e Complex integration.

e Group theory - finite groups and Lie groups.

e Delta Functions, Continuous basis-sets, Fourier transforms and integrals

There are several missing parts, which may be inserted in later versions or
covered in your other classes; the most important ones are:

o Partial differential equations (elliptical and hyperbolic), Sturm Liouville
forms

e Probability
e Numerical algorithms: especially Monte Carlo and Metropolis forms.
o And for the advanced: Field theory (really part of physics)

The two recommended references are:

e Boas: Mathematical Methods in the Physical Sciences - very clear

e Mathews and Walker, Mathematical methods of Physics - my favorite,
more condensed than Boas but more lecture-notes-like so "easily flows",
and covers some material not in Boas.

Alternately, one could use:

o Arfken - Mathematical Methods for Physicists -- Very comprehensive.



Linear algebra:

Overview:

1. Vectors and Hilbert spaces, dot products

2. Coordinate transformations, matrices, rotation (orthogonal) matrices.
3. Bra-ket notation, completeness

4. Applying several operations or matrices

5. Determinants and Matrix Inverses, the Levi Civitta symbol

6. Hermitian conjugates. Hermitian and Unitary matrices.

7. Diagonalization of matrices.

8. Hermitian matrices - real eigenvalues, orthogonal eigenvectors.

9. Traces.

10. Functions of matrices f{(M) = Vf(A)V~?!

11. Non-orthogonal basis sets: orthogonalization (Grahm Schmidt, symmetric
Diagonalization); or Generalized Diagonalization.

12. Linear homogenous and inhomogeneous equations; regularization terms;
variational solution, and least square fitting.



Basis of unit vectors:

Vector: arrow with magnitude and direction; can be added. We are familiar with
them in 2D and 3D, but they are general.

The starting point is a basis; in 3D it will be e;,e,,e3 (what we usually call a unit
vectors in the x,y,z directions) and in general, for a d-dimensional space, it will be
€,€,,€3,...,€,.

Further, we assume for most of the chapter that the basis is orthogonal and even
orthonormal (later on we'll see how to take a general, non-orthogonal basis, and
orthogonalize it). What orthonormal means, is that we have a dot-product, and

the "dot product” of the unit vectors is 1 with themselves and zero with each
other

€ °€ = 1
€ °€ = 0
€r*€r) = 1
etc.

Or generally
e oe; =0

Where we defined the Kronecker delta

5 = 1 i=j
Y70 else

This basis will give us what we call a coordinate system.

Representing vectors as list of numbers:

Given a coordinate system, associate a set of d numbers with the d-dimensional
vector:

r associated with: (xq,...,x;)
For 3D, for example, write:
r=Xx€ +xe, + X3€3

(note that "1" refers to x-axis, 2: the y-axis, and 3: the z-axis.)

More generally we'll write



d
I =x€¢ +.X'2e2 +X3e3 +..= lejej
J:

Or even abbreviate using the:

Einstein summation convention (repeated indicies are summed over)

d
r:xj'ej Ejzjlx]ej

Further, we allow complex coefficients and vectors.

Insert: Hilbert spaces. Everything we consider will be relevant to basis sets
which are "infinite-dimensional" - "Hilbert spaces"; while this sounds scary,
consider the orbitals of a 1D harmonic oscillator, or the orbitals of hydrogen
atom; to describe a general function of space, 1(x), we can expand our function
in terms of such orbitals, ¢;(x), i.e, P(x) = X bj¢p;(x). Then, the coefficients,
(bq, by, ...) can be viewed as coefficients of a vector.

The number of terms in such an expansion can be either infinite, formally, or if
we expand numerically the number of terms will be finite. For example, if we
expand a 1D function, or a 3D function, in terms of 1000 basis functions, then we
are using a vector space of length d=1000. This vector space is much "bigger" of
course then the space associated with 1D or 2D or 3D vectors, which have
dimensions d=1, 2 and 3, respectively, but otherwise is similar.

Extracting the coefficients:
Given
r= z xj'ej
J=1
we can extract the coefficient xk by dot-product with e, :
e er=e > x;e; =3 x;e;e;
j=l j=l

= 2 x;6; =x; (at the only j term that contributes is the k term)
j=1
Note how this is easier with the Einstein summation convention,
ek 'r:ek 'Xjej :.Xjek'ej :xjajk :)Ck
Either way, we find

Xi =ek°r



Dot product of 2 vectors

Given the definition, we can calculate a dot-product operation. For 2-D vectors, and
let’s assume that the coefficients could be complex, we complex conjugate the left
vector:

A= ae| +ae,
B= blel + b262

£
A*B= (alel + azez) i (blel + bzez)
= al*blel b el + Cll*bzel o e2 + az*blez hd el + Clz*bzez b 62
= al*bl 1+ al*bz 0+ az*bl 0+ az*bz 1
=a,'b +ay by
= ai*bi
And in general the proof is the same:
* k * *
A°B=Zai e,- 'ijej = Zal- bjel' 'ej = Zai b]é‘lj = Zai bi
i J i,J i,j i,j
And with the repeated-index summation convention

A*B= al*bl

Magnitude of vectors:
Note that we need the magnitude if vectors. In 3-D real vectors have the norm:
|r| = \’xlz +XZ2 +X32 .

For complex vectors, we need a conjugation. For example, even in 1D, consider
the vector

r, =(+i)e; 1e,n;=me whereag =1+i
The magnitude of that vector is

vy = o a = A=A+ =v12+12 =2

This is why we took the complex conjugation - so the norm is real and positive.

The dot-product of a vector with itself is therefore squared norm. For 3D vectors
* %

r er = (xlel + x2e2 + X3e3) o (xlel + Xzez + X3e3)
* * 2

r er=x; x; =r|

And in general



1 1
|r |:: [2|xl|2j2 :(le xljz :(xl' xl') .
i i=1

where in the last equality we again used the Einstein summation convention.
A side note on generalized norms:

_Formally, the norm we use this is one member of a general family of norms, Lk
norms, defined as

1

J kS

k |k

bl =( Eht

L (izl
The norm as we know it is L2; However, many modern applications benefit from
d

using the L1 norm, Y |xl~

i=1
in the UCLA math. department since 2000.

,and much of the advances in using the L; norm were made

End of side note (From now on norm will be for us only the L2 norm).
Back to regular norms.

Geometrical dentition of dot product:

A=a;e;+a,e,

B=b, e,

As you know, the dot-product of two vectors is the norm of the two vectors times
the cosine of their angle (this can be proved as we'll do for 2-D -- and also 3-D --
space, but is actually the definition of a cosine of an angle in higher order space)

Let's see thatin 2D.

Given A and B, take the x-axis along, say, B. (see figure). In this subsection,
consider the vectors real, for simplicity.

Then:



A B =(aje; +aye; ) be; = ab
But

b; =B

a; =| A|cos¢@ (see Figure). So:
A*B=|A||B|cos ¢

Q.E.D.

Better definition of vectors:

A vector is an n-tuple of #'s that transform in a specific way under rotation, as
explained later.

Formally: vectors are "tensors of rank 1". (We will not discuss tensors - but they
are important and learn about them later).

Example: coordinate transformation
Let's specialize first, for simplicity, to 2D REAL vectors

Consider same vector in 2 diff. coordinate systems: (See figure).

:

YI

X

i.e., relate the representation of the vector, i.e., its coefficients, for two different
basis sets:

V=vert+twne,
V= V'l e'1+V'2 6'2
Two diff. sets of #'s, v'|,v'; and. v, v,, both represent the same physical vector.

Note that (see figure):
e'|*e; =cos¢

e'1°e2 =sin¢



The simplest way to obtain the coordinate transformation (i.e., to obtain v';,v",

from v;,v,) is algebraic:

V=vie +We, =v'1e'1+v'2 9'2
v'i=e'jev

V'l =€ '0(v1e1 +Vvye, ) =V€ ' e + v ‘e € =" COS¢+V2 sin¢

And similarly, v = v,cos¢p — vysing

Coordinate transformation through matrices

Using the algebraic form we then write, in general (following the 29, algebraic
way):
V=vie,

! '
V—V]e.]

V'Z = e'l-v = e'l°vkek = e'1°ekvk
i.e., defining:
My =e'*e;
we get:
vii=Myv, = %Mzk"k
L.e., in matrix form we write:
v'=My

where v' and v are now column vectors, and M is a matrix. In pictorial form,

ol (b o oo

I B B

A M

<

Le., the k'th element of the column vector v' is obtained by summing element by

element the k'th row times the full column v.

Note that the rotation we discuss not a rotation of the vector itself, v, instead
what we rotate is the coordinate system used. (Later we'll consider rotations of

vectors).



In 2D this is quite interesting; we convert the equations we saw (
v =vcosg+vysing, v'5=-v;sing+v,cos¢g )toamatrix form

V') [ cosg sing (v
vy | -sing cos¢ 123

M:(cosgé sin¢j
—sing cos¢

You can verify that indeed this rotation matrix is the same as the general expression,

I.e., the rotation matrix is

Mlk =e'l°ek 5

M= Mll M12 _ COS¢ Sin¢ _ e'l'el e'l'ez
M21 M22 —Sil'l¢ COS¢ e'2°e1 e'2°ez
Back to M: M is the transformation matrix between the old and new coordinate
system.

Bra-ket notation:

We are going to introduce a notation that you may find cumbersome and
unnecessary at this stage, but will be very important later: the bra-ket notation.
We'll use it interchangeably with the regular notation. Itis extremely important
when we consider complex vectors and functions, and makes quantum
mechanics much more elegant, as Dirac has shown (after finishing this course
read his 1930 Quantum Mechanics book - the elegance of the presentation and
ideas is sheer enjoyment).

We will introduce it for real and complex vectors.

In the bra-ket notation vectors are denoted by |V> (ket), and a conjugate of a

vector by <V| (a bra).

The ket |V> is really a vector, i.e., is independent of the coordinate system used.

The power of the bra-ket notation comes when we look at the dot-product.

For general complex vectors, their dot product is
<a|b> = a* *b
Note that the order determines the result:

%
(a[b)=(ba)

Linearity

The ket is, for us, a vector, so it is linear, i.e.,

|aa +bb) = afa)+ [b)



Note that the bra is not exactly linear, i.e., the coefficients are complex
conjugated, i.e.,

(aal=a’ (a

The reason is that the bra is essentially a complex conjugated vector, as we saw.

Let's say that we're in a 2D space. Then, we can use a coordinate system defined
by two kets, e1>, e2> . These vectors are orthogonal, so

<el|el>:el °€ =1

(ei]es)=0
elc.

Write a general vector in this 2D space, i.e., a general ket, as
V) =viler)+v,|ep)

This is of course completely equivalent to v=v,¢; +v,€,. We allow the vector to
be complex, so the coefficients can be complex.
"Dotting" by the basis-set gives

<e1 |V> = <e1 |v1e1 +V2€2> =V <e1 |e1>+v2 <e1 |e2> =V

Similarly

(2] v) =72

Analogously, for a general basis fulfilling

(eile;) =5y
the coefficients of a general vector

[v)=v; ‘ej>
are obtained as

y=(e)|")

Note the relation between a ket and its representation. Often, we confuse it. For
example, rewriting what we did on dot products, we get

<ll| V> = <ujej ‘ukek> = uj-vk <e] ‘ek>
i.e,
(ulv)=ujv;

If we define a 2*1 matrix (which we colloquially call a vector):

10



)
at

then, define the Hermitian conjugate of the column vector as the complex
conjugate of the transpose of the vector (the same definition will work below for
matrices), i.e.,

ul = (”1* u;)

Note that uwas a 2*1 matrix, called column vector, and uT is a 1*2 matrix, a row
vector.

So we can write the dot product as

(ulv)=utv=(u’ uz)[‘:j

Note that v is not really a vector in the same sense that the ket [v> is, since it depends
on coordinates; it is merely the representation of the ket in a basis-set. But we will
often go back and forth and call v, the 2*1 tuple of numbers, a vector.

Finally, the dot product is the norm squared, as we saw:
* 2
<V|V> = vTv:vjvj :Z| v
J

All the expressions we derived are valid for a general case, of course, of a d-
dimensional vector.

Completeness

Finally, we can derive a very useful (and especially transparent expression in the
bra-ket notation) of completeness:

Z‘ e j><e J-‘ =1 (or ‘e j><e j‘ =1 in the Einsten's summation convention)
J

Proof:

Apply this to an arbitrary vector
=2 cklex)
k

And we’ll get the same initial vector

11



J

Z‘ej><ej‘c:zck‘ej><ej|ek>=ZCk‘ej>5jk :zck|ek>:cl Q.E.D.

Matrices and operators in the bra-ket notation:
A general operator on kets or vectors is defined as a mapping from one vector to
another:

Lfu)=]

We'll usually limit ourselves to linear operators. Linear operators are those that
fulfill:

L|aa+bb)=aL|a)+bL|b)

We can write linear operator through a linear matrix, as follows (we use in the

derivation the Einstein summation convention):

Starting as:

wy=L|y)

We then insert

[v) = velex)

giving

|ll> = LVk |ek> = vkL|ek>
But since |u> is a ket, we can also expand it
u)=u; ‘ej>
where the coefficients are obtained by "dotting" by a bra:
= o o) (e ) = e [Lfes) o
ie.,

u] = L]ka

where the matrix L ;; is related to the operator as

Lk :<ej ‘L|ek>
In matrix form, we can write this as
u=>Ly

where u is a column vector, L is a matrix, and v is a column vector:, as we saw.

12
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The ket and vector and matrix notations are so intertwined, we'll use them
interchangeably

So to summarize: We have 3 ways to represent vectors
e As abstract vectors, v
e As abstract kets, [v>
e As column vectors, i.e., d*¥1 matrices.
And similarly operators can be viewed in 2 ways:
e As abstract operators
o As d*d matrices
Note on operations on vectors and coordinate transformation:

A fine point which can get lost is the difference between operating on a vector and
coordinate transformation. When we operate on a vector, for example rotate it, the
vector itself changes; when we do a coordinate transformation, the vector does not
change but the basis set does. See figure for the difference.

- Il. Same vector in rotated X
| OFgFE etrar coordinate system l1l. Now, instead, coordinate

system fixed but vector
rotated in opposite direction
(-@) -- same coefficientsas in Il

Example for operator: rotation operator
Let’s consider the linear operator of rotating a vector by an angle ¢, R ¢» Which we

abbreviate often just as R.

R is defined formally by rotating the x-axis and the y-axis, i.e. (see figure above):

13



R|e1> = cos¢|e1>+sin¢|e2>
R|e2> =—sin¢|e1>+cos¢|e2>

]And therefore, since
Ry =(e;|R|e;)
We get
Ry =Ry =cosp, Ry =—sing, Ry =sing

cos¢ —sin
Ro[cost —sing
sing cos¢
Note that R is not the same as M, the coordinate transformation matrix we had before,

M:(cosgﬁ sin¢j
—sing cos¢

i.e,

In fact, Ry = M_g .

This is understandable — see figure above — rotating a vector by an angle has the same
effect on its coordinates as rotating the coordinate system in the opposite direction.

End of rotation operator(for now, more later).
Another example: stretching along an axis;

You can verify, that in 2D the operator that stretches a vector by a factor of 3
along its y axis is

L=[e;)(ey] +3[ez) (e, |

(Apply this on a vector |V> =v1|e1>+v2|e2>, and get L|V> = v1|e1> +3v2|e2> ).

i, )

Applying two operations one after the other.

The associated matrix is

Let’s apply two operations on a vector, L and K (first K, then L).

14



b) = LK]u)

b= <ej ‘LK|u> = <ej ‘L|em><em |K|u> (implied summation)
by =(e;|Llen){en|K]e,)(es u)

bj =ijKmnun

L.e., a product of operator LK is represented by a matrix, which is a matrix product of
the matrices of the individual operators LK.
Example

If we want, for example, to rotate a vector clockwise by an angle ¢ and then
stretch it by a factor of 3 along the y-axis, we can represent the matrix for the
two operations by the product of the matrices

R 1 0)(cosg —sing) (cosg —sing
o 3 sing cos¢ - 3sing 3cos¢
Note that since the operators do not commute (LR # RL ), the matrices do not
commute.

15



Determinants and Matrix Inverses

[ presume that you saw before determinants, and know how to evaluate it
formally, so I'll just present the formulae; for convenience, so as to avoid a
plethora of indices, we will use a 3*3 matrix, and define the matrix as 3 row

vectors,
a a; a, as
M = <b) = <b1 b, b3>
C Cl CZ C3
And
det(M) = a, det (bz b3> —a, det <b1 b3) + a;z det (bl bZ)
Cy C3 €1 C3 1 G
with
b, b
det (C; Cz) = b2C3 - b3C2
etc.

A more revealing form is
det(M) = z EijkaibjCk
ijk
where €y is the Levi-Civitta symbol (here for 3 indices, since we consider
vectors of length 3 and therefore matrices of 3*3):
€123 = 1, and in general any permutation of a pair of indices changes sign,

For reference once and all let's write down the 3!=6 nonvanishing symbols for a
3-index Levi-Civitta tensor, but the rule above should have been sufficient for
you to reconstruct them:

€123 = L, €313 = —1,€315 = 1,613, = —1,€331 = 1,635, = —1L.

Proof: we need to expand over ijk that are different; the expansion gives (with
abbreviations, you can fill in the details):

z Eijkaibjck = €153, b,C3 + €13,a,b3¢, + - =a,byc3 — aybsc, + - = det(M)
ijk
This leads to several other interesting facts:
First, a cross product can be represented by the Levi Civitta tensor,
i.e.,
d=bxXc

d; = Z €ijkbjck

jk

Is the same as

Proof: take, e.g., i = 1. Then, the second formula gives

dy = €123by¢3 + €133b3¢, = byc3 — bycy, QED.

16



Now from the definition of the determinant as det(M) = ¥ i €;xa;bjcy, it

follows that
det(M) = z aiz Eijkbjck = Z ai(b X C)l' =a- (b X C)
i jk i

while this expression is obviously valid only in 3D, it reveals something very
useful; specifically, recall that the length of b X c is the same as the area of the
paralleloid defined by b, ¢ (see figure); then when we dot with a we get that a -
(b X c) (and therefore det(M) ) is the volume described by the 3 vectors, a,b,c.

T 7
et

C

Parelloid volume: a:(bx¢)

This is a general property of determinants; a determinant gives (up to an overall
minus sign) the n-dimensional volume encased by the n row vectors consisting
the determinants - or n column vectors, since, as we won’t prove,

det(M) = det(M7),
So we could use either column or row vectors.

(Also, we're not consistent on the symbol for the dimensionality sometimes
using “d”, sometimes “n”, sometimes “N”).

Other properties of determinants: we can add or subtract to any row any constant
times the other row (or to any column a product of the other column), without
changing the determinant;

This is easily proved in the Levi Civitta notation, since then, e.g., when we add
the 3rd to the first row:

a, +fe az+fe, asz+fes
det(M’) = det< b, b, b, ) - Z e (a; + fe)bjc
G 2 C3 ijk

= Z Eijk aibjck + fz Eijkbjcick = det(M) +0
ijk ijk
Where the last term vanishes since €; is antisymmetric in i, k while it is

multiplied by c;c; which is symmetric in i,k (so we have terms such as
€123C1b2C3 + €321C3D,¢1 = €1by¢3 — C3bycq = 0)

17



Note: in practice determinants are not evaluated from these defining formulas
for matrices with dimensions bigger than 6, since the effort grows factorially in
this simplest way (like n!). Instead, one uses the Gauss-Jordan Elimination, not
covered here, with a number of operations of about n3.

Inversion of M: is only covered here for square ("n*n") matrices. As mentioned,
it is practically done by Gauss Jordan elimination (won't be reviewed),which
takes n3 operations - see book. Alternately, for formal purposes, one writes the
inverse as co-factors - this is something you saw before and won'’t be covered
here.

The only important thing to remember is that M~ is proportional to 1/det(M) -
so if the determinant of M is zero, i.e,, if the vectors of M are dependent, then M
has no inverse.

This makes sense, and we'll prove it now (without reference to the explicit
formulae).

Proof: If det(M) is zero, the column vectors are linearly dependent (as are the
row vectors). That means that they are spanned by a basis with less than "n"
vectors, where n is the dimension of the matrix (number of columns and rows).
Therefore, there is a vector, g, that's not in the basis spanned by the column
vectors of M.

Further: Now let's think on a matrix as a collection of column vectors (not row
vectors as we had), i.e,,

M= (m{,m,,.m,)

My,
my = | My,

Then, multiplying a vector u by M, amounts to a weighted summation of the
column vectors, ie.,

where

etc,

Mu = u1m1 + u2m2 + .-

(Proof: (Mw), = Y My ju; = Myquy + Mypuy + - = ug (Mg + up(my)y + )
So it M had an inverse, then we could defineu = M~1 g, and then
g=MM'lg=Mu=um, +um,+ .=

So g would have been spanned by the column vectors of M, which is a
contradiction.

To conclude: for the matrix to have an inverse, its column vectors must be a
basis, therefore its determinant needs to be non-zero.
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Properties of inverse:
(AB)"1=pB"1471
Proof:
(B7'A™Y)(AB) =B 'A*'AB=B ' IB =1
Similar properties for transpose:
(AB)T = BTAT
Proof: (using the summation convention)
(AB)TU. = (AB); = AjyBy; = Ay;B}, = Bl Ay; = (BTAT);; Q.E.D.
Note: An orthogonal matrix is defined as a matrix fulfilling
R-1=RT

The natural extension of these to complex matrices is unitary matrices, discussed
shortly.

Hermitian conjugates of operators
The Hermitian conjugate of a matrix is defined as
(MT)ij = (Mji)*
i.e., the complex conjugate of the transpose.
MY =Ty (definition)

In bra-ket notation, the Hermitian-conjugate of an operator is defined to be an
operator such that

Lf |b> means that for any ket <c|
(c|L7[b) = (b[L]c)

By definition, the matrix representation of a Hermitian conjugate of an operator
is the Hermitian conjugate of the matrix of the operator; here's the proof:

(LT)ij = (ei|L"]e; ) =(e; |L]e;) = 2;"

As with kets and vectors, we'll move back and forth between Hermitian
operators and matrices.

Note: (4B)" =B"4" (

prove this!)
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An important point is that when we operate on a ket by an operator, the
associated bra is related to the Hermitian conjugate of that operator. Let's prove
this in matrix form first

If

o ()

where a and b are column vectors, i.e.,

a;=L jkbk

then take the hermtian conjugate, i.e.,

complex conjugate and transpose (turning a into a row vector):
&=L = b

or formally

d=p'rt )= (L)

In bra-ket notation:
|a> = L|b> implies
(a=(b[Lf
proof: take a general ket |c>; dot the 2nd line with this ket,
(ale) = <c|a>* = <c|L|b>* = (by defintion) <b|LT )

So <a| is equivalent completly to <b|LT,i.e., we can identify both.

Hermitian and Unitary Matrices - extension of symmetric and
orthogonal to complex matrices

There are two types of matrices associated with Hermitian conjugates:
Hermitian matrices (or operators) and unitary matrices (or operators).

A Hermitian matrix, also called Self-adjoint, is defined as a matrix that's equal to
its complex conjugate, i.e.,

Mi=m (Hermitian matrices)

Similarly, a Hermitian operator fulfills Mi=m.

A unitary matrix (or operator) fulfills:
MT=m" (Unitary matrices)
M =Mm"! (Unitary operator) (so MM=MMT = 1)

Example: A unitary operator preserves the norm of a vector.

20



Say
|a)=U[b)
where U is unitary. Then
(a] = (b[U"
(ala) = (b|U"U|b) = (b|1]b) = (b|b)

i.e.,, the norm is preserved, as stipulated.

Another type of matrices you should remember is idempotent matrices, fulfilling
P2=p

Note that this implies that the eigenvalues of P (something we’ll talk about later)

are all 0 or 1. These matrices are important in electronic structure, since they

are the density matrix of the electrons in the Hartree Fock or in the Kohn-Sham
DFT approaches.

Hermitian and unitary matrices have importance in Diagonalization of matrices,
covered next.
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Diagonalization of matrices

For every linear operator or matrix L we can find an “easy’ basis, where the
action of the operator (or matrix) is “easy”, i.e., is just a rescaling:

L|vi) =% Vi)

And furthermore, the eigenvectors can be normalized, i.e., <Vk | Vk> =1, but there

are cases when this eigenvector basis will also be automatically orthogonal -
we'll learn later.

Example

For example, take a basis, e1 and ez and define an operator L that exchanges
these vectors. In a matrix form,
0 1
L=
1 0

This matrix corresponds to the operator that exchanges the basis-elements, i.e.,
Lle;)=le)
Lley)=le;)
So for a general vector

|2)=ae;) + az]ey)
we operate with L as follows:

L|a> = L(Cll |e1> +ay |ez>) = a1L|el> + a2L|ez> =q |e2> +ay |el>
What will be the eigenvalue of this operator? We can guess it due to its simplicity

As you can see in the figure, this operator corresponds to a mirror exchange
around the x-y (north-east) line.

X

Original vector: gray; after reflection
through (red)x-y line, the x and y
components of the vector exchange,
resultingin the new, black, vector

Therefore, we can guess that one eigenvector will be a vector along the x-y line,
which will be unchanged:
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ie.,
1
V2
Vl = 1

Where the 1/sqrt(2) is of course to normalize the eigenvector. The operator
does not do anything to this vector, i.e., as you can verify

L|v))=|vp),
ie.,
ﬂfl :1

The other eigenvector will be perpendicular in this case to the x-y line, i.e., it will
lie along the north-west (or south-east) line, i.e,,

1

|V2>:\/§(|el>—|ez>)

ie.,
1

V2
1

V2

Vy =

And

L|v2)=—|v2),
ie.,

Jy =1

Diagonalizing in the general case:

In the general case, we can write

LVk = ﬂ,ka
ie.,
(L= D)v;, =0

Le, the matrix (L—4;/) has a degenerate eigenvector. As we learned this means
that

det(Z — 41) =0
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We can use this equation to find 4;, and then from it to find the eigenvector.
Example: let’s use a more complicated example.
3 -1
L =
So
3-4 -1
L—-Al =
2 1-2
O=det(L-A)=CB-A)(1-4)—(-1)2 =22-42+5

ie.,

L A4xN16-20 x4 42142,

2 2 2 2

The eigenvector can be found from this, I won’t cover how this is done.

Note: the determinant of L — A4 will be a polynomial in A of length d (where d is the
size of the matrix), so , according to the theory of polynomials, there will be up to d
different eigenvalues, i.e., a matrix of 10*10 will have at most 10 different
eigenvalues, etc. This is in line with what we said that the eigenvectors forma basis,
since a basis cannot include more than the dimension of the system (or in matrix form,
a basis cannot include more than the number of rows or column of the matrix).

Diagonalization - general properties:

We wrote that diagonalizing linear operators amounts to finding the vectors, and
associated eigenvalues, such that

Llvy) = A |vy)

Therefore, in any desired orthonormal basis, labeled {|ej)}, we expand the

operator, and by now you know what's the resulting equation, i.e., dot product by
(ejl, and insert }’; |e;)(e;| = 1, to get

(elelvk) = Aklvi)
> ejlLlensedvi) = lvi)

We write the eigenvectors in the original basis as

Vi) = Y Vink l€m)  (wWhere V. = (enlvi)), i.e, V is the matrix
where the eigenvectors are column vectors, i.e.,

V= (vl,vZ, )

Z LiiVik = LV,
7
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And if we define the diagonal eigenvalue matrix (presuming the basis set has "n"

vectors):
A 0
A= [ P ]
0 - A,
We get:
LV =VaA
Further, multiplying by V=1 on the right we get
L=vay—1

EIGENVALUES OF HERMITIAN MATRICES ARE REAL
Proof: Given an eigenvalue A define the a = |vy),and b = a.
A = (vg|Llvy) -
Ak = (b|Lla) = (a|L"|b)" = (a|L|b)" = (vy|L|lvy)" = A Q.E.D.

Note that this implies that eigenvalues of real symmetric matrices, which are a
subset of Hermitian matrices, are real. (But eigenvalues of general matrices
could be complex, as we saw).

Eigenvectors of Hermitian matrices are orthogonal (unless their
eigenvalues are the same, in which case they still can be made to be
orthogonal)

Proof: take two eigenvectors |v;), |vy). Then
0 = (vi|L — L¥|v)) = A(vi|vj) — (Wi |[L¥ |[v)) = A(wi|vj) — (vj]L|vy)
= Aj(vklvj) - AZ(vklvj) = (/11' - A;)(vklvj)
So either (/11- - /1;‘() = 0,i.e, A; = A (since the eigenvalues are real), or (vk|v]-) =
0, i.e., the eigenvectors are orthogonal.

Note that if there is more the one eigenvector with the same specific eigenvalue
(e.g., as happens for the 25 and 2Px,2Py,2Pz orbitals of hydrogen), then we can
still orthogonalize the eigenvectors, and make orthogonal (and orthonormal)
eigenvectors.

We can of course also make each eigenvector normalized,
(vilvg) = 1 (not summed over k)

Note that in that case (of orthonormal eigenvectors), then the matrix of
eigenvectors is unitary, i.e.,

vty =1
(Proof: (V*V) j = ¥ Vi Vi = ViiVie = (Wi|v)) = 6k))

Mathews and Walker show that this is true not only for Hermitian matrices, but
whenever a matrix L and its conjugate L™ commute:
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V*V =1 whenL,Lt commute

A little known example (beyond Hermitian matrices) is unitary matrices, i.e., we
can find a unitary eigenvector matrix V for a matrix L if L is itself unitary!

Traces

Trace:
Tr(A) = A; = zAii
i

(Note again that at times I use the Einstein summation convention, other times [

don’t; also, it won’t be used outside this chapter.)

An important property of trace is that even for non-commuting matrices,
Tr(AB) = Tr(BA)

Proof:

Therefore (cyclic property)
Tr(ACD) = Tr(CDA)
(proof: just define B=CD, and apply the theorem above).

This leads to another property which will be very important later for matrix
diagonalization:

Functions of Matrices:
Two useful facts:

1) Any function f (M) of any matrix which could be diagonalized
(essentially all) as M = VAV ™1, can be writtenas f (M) = VF(AD)V1;
Proof: assume the matrix can have a taylor expansion, i.e.,

f(M) = fo + fiM + f,M? + --- (where the {'s are numbers)
then we can write

fM) = fVAVY) = fo + VAV L+ £,VAV- VAV 4 oo
=V(fo+ it + fLA2+ )V 1 =VFfQA)V~! Q.E.D.
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2) We can relate the determinant of any matrix to the trace of its log:
M = exp(B) — det(M) = exp(Tr(B))

Proof: let's diagonalize
B=VAV 1 -5 M=exp(B) =VexpQ) V-
det(M) = det(V) det(exp(1)) det(V™1)

But (we don’t prove, let’s accept it) the determinant of a product is the
product of a determinant,

det(AB) = det(A)det(B), so det(V~1) = det(V)!
(asdet(VV™1) =det() = 1

and the determinant of a diagonal matrix is the product of its
elements, i.e.,

ell cee 0
det(M) = det[ : : ] =eM et = g(A1tAn)
0 vee eln

det(M) = eT"@ = ¢Tr( ™) = ¢Tr® (o E.D.
where we used

Tr(ABC) = Tr(CAB)

so Tr(M) =T VAV™Y) =Tr(V-V2) = Tr(2)

Orthogonalizing basis sets:

Given a linearly independent set of “n” vectors, |[wy), |w5), ...we can make them
into an orthonormal set, |g1),|g2), ...by one of several different methods.

The simplest one is the Grahm Schmidt approach (see attached picture),

W1

WA

27



where we

(1) First, orthonormalize the first vector:

1
)= ———
|91 (w1|w1)|W1)

(ii) Then, orthogonalize the 2nd vector to make it orthogonal to the first, i.e.,
define

W'2) = [wz) — |g1{(g1|w2),

Followed by normalization of the resulting vector:

1
192) = ————W"2)
Y whlwh)

Continue like this with the next vectors, each time normalizing them to the
previous one, and then normalizing i.e.,

k-1

W) = i) = > |g)g;| wi)

=1

1
|9k) = ———=——=|W'})

Formally, this produces an orthonormal set ((g;|g«) = &ji)-

In practice, when you try this on the computer, you may encounter round-off
errors, e.g., when you orthogonalize the 21st vector w.r.t. the 20t vector, your
vector may not be orthogonal anymore on the computer to the 1stvector. - if this
happens, you should repeat the Grahm Schmidt orthogonalization twice and in
extreme cases even three times.

Also the Grahm Schmidt approach is non-symmetric in its treatment of the
vectors - i.e,, the first vector is not orthogonalized to any other vector, while the
last it orthogonalized to all previous vectors.

Therefore, the Grahm Schmidt approach is perfect when you start from an
arbitrary base and you want to produce the vectors before getting matrix
elements. However, in many cases you have already the matrix given in a non-
orthogonal basis, and you want to treat it symmetrically so itis better to start
from a non-orthogonal basis, and treat it symmetrically then. For this, we need
to study how to do diagonalization in non-orthogonal basis, and then only covert
to orthogonal basis:

Non orthogonal basis sets: general, and diagonalization

As mentioned, often is it very convenient to work in nonorthogonal basis set,
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{lwq), lw3), ..., |lwp)} defined by the overlap matrix
Sij = (wilwj)

(and of course for orthogonal basis set, S=I), This is very common in quantum
chemistry, where the atomic basis sets that are sued are usually nonorthogonal.
Le., even if we take H2 and use as our basis set two 1S orbitals, these orbitals are
non-orthogonal. The Molecular orbitals are orthogonal, but there are a lot of
advantages to using orthogonal orbitals.

The complicated thing about nonorthogonal basis sets is that we have to keep
careful track of whether we are using a matrix or operator, as shown below.

Let's see what the nonorthogonality does to converting between operators and
matrices. First, given a vector b which we expand by the basis-set,

R
J
The coefficient b; are then found by dotting, i.e. define

fi = wilb) = Dby (wilwp) = > Sijby = (b,
J J

i.e,
b=S"1f

Next, say we act on a vector, i.e.,

We can of course write the new vector in terms of the non-orthogonal basis set,

i.e,
)= 1wy

J

And as before:
QZZ@ﬂMmmm:Z@ﬁmmmwm
i ik

i.e,
c=S"1Lb
Where

Ly = (w;i|Llwy)
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Symmetric Orthogonalization

Note that the discussion above leads to one simple way of orthogonalizing the
basis: We first the eigenvector matrix of the Hermitian overlap matrix S,

S=UsU*

(where s is a diangonal real matrix which can be shown to be positive deifnite),
then use this to define

1 1
S2=Us2U"

And then define a new, orthogonal basis as

W)= (s%) w)

J
(Prove that this basis set is orthogonal!)

(For your education - a completely different alternative is to use "bras" which
are different than the kets and make the bra-ket product a unit matrix - you can
read about it in the professional literature)

Now let's move to an alternative, where we don’t make an orthogonal basis:
Diagonalization with non-orthogonal basis set: generalized
eigenvalue problem

We learned that an eigenvector is defined as
Llvy) = A lvg)

Let's expand

lv) = Z ijle)
j

So
Livy) = Z ViieL|w;)
Ji

"dot" the highlighted equation with (w;]| to get:
(WilLlvi) = 3 wi|wj)Vir Ak

i.e,

D wilLw)V = (V2
J

Or
LV =SVA
This is called the generalized-eigenvalue problem. There are several ways to

1
solve it; the simplest one is to multiply the specially highlighted equation by Sz,
leading to
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1o 101 1
(§2LS2)S2V =52V A
_ 1 1 _ — R

So if we define L = S7zL S 2, we diagonalize L by finding L = VAV ™, and then

1_
V=Ss2V.

1

Of course, you have to be careful of the Sz which can diverge; read the book by
Szabo and Ostlund, Chapters 2-3, on how to handle this properly.

Finally, we reach the last topic in this chapter:

Linear System of Equations

Let's consider a linear system of "n" equations for an unknown set of variables
{a; j =1,..,n}. Forastart, say we have as many equations as variables:

M11a1 + M12a2 + -+ Mlnan = b1
M21a1 + Mzzaz + e+ MZnan = bz

Mn1a1 + anaz + -+ Mnnan = bn

we can write this of course as

Ma=0»>b
2 -3 9 a; 7
eg, | —04 27 3 a; | =(-17.2
12 8 —1.4/\as3 5

The solution (i.e., the value of a) depends on whether we have

(i) Homogenous system, i.e. b = 0 -- then, the system of equations Ma = 0
implies that the column vectors of M are linearly dependent, i.e.,
det(M)=0

(ii) Inhomogeneous system, b # 0, thena = M~ b

Variational Solution of Inhomogeneous equations

However, in practice a = M~1b is very dangerous numerically, since
many matrices are almost degenerate; Instead, it is highly
recommended, if you need to, to use a variational method, something
you'll see a lot

Define a "functional”, i.e., a number that depends on the
unknown vector (here it depends on "a"), and tries to
minimize the deviation from Ma=Db, (i.e., the squared norm
of Ma — b ) while adding a penalty term:

J=(Ma-b)*(Ma—b) +nata
=a*M*Ma+nata—a*b—b*a+ b*h
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_ * + * * * *
Jk J

where 7 is a small number, a "regularization parameter”;
then, we find the {q;} that gives the minimum value of the
functional, by differenting ] w.r.t. {a;} orw.r.t. a*

9]

dat

=0 ->MM+Ina—M*bh=0-

a=(M*M+In)"tM*b

(Note that we differentiate w.r.t. the complex conjugate

variables, aj‘ as if the original variable is unchanged; this is

generally true in complex functions of f(z,z*) - we can
differentiate w.r.t. z independently of z*, and vice versa; if
you don'’t believe me you can differentiate w.r.t the real part
and imaginary part of a; separately, and you can get the

same result)

Advantages of the variational solution:

The variational solution will equal the regular solution if n = 0. (Verify!)
However, in general it will be much more stable, i.e., there usually the solution is
stable, within a range of 1 between small and very small (but usually not zero).

What 7 does is introduce a "penalty" if the solution is large, thereby ensuring
that we won’t have solutions which may formally be excellent but in practice are
very large and susceptible to round-off errors, etc.

Least Square Fitting

Quite beyond this case of avoiding singularities in square-matrix inversions, this
variational approach (with the "penalty term", na* a) indispensable when we
have problems where the number of equations is not equal to the number of
solutions, i.e.,, where we'll like to fulfill still Ma = b "to the best of our ability", but
M is not a square matrix.

If the number of equations is smaller than the number of variables there are
infinitely many solutions possible; in that case we'll like the "best" solution,
which we can define to be the solution with the least squared norm na*a, so we
have exactly the highlighted solution.

If there are more equations than variables, we usually won’t be able to get an
exact answer, but again we can minimize the total objective ], (i.e., the squared
norm of Ma — b, plus squared norm of the solution na* a), again resulting in the
same equations.
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Differential equations

Overview
1. First order equations, integrating factor,
Linear 1storder equations
Linear 2" order equations, different types of solutions
homogenous and inhomogeneous solutions
Saddle points and classifying differential equations

Actually solving ordinary 2m order differential equations

N o s W

Qualitative considerations

First order equations

Z—z =f(xy)
In standard notation we write
_ P
F==2
and we'll specify different P, Q, later i.e.,
dy _ P&y)
dx Q(x,y)

Only 1st derivative here - these are 15t order equations

Also: Only total derivative, not partial derivative - labeled as "ordinary"
differential equations.

Examples

I. If we can write P,Q as functions of x,y separately: P(x), Q(y):
dy P

dx QW)
Lead to separable differential equations:
Q(y)dy +P(x)dx O
Integrate from x,, y, to x,y

X

fy ey [ PGadx 0
Yo

X0

We can throw the initial conditions, and just add a constant of integration to be
evaluated some other way.
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For example, Boyle's gas law, as fixed T and n,

awv v
dP~ P
So
v ap logV logP +C
—_——_—— - - .
7 P og og ons
Le.,
log(VP) = Con
i.e.

PV = Const.

For an ideal gas, this "Const." is just nRT .

Example 2:

Another option: P(x,y), Q(x,y) thatyield an "exact differential", i.e.,, there's a
function ¢(x, y) such that

09
FVie P(x,y)
09
E—Q(X,Y)
Then
0, 0 _
do = gdx +Edy =P(x,y)dx + Q(x,y)dy =0

So the solutions are ¢(x,y) = const.

Note that this is just like the potential, alluded to earlier in the course.

Integrating factor:
You can always find an integrating factor a(x,y) so that:
a(x,y)Q(x,y)dy + a(x,y)P(x,y)dx 0

and now the LHS is a total differential.

In general this is tough but there are simple and commonly found cases where
you can find a general prescription for the integrating factor:
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Linear 1st order differential equations

"linear" means linear in y, the dependent variable. We write it as

f(x) =yp(x) — q(x)

SO

dy _
v p(x)y = q(x)

Then we want an integrating factor a(x) that's only a function of x, such that

dy+ _
adx apy = aq

while having the left side as a total integral, i.e., we aim for having a such that:

0P s gy = d(ay)
dx Py dx

But the RHS equals a % + yz—z , so that we want
ap=a',
i.e.,
a= efjo P4 _ Const. el P(x)ax’
This "const." will be irrelevant below, as we'll divide and multiply by «.

So we then have:
L (ay) =
dx ay)=aq
i.e,
X
ay = J a(x")q(x")dx" +C

C

1 X X l; 1
y = m + mj a(x")q(x")dx', a(x) = el p(x")ax

Example: A ball in viscous liquid.

Newton's law, together with a drag force proportional to the velocity (applicable
for low Reynolds number, a concept from hydrodynamics), give:

35



dv -
mdt_ mg — &v

where ¢ is the drag force. Defining the drag force per mass of the falling object,
i.e,

we get

This equation has the form we dealt with, 3—2: + p(x)y = q(x), with p and q now

constant. The solution is therefore as explained to define
a = e,

and multiply the equation above, to give:

dv
ft_ + ft = — Et
e T Eestv ges’,
i.e,
LG
dt ’
i.e,
t
ety — v, = —gfeft'dt’ =—=(eft-1),
0
i.e,

v = ve ¢t —?(1 — 7).

At infinity the velocity is negative, i.e., — %, as the particles downward fall due to

gravity is balanced by the friction.

Similar equations are relevant, e.g., for chemical reactions, for motions of dipoles
in solution, etc.
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Linear 2m order differential equations
A little more complicated because there are two independent solutions.

Let’s warm up with the simplest case: homogenous linear case with const.
coefficients:

y'+ay' +by=0 (a,bconst:linear;
RHS = 0 — homogenous,no const.term)

This simple problem has a nice solution; use an ansatz,
y = e
a’+aax+b 0

i.e,

Three cases:

A

(29 4 pel5-2
e qareal when a? > 4b, two solutions, y =Ae\ 272/7 + Be\ 2 2

e arealwhena? = 4b (soA =0), one solution, y = Ae 2"

a, .lA| a Al
e o complexwhena? < 4b, y= Ae(‘EHT)x + Be(—;—z7)x

Example: damped Harmonic oscillator,
d?y
dt?

where again ¢ is the scaled friction coefficient, and mw? is the restoring force.

dy
== wgy

We rewrite:

d? d

_Z + g_y +wiy =0 Underdamped(top) and

dt dt Overdamped (bottom)

_ oscillations as a function of
So we have three case (see figure): time.
e Overdamped case,é > 2w,: two 1\
damped solutions, ] —

($+ /fz—wg))t (f— /52—4wg)>t

yO) =Ade” T +Be = g_x

o (ritically damped, & = 2wy:
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3
y(t) = Ae72"

e Underdamped (oscillating) solution: ,§ < 2w

y(t) = Ae_<z+i\/m>% + Be_<E_iW>%
Of course, when the friction is zero, we recover in this case the purely oscillating
solution, y(t) = Ae™®t + Bel®t,
Non-constant coefficients:
Frequently encountered. Examples:
QM harmonic oscillator with linearly increasing friction, yields Hermite’s eqn.:
y'=2xy'+2ay =0.
Particle in a circular tube; the resulting equation is Bessel's equation.
x2y" +xy' + (x2 —m?)y =0,

and many other examples. We'll study these shortly; but first consider
homogenous and non-homogenous solutions:

Homogenous and Non-Homogenous solutions:

Consider the general linear 274 order equation (or more generally, any nth order
solution):

y"+P(x)y + Q(x)y = R(x).
Then, we can classify the solution as a general mix of the following form:
y(x) =yi(x) + €171 (x) + 2y (x).
Here:
1) y; is a single solution to the inhhomogenous problem
2) y,and y, are solutions of the homogenous equation,
y'+ Py +Qx)y =0
And ¢4, ¢, are arbitrary coefficients.

(If the equation is higher than 2nd order, say 5% order, there will be up to 5
independent solutions to the homogenous equation.)

The reason for the statement is that first, we can by inspection add to the
inhomogeneous solution any linear combination of the linear solution, and the
equation will not be changed;

Further, if there are two inhomogeneous solutions, i.e., y; and Vi then

yi" + Py + Q(x)y; = R(x)
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y;" + P(x)y;" + Q(x)y; = R(x)
So the difference, y; — y; fulfils the homogenous equation, i.e,, it is enough to

consider one solution of the inhomogeneous equation.

Finally, we won't prove why an nth order linear homogenous equation has n
solution, that's something to accept (if you want to see a p[articular example, try
y" —a?y = 0, e.g,, you see that it has two solutions,

y1 = exp(+ax),y, = exp(—a ).)

Singular Points and Classifying Differential Equations

Given

y'=f0y. ).
Then if y', y are finite at some point x, and y'' remains finite at that point, then
X, is a regular point;
But if y’, y are finite at some point x, and y"’ is infinite x,, then x, is a singular

point.

There are further classifications: If we can write the equations in the linear
homogenous form

y'+ Py +Q(x)y =0.
Then, if P,Q are finite at x,, it is an ordinary point.
If P, Q are diverge at x,, but (x — x,)P and (x — x,)2Q remain finite at x, then x,
is aregular (also known as non-essential) singularity

(You can also analyze the "limit" x = oo by doing a change of variables, x = i, and

check the point z = 0.)
Example:

Bessel's equation,

x2y"+xy '+ (x2—-m?)y=0 -

y, G2 —m?)
n 7 -z — 0
y+ " + 22 y

By inspection, a regular singularity at x = 0; a change of variables leads to
nauseating derivation that eventually show that, for z = i,

d’y 1dy 1-m?z?

—— =4+ —y=0

dz?  zdz z4

So z=0 (i.e,, x = o) is an essential singularity (due to the 214 part).
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If the singularities are regular, the function is easier to deal with and still derive
regular values.

Actually solving ordinary 2rd order differential equations

Used to be a big deal, now less important (for you) because essentially any
equation that you'll encounter has been solved and programmed; however, the
methodology is revealing.

Example (warm-up): Harmonic oscillator.

y"+ w?y =0
Try
y(x) = z ax**, ay #0 n € Z(group of non — negative integers),
n=0
but k not neccessarily integer
Then

y"() = ) (et m)(k +n = D=2

n=0

Let's break it down to the n=0, n=1 and n>1 parts, so we can reliable the last
part, i.e.., arrive back at a polynomial of the form xmrk.

y'" =k(k —1)agx* 2+ (k + Dka,x** + E(k +n)(k +n— 1a,x"+t"2

n=2

And now we can reliable n=> n+2, so

y" =k(k — Daox* 2 + (k + Dka,x* 1 + Z(k +n+2)(k+n+ 1Da,, x5t

n=0
So y" + w?y = 0 gives:
k(k — Dagx*% + (k + Dkax*1 + Z((k +n+2)(k+n+ Da,,, + wia,) x™* =0
n=0

For this to vanish, every coefficient needs to vanish (since each "x" term has a
different power). So:

() k(k—1)ay=0->k=00rk =1 (as ay, # 0, by construction)

(i) (k+1ka; =0 - k=0o0ra; =0 (k+1 cannot vanish since we
know that k=0 or 1, from (i).

(i) (k+n+2)k+n+1ayy—a,=0-
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3 w?a,
2 = T nr )k +nt 1)

Let's first use the solution of k=0; then both conditions (i),(ii) are automatically
fulfilled, and then we know

B w?ay, k=0
Wi =~ D K=
i.e.,
w?a,
2=
_ wla, (1)t
=T 3T 4321
And generally
3 (_1)11 wZn
%o = T on)!

Setting a; = 0 (that's OK by the relations we had, plus the case where the
coefficient of x! is non-zero is really the same as taking k=1 initially, discussed in
a second), then we get:

w?x?  wix* w®x®

k=0 - y(x)zao(l— > + el +--->=a0cos(wx).

What about the other case, i.e.,, k=17 Then we can do the math analogously, and
get

k=1-y(x) = aysin(wx).

So there are two independent solutions, both of which we know of already.
Another example: Bessel's function,

An example showing that things can be more tricky, is: series solution of the
Bessel equation. The Bessel equation is, reminder:
x2y" +xy' + (x2—=m?)y =0

Plugging again a series solution:
y() = ) @, ay %0
n=0

We get:

[oe]

z a,(k +n)(k + n— Dx**" + a, (k + n)x**™ + a,x**"+2 — m2q,xk*" = 0.

n=0

All terms have the same power, starting at x* except the third, which starts at

x¥*2 5o as before we first deal with the x*, x**1 terms, i.e., the n = 0,1 terms.
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For the powers of x*:
aglk(k—1)+k-m?)=0 - ayk?—m?) =0 > k=4m

For the powers of x¥*1:

a((k+Dk+k+1-m?)=0 -
a;(k+1-m)(k+14+m)=0

But we know that k = +m. The only way that that can be together with the
equations above are:

e Eitherm =+ %, a special case of the spherical Bessel functions, not dealt
with here;
e Otherwise, a; = 0.

Next, to the iterations; i.e., as before we relate the powers, i.e., rewrite the 3

term in the main equation above as a,,_,x**"

, n = 2,s0 we get
an(k+n)k+n—-D+k+n)—m?)+a,_, =0 -

_ ap—2
(k +n)2 —m?2

For k =m, get (usinga® —b? = (a + b)(a — b):)

a, =

a = — an-2 _ an-2
" (m + n)? — m? nn+2m)’
For k = —m, get:
. = — an—2 - _ an—2
n (n —m)2 —m2 n(n-—2m)

The first (bolded) solution will cover both cases if we allow m to be negative or
positive.

Then, solving the recursion, gives readily (prove):
B (=1)Paym!
Y20 = 220p1 (m + p)!

So the solution is:

y(x) = agfim(x),
Where we defined the m'th Bessel function:

m+2j

CU()

0 =2"m ) i

j=0

(note thatj = n/2)
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Note that when m is even, the Bessel function is even in x, and vice versa for odd
m.

If m is positive or zero, everything here is fine. That’s also the case when m is
zero or negative. But when m is negative and integer, there is a problem. Then,
the j=|m| term will blow up.

S0 J_jm|(x) cannot be independent of Jj,,|(x) . Itis usually defined as
Jom(@) = (D", (x),  minteger

So we see that for some values of the parameters (i.e., m integrer) there is only
one regular solution; while for the harmonic oscliator there are always 2
solutions.
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QUALITATIVE CONSIDERTATIONS

Often we get more from qualitative considerations then from actual solutions.
An example is a 1D Schrodinger-equation,

L4y oy =E
2m dx? XY =5y

(we use units where i = 1), which can be rewritten as one of two different
forms, depending on whether the potential is lower or higher than the energy
than the energy (also called the classically allowed and classically forbidden
region, for obvious reasons):

dz_y {—kz(x)y(x) where k(x) =/2m(E-V(x)) if V(x) <E
dx?

- k2(x)y(x) where k(x) = \/Zm(V(x) —E) if E<V(x)

For a general V, of course, the solution of these equations has to be done
explicitly (or on the computer, as usually done). But we can understand the
qualitative feature by approximating that the "local momentum" (which refers
either to k(x) or k(x)) varies "slowly"; in that case we solve the Schrodinger
equation as if the potential is constant so k or k are fixed.

V>E

V<E

Y(x)~exp(-k x)
WY (x)~acos(kx)+bsin(kx)

Difference between the solutions of the Schrodinger equation in classically forbidden
regions (V>E) and classically allowed regions (V<E).

The solution (the WKB solution) is outlined in many advanced books (such as
Mathew and Walker) and is reported below; for our purposes, however, we note
that in the first case where the sign of the 2nd derivative is opposite that of y, then
y oscillates like y~exp(+ikx), while in the secnd case, where the second
derivative has the same sign as the function, the solution is exponentially
increasing or decreasing, going like y ~ exp(+kx). (See figure for details.)

Note that if the energy is lower than the potential at large positive x, then at
infinity only the exponentially decreasing solution is allowed otherwise y
exploders at infinity; vice versa for large negative values of x. See the figure for
details.
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Finally, the actual WKB formula is:

y(x) = \/%exp(— fxo;c(x')dx') + \/%exp(fxok(xr)dx,)
X b X
y(x) = \/%exp(—ifxok(x')dx’) + meXp(i _Lok(x,)dxl)

where x, is a nearby transition point (a point where V(x,) = E), and
a, b, a, fare constants.

The integrals (e.g., f; k(x")dx") are the extension of the linear terms (kx to the
0

case that the local momentum (k(x), k(x)) are not constant, i.e.,, when V(x)
depends on x and is not locally constant.

. N o 1 1 .
The one new ingredient in the WLKB solution is the N (or m) term in front

of the exponential. This term has a physical explanation - the higher the local
memtum the faster the wavefunction moves (in the case of E>V), so the smaller
its amplitude, due to a rule called "conservation of flux", that you'll see in QM.

By the way, the conservation of flux rule makes sense to anybody who travelled
on freeways - in regions where the traffic moves fast the density of cars is low
(big distance between each car), but in slower moving regions the cars are
closer.

This is also true in earthquakes - that's why earthquakes make more damage in
sandy or "liquefied-earth” regions, like Santa Monica, where they travel slower
and have higher amplitude, and least damage in mountainous areas (think
Mulholland drive) where they travel fast through rock, and therefore have
smaller magnitude. So in earthquake descriptions (where the mathematics of

C e 1
the wave motion is similar), the waves also have the ——= term.

JVE(x)
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Functions of a complex variable.

Important in all of physics: Quantum mechanics, hydrodynamics, general wave
motion, etc. Important specifically since wave equations are much more natural
in complex variables.

Overview:

1. Complex variables, functions of a complex variable, Re(f) and Im(f),
complex conjugation

Cauchy Riemann conditions; analytical functions
Cauchy integral theorem, contour integrals
Integrals of 1/(z-zo)

Laurent Series

Residue theorem

Analytic functions can't decay in all directions

Cauchy's principle value

© ©® N ok WD

Saddle point integration for real variables steepest descent;
10. Gaussian integrals.

11.Saddle point integration of complex integrals

Complex variables:

Use i =+v—1. A complex number is defined as z = x + iy, and the product of
complex numbers, as you recall, is

z-z' =(x+iy) (' +iy") = (xx' —yy') +i(xy’ +yx)

(The addition is trivial and will not be discussed here). If you are unhappy with

something which is not formally defined, v—1, then think of complex numbers
either as

e Pairs of numbers z=(x,y), with specific rules for multiplying the pairs
(x,y)- (x',y") = (xx" —yy',xy" + yx') -- this is how complex numbers
are handled on the computer (with the trivial addition rules)

x
e Or, even better, as matrices of the form ( yj, and as the following
multiplication show such matrices are indeed isomorphic to the complex
numbers, i.e.,

when the matrix equivalent of z, matrix-multiplies the matrix
equivalent of z', we get the matrix equivalent of zz":
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' x oy x' oy xx'—yy' xy'+ yx'
zz' = =
-y x)\—y' x' -(x+x'y") —yw'+xx'
This equivalence, not pursued further, is important in the discussion of Pauli
matrices in quantum mechanics.

The complex plane (see figure)

Y z=x+iy=r exp(i0)

A

z=x+iy = rcos@ + irsind = re®

|z|zr=\/x2+y2

X
tand = —

where

e 7,0 are the polar coordinates:
e 7 isthe modulus:
e @ istheargument 6 = arg(z)
and z = re' is the polar representation of z.
The modulus is the same as that of a 2-D vector, (x,y)
Note that (we won’t prove, but follows from what you know on vectors):

|z1l=|z2 |l 721 =22 | <] 7 | +] 22 |

The polar representation makers it very easy to multiply two complex numbers,
i.e,

Z1Zy = rlrzei(91+ 02)

So that:
o |z17;| = |z||z;| =11y

o arg(z,z,) = arg(z,) + arg(z,) = 6,+6,
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Functions of complex variables
w(z) = ulx,y) +iv(x,y), where z=x+1i

Example
f(z) = z% = x? —y% + 2ixy
Real and imaginary parts of a function
Rew(z) = u(x,y)
Imw(z) = v(x,y)
Note that both the real and imaginary parts of a function are real

Also, note that a complex function is a mapping from the complex plane to itself
(see graph).

Complex conjugation: z=x+iy, z*=x—1iy,
Note that if we define z = re?, then z* = r e~

Also, |z|? = zz* (check this!, and see figure below)

Y

Z=X+iy

N =/

z*=x-iy=rexp(-i0)

We can analytically continue all elementary functions into the complex plane;
however, watch out for multiply valued functions!

The best known example is:
log(z) = log(re®) = log(r) + i

When we add 2nm to 6, zwill not change (e™® = cos(n) +i (8) = 1) but
log(z) will increase by 2nm, i.e.,

log(z) = log(r) + i (6 + 2mn), n € Z (Z means the group of integers, nothing to
do with z, the typical suymbol for a complex number).

Thus log(z) is a multivalued function; to set it to singly valued we typically take
n=0, and set -7 < 8 < 7, i.e., the negative x axis is a branch cut (see figure).
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Branch cut for log(z)

log(z)-> log(|z|)+in

—_— ,

log(z)-> log(|z|)-im

Cauchy Riemann Conditions for a function to be analytic and the
derivatives of complex functions

Can we define df/dz for f(z)?

(f(z+dz)—f(2))

df .
How about— = lim
dz §z—00 dz

For the answer to be meaningful, it should be independent of the direction, i.ie.,
dz could be small and real, or small and imaginary, or any other direction (see
figure).

Y f(z+dz

~—

(dz imaginary)

f

—

z)  f(z+dz) (dz real)

Turns out it is enough to consider the two extreme choices (6z real or
imaginary) to derive the necessary conditions for the derivative to be
meaningful.

Let
6z =6x+1i6y
f=u+i - 6f =d0u+idv

" 6f du+i
sz Sx +idy
Say 8y = 0, then:

I 6f_6u+i5v_6u+_6v
lmé‘z_ ox  ox lax
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But if §x = 0, then

I 6f dbu+idv  Odu +6v

m 5z 6y  idy dy
Comparing the 2 expressions, we need to have (since% = —i):

du _ Jdv 0Ov _ ou

ox 9y’ ox 9y
For the derivative to be well defined, these Cauchy Riemann conditions need to
be held.

The converse is also true, i.e., if the Cauchy Riemann conditions are true, then the
derivative is well defined, i.e., it will be the same no matter what direction you
come at. [ won’t prove that, but the proof is straightforward.

Corollary: From the Cauchy-Riemann conditions, we infer that const. u surfaces

in the x-v plane are perpendicular to the const. v sources (see figure).

U = const.

V = const.

Proof: The const. u surfaces are perpendicular to Vu, and similarly for v, so for
the surfaces to be perpendicular we need Vu to be perpendiucular to Vv, i.e., we
need to have Vu-Vv =0 . But

vy v _6u6v+6uav_6u6u auau_o ED
WYY = oxox dydy odxdy adyox Q.E.D.

Analytical Functions

If f(z) has a well-defined derivative at a point zo and in some region about it, we'll
call it differentiable.

Examples:
f(z) = z? analytic
f(z) = z" not analytic (prove!)
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Cauchy integral theorem:
Define, along a path, [ f(z)dz = X f(zj)(sz — zj) (see figure below), just like
we do for real functions, but along a path in the x-y plane.

Turns out that for analytic functions (in a given region) the path does not matter,
since in an analytic region (i.e., a region where the function f(z) is analytic), then

jg f(z)dz
=0 (if f(2) analytic throughout the region"R" enclosed by the loop "C").

(Analogous to conservative quantities in thermodynamics).

Y

A LA

Left: for a function f(z) analytic throughout the region enclosed by the two paths,
the integral | f(z)dz from A to B equals in both paths (or any path in between).
Right: equivalently, for a function analytic within a closed region, the closed-loop
integral § f(z)dz vanishes.

Proof: assume for simplicity that the derivative is continuous.

Part 1 of the proof is to note that:
jgf(z)dz jG(u +iv)(dx+id ) = jg(udx —vdy) + ijg(udy +v )

Part 2 is: separately, use Stokes theorem, for a vector B=(Bx, By ) and a path
defined as d/=(dx,dy) enclosing the flat area (with a volume element denoted by
da =(0,0,dx dy)

ng-dl=f(VxB)-da

i.e,

0B, 0B,
jg(Bx ~dx + Bydy) = f B 3y dxdy

Part 3 of the proof: combine parts 1 and 2 in two different ways.

3.i) First, define B, = u, B, = —v: then,
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0B, 0B,
f(udx —vdy) = f(Bx ~dx + Bydy) = f i 3y dxdy

- f(a"+au)dd =0
a dx dy xey =

3.ii) Analogous, with B, = v, B, = u = analogous proof leads to $(udy + vdx) =
0.

Corollary:

If a function vanishes close to the real axis and we have an integral along the real
axis, we can shift that integrand up or down (i.e., add to it a constant or varying
imaginary part, as long as in the region between the real axis and imaginary part
the function has no singularities, i.e.,

ffooof(x)dx = ffooo f(x +iay)dx (where ao can be dependent on %, as long as it is

bounded—under the assumption that f has no poles between the real axis and a
shift of it by iao and if f(x+iy) vanishes when |x| — oo and y is fixed.

Proof: see figure;

Basically the difference between the integrals is the full contour integral minus
the "sides" of the contour (light blue on both sides), and, if the function vanishes
far away (at |x| = ), we are left with the contour integral, which vanishes since
there are no singularities.

Integral over 1/(z-zo)

Next, we prove that

f(2)

Z — Zy

dz = 2mi f(z,)
With the same conditions the curve "C", if it is counter clockwise (otherwise you
get a negative sign), and f non-singular in region.

Proof: let's assume that the integral is counterclockwise. No matter what the
contour looks like is, we can change it (see figure) to an integral of a tiny loop
labeled "T" around z=zo, defined as z = z, + re'?, where now r is tiny.
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. f . . . . .
Equivalence of ¢ % dz ina general contour around a singularity to an integral on a tiny
—40

loop (zo is labeled by a red point).

The reason is that, as indicated in the figure, we can make a single contour which
encloses the outer region counterclockwise and the inner region clockwise (and
a connecting line with two canceling contributions); that line integral will be
therefore enclosing a region where the function is analytic (as it does not
including the tiny inner region) and that line integral will therefore vanish.

Le. (where “T” is the tiny loop)

_f{ f® dz — f(2) dz
zZ— 2, zZ— 2z,
c
So
jg f(2) Qg = f(z) iz
Z — ZO zZ — ZO
c
Butin "T",
z=2y+re?
dz=d(r ) =rde® (asris fixed along T) = re®ido
So
f(z) f(zo+1e®) 0+ :
Edz = Tlre‘ do = jg f(zo +ret )Ld@ ~ jg f(zy)id6
T T T
= f@)i § a0 = iz
QE.D.
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Note that we were able to approximate f(z)~f(zo) since the rest of the integrand
had a well-defined limit.

Laurent series

We can extend this "Laurent Integral” to any exponent by considering the general
integral (with n positive or negative butn # 1)

3€ dz =0 (nisint 1)
(Z — Zo)n = nis integer, .
T

Proof: we can consider a circular trajectory as before (the results will be the
same for any trajectory in the same direction)

% dz _jg ire®do

(z—z)" ] rn(e®)
T T

i

— 1% e-in-104g —

i(n-1)0 2 —
= eln=102m —

—i(n—1)irn-1
T

Note that the integral does not vanish for n=1, since then we cannot divide by

n-1; for n=1is it 2mi, so when we combine:

jg dz _ {0 ninteger, # 1
(z—z)® \2mi n=1.
T

We can use this when we consider a general function, even one which is not
analytic, but which has potentially a singularity or set of singularities around z,;
i.e., when we consider a Laruent series, which is an extension of Taylor series:

[ee]

f@= ) anlz=-2)™

m=—oo

(Note that if the function is analytic at and near z,then a, = f(z,) and a,, = 0 for
n<0.);

Examples

Example 1:

The functionﬁ has a taylor series
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1

=1+z+z*+-
(1-2)

has a Laurent series
z(1-2) z(1-2)

Of course this expansion only converges for 0 # |z| < 1;

So the function =§ 1427+

For this expansion,a_; =ay =a; = =1

Example 2

A "severely nonanalytic" function is

1 w (1" (=D)"
erp (-2) = Zig EL =50 L EY

nlzn In|!

Back from the examples to Laurent series

Inserting the Laurent series into the fundamental integral over a loop, we get
that

foie- L Lofamibes

=—00 T
and since the integral vanishes unless n4+1-m=1, i.e., unless n=m, we get

f(z)dz

(ZTO)TH'I = 2mi an

Residue theorem:

The integral expressions we got are fundamentally important. Let's take the case
of n=-1; then, we get

jgf(z)dz =2mia_,
i1

The a_; term is called a "residue”.

Note that we don’t even need to specify in the integral where zo is! It is enough

to know that there is a place within the contour where the function has a
1

Z—Zy

behavior!
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S

_— |

Similarly, as shown in the figure below, if the integral encloses a region with
several singularities, and a function “sufficiently decays” we just need to add the
contribution of each one, i.e.,

jgf(z)dz = 2mi Y residues within
T

o ING:

—t ]

Proof that the closed contour integral over several singularities gives the same as the sum
over all the residues within (left figure); as the bottom figure shows, the difference
between the total integral and the integral over the residues is a closed-loop contour
integral over a region (denoted by a green color) without singularities, so the total
contour integral vanishes.

Corollary: analytic functions can't decay at all direction at
infinity
A corollary of the residue theorem is that a singly-defined function without

singularities cannot decay to 0 at all directions as |z|— oo; specifically, take a
point z,where the function does not vanish, and consider the integral

f(@)

zZ— 7

dz = 2mi f(z,)
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where now the integral is over a very large circular contour (see figure; the dot
close to the center represents zo). If the function would have decayed to 0, the
left hand side would have vanish as the circle radius vanish, but the right hand
side is non vanishing, so that would have been a contradiction.

There are stronger theorems which we won’t prove which state that any well-
defined function must either have a singularity or, alternately, diverge in some
direction as |z| = oo ;

Example - f(x) = exp(—x?); extending to the complex plane we get f(z) =
exp(—z?); let's take z along, say, the positive imaginary axis, i.e., z =i - |z|, then

f(@) = exp(=i® x |z]*) = exp(|z|*)!

Residue Example:

Define an important integral for quantum mechanics:
[00]
eiwt
] = —.dW'
Jow— Ey—in

where 7 is positive but could be tiny (denoted sometimes therefore as
n =07%), and t>0.

This is obviously an integral of the form

fw)

w— W,

— 0o

oo

dw.

] =

We just need to transform this a closed contour one (counter-clock-wise, or
change the sign if clock-wise).

We do that by adding to the integral a "half-circle contour"” in the complex w
plane, at large values of |w| in the positive half part (i.e., Imw = 0).

57



Im(w)

N BN

>

Re(w)

) eiwt
Proofthat J = J__ o=
purple region exp(iwt) is very small (since Im(w) is sufficiently large). In the
orange region, the 1/(w — E, — in) part is small and the length of the orange

region is finite, so the contribution of the orange region vanishes when the circle is

sufficiently large. The blue dot denotes E + in.

dw can be extended to the complex plane. In the

In the limit of a large radius of the half-circle, the integral will vanish, because, as
shown in the figure, throughout most of the half-circle the contribution of
exp(iwt) will be vanishingly small - since when Imw is large and positive, then

exp(iwt) = exp(i(w, + iw;)t) = exp(iw,t)exp(—w;t)

will vanish (due to the exp(—w;t) term). Also, the 1/ (w — Ey + in) will make
the integral vanishingly small in the finite length parts of the semicircle which
are close to the real-w axis (the “orange” regions)

So therefore:

[ fw)
/= W_Wo—sz(Wo)
where
WO = EO + l?’]

The residue is
resiude = f(w,) = exp(iwyt) = exp(iEyt) exp(—nt).
So
J = 2mi exp(iEyt) exp(—n ).
Note that if n < 0, the singularity would have lied outside the contour and the

integral would have vanished!
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Cauchy's Principle Value

So far we handled integrals where the pole is outside the contour;
Now we'll consider a 15t order pole (i.e., a function which diverges like

const./(z-zo) for some value of zo) if the position of the pole (zo) lies along the
g(x)

x—XQ

contour. So we'll represent such functions as

Assume the contour and the singularity are along the real-axis (i.e., replace zo by
xo) for simplicity.

Usually the integration limits are minus-infinity to infinity, and in that case we
abbreviate and not put them at all:

pf 99 4 =fx°_6 9% 4. +f 90 4.

X — X X — X X — X

wheree - 0.

s

Principal value integral (red); the purple and green curves
denote the extra loops needed to continue the integral above or
below the real axis.

We can relate this to a contour integral which goes either above or below the
singularity; specially, (see figure, and note that if the integral is above it is
clockwise, i.e., minus the direction we usually consider):

f“’ 9 dx=pJ - g(x) +f"°+e 9@
—oo,above

X = Xp - xO xo—€,above X = Xp

6=0 i0
X X + €e .
=Pf 96) dx +f g(o—w)ede“9
X — X o= €e
6=0
=~ f g( ) dx + g(xo) ido
6=m
So:
°° X
f 9() dx =P —— 90 dx—mg(xo)
o,above X ~ X0 X =
Similarly

foo &dszf g( ) dx+mg(x0)
oo,below * T
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Note that [ below-| above = counter-clokcwise-circular-integral=2mig(xo), as
expected.(see figures above).

sin(x)

dx

Example: diffraction integral, 2 fom

X

We can use the formulae we did, with xo=0, and since sinx/x is an even function,
the overall integral equals

©sin(x) B © sin(x)
2 Jo ~ dx = J dx

X

— 00

Also, since sinx/x is a well behaved function near zero, the integral equals the

principle value:
* sin(x © sin(x
f x( )dx =P f ( )dx

— -0 x

So since sin(x)=Im exp(ix)
® sin(x) ® plx
ZJ dx =Im Pf —dx
0 x o X

Consider however the contour integral from above (see figure)

\V

P

eix eix
0= jg —dx =Pf —dx—in
X X
above

sinx
(where we used - lasx - 0)

So

dx ==Imim =2
X x—zmlﬂ—z

f‘” sin(x) 1
0
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Saddle point integration - steepest descent

(For further details, | recommend the treatment of Mathews and Walker,).

Warm-up - Steepest descent for real integrals.

Consider integrals if the general form

I={gx)dx

Where g is peaked within the limits of the integral (or close to the contour of
integration, and for now will be positive. We'll represent the integral as

I =[e¥®dx

Where either fis naturally peaked, in which case we can take ¢ = 1, orfis a
general function, not necessarily very peaked, and then we need to have ¢ > 1 in
order for the following discussion to be valid.

The idea will be to find where the integral is peaked, i.e., df /dx(x = x,) = 0, and
then write

1
fO)~f(xo) + Ef”(xo)(x - xo)z

The idea is that this expansion generally works very well, since when it fails it is
at values of x which are sufficiently far from the maximum that when we
exponentiate the function the contributions will be insignificant compared with
the maximum contribution, i.e.,

e () « e®f*0) when the expansion above fails, so it makes no error in the
integral.

Also, for above, notice that f"'(x,) is negative, since f(x) is a maximum at Xo .

Then we can integrate as following:
[ eaf @) ~af(xo) [ g31" o) e=0)?
To proceed, we need:

Gaussian integral interlude:

To remind you,
= f e dx =1

Proof: square the integral, and change the variables in one of the integrals from x

toy,
J? :f e~ dxj eV dy = -Ue_rzdxdy,
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where we defined 7?2 = x? + y2. Further, change coordinate system from x,y to
r, ¢, so dxdy = rdrd¢, and define a new variable g = r?, so2rdr = dq, so:

J? = ffe‘rzrdrd Zﬁf e " rdr =7Tf e"ldq=m Q.E.D.
—00 0

Therefore, with a simple shift of variables:

(%) ) T
f e ¥ dx = \/:
—63 a
Corollary: Gaussian integrals:

o b2

— a2 LA
f e ax“tbxtc g, ’—640 c
—o0 a

, b . .
Proof: define now q = x — o \tis easy to prove that

2
—a 2+bx+c=—aq2+b—+c
4a

By converting the integration variable from x to q, and dq=dx, we prove the
expression.

END OF INTERLUDE

So back to steepest descent; from the integral above, we continue

f eaf(x)dx~e“f(x°)f e%f(xo)(x—xo)z

[ e gy = 2T af(r)

—a "(xo)

Where the minus sign is since the second derivative is negative (otherwise the
integral is not well defined).

Example: The Gamma function.

[oe]

'x+1) Ef t*e tdt
0

(when x is an integer, ['(x + 1) = x!) Write itas

F(X+1)=f efdt

0
f(t) = —t + xin(t)

The stationary point is at

—df t=t 0- 1+—x 0-t
= = —_ = =
dt( ) to 0= X

At which point, the function is

f(ty) = —x + xin(x)
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And the 2nd derivative is

d’f  x 1

dtz T t?  x
Therefore, our prediction for the integrand is
1
t) = xlnx — —(t—x)?
fO=xe - (=)
Therefore, we predict from the integral above (with @ = 1 )that

2
Fx+1) = %eﬂto) =2nx e =+2mx x¥e*¥
—f"(to

This is the first term in the asymptotic series for the Gamma function, i.e.,
Stirling's formula:

1
= T(x+ 1) = V2rx x* —X(1 — )
x x+1) x x*e +12x+288x2+

END OF EXAMPLE.
Now we're ready for:

Saddle Point Integration of Complex Integrals

In practice, the equation we derived is valid also for complex integrals; however,
proper derivation is very elucidating.

Preparation: For complex functions, no minima nor maxima, only
saddle:

There's big difference between real functions and complex function:

First: Complex functions do not have a minimum of the real and imaginary
parts, only extrema; and these extrema occur together, when df/dz=0

Proof;
f@) =ulxy)+i (xy)
We know that (we proved)
d Jdu Jdu
d—ﬁ = tigy
i.e,
af du Jdu

i dZ_O Ha=0,@=0

The Cauchy Riemann rules are (recall):
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au_ ov ou ov

=" e oy

d d . d d
Sowhen = = &£ = 0, it follows that = = 0,—v = 0.
ax dy ox ay

This proves that when the real part is stationary, so is the imaginary part.

Second: At any point V?u = V?v =0

In general (at any point, also away from the minimum) we can prove that the 2-D
Laplacian of both u and v vanishes;

Proof: using the Cauchy Riemann theorem we get that:
0%u N 0°u  0%v N 0°v 0
ax2  9y?  9dxdy 0dydx

Viu =

and similarly V?v = 0.

The Laplacian condition means that at a maximum along x, i.e., a point where
a2 . . L 0u D :

a_xl: < 0 (the condition for a minimum, along with ﬁ = % = (), at that pointu
: o a2 : :

will have a mimimum along y, a—;: > 0, and vice versa (we could have isolated
cases where both 2nd derivatives are zero, but the conclusion of an extremum

will still be valid then, although harder to prove).

So the landscape of u looks like a saddle (see Mathews and Walker for more
pictures)

Now to Saddle point integration:

Now, back to our discussion. When we have an integral in the complex plane
1= [eYdz=[e*ei®qyz,

we have to make sure that we take a path where the real-part goes through a
maximum. To get where that path is, we can again write near the stationary
point
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1
f(2) =f(z0) + Ef”(Zo)(Z — 7p)>.
Define, just for here, —f"'(z,) as a complex number in polar coordinates, i.e.,
be'X = —f"(z,)

where b, y are real parameters (and b is positive). Further, define the deviation
from zo also as a complex number in polar coordinates, i.e.,

z—z, = se'®
so by the way
(Z _ ZO)Z — Szezi

So putting together we find that near the stationary point (with f;, = f(z,))
1 .
f(2) = f(zy) — Eszbe‘(z‘l’”f),

And taken together, we see that near the stationary point, the real and imaginary
part of the function are:

1
U=1uy— Eszb cos(2¢ + x)

1
v=1vy — Eszb sin(2¢ + x).

The integration contour should be one where u decreases the most when we get
away from the stationary point, i.e., where u looks like an inverted parabola for
this, we need to have taken a direction so that "cos" is the largest, i.e.,

cos(Qp+yxy)=11ie,2¢ +y=0o0r2n

i.e.,¢p = —%( or = —§+n,

. ix
(i.e., e =+e™2).

In that direction, v will be stationary to 2rd order, since then
sin(2¢ + x) = 0.

( A more general way to see it, albeit a little non-rigorously if you think about tit
deeply, is to recall that Vu and Vv are orthogonal to each other, so that in the
direction where u varies the most, v is stationary).

Therefore, in that direction,

1
f@) = fo =55

i

_iX _iX
Also, when z — z, = +se” ‘2,then: dz = e ‘2ds.

So:
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I=[eYdz= e“foe_%f e'“%szbds = Z—Ze‘%e“f(zo)
,}a

But we defined

be = —f"(z,)
So

1 _x 1

b —f"(2o)
And we get

21
eaf(z)dz E —eaf(zo)
f —af" (z)

i.e., exactly the same formula we had before! This is general - you often can
continue formulae to the complex plane.

This is the end of the complex integration part, but you should read Mathews and
Walker for more contour integration.
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Appendix to complex variables: Differentiating a general (non-

analytic) function w.r.t. Y and Y~

Let’s say we have a complex number or a vector or a function, 1) and we have a
function G that depends on i and y*.

G, YY)
How to take derivatives of this function?

The answer is simple; let’s state it first and then prove: when differentiating
w.r.t. p keep " fixed, and vice versa, i.e., we can consider

oG
oY~

G
oY

and

4 P

This is very strange, i.e, how can you think of varying a function keeping its
complex conjugate fixed? Fortunately, it works and is efficient and time savings,
and we'll give the relations below.

Before exemplifying, let’s see what this means.
Denote the real and imaginary parts of Y as
Y=u+iv
So
Yr=u—iv

An important thing to note is that on the one hand u, v are real; however, when
we differentiate w.r.t. to them we don’t restrict them, so formally they could be
(during the differentiation!) both complex and real. This is difficult to absorb;
but think of the Egs. above then as a definition of ¥, ¥*in general.

So we can write

G d G
ou v,an ovly,
Then, formally,
G _ 0G| Ju 0G| Jv

=— +—
oyl dul, oyl " avl, oyl

So we need to determine — , 9 | This is done by writing from above
ol ayrly,
LYy
2
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And

vzw—w
2i
So
Ju _1 ov _ 1_l
aprl, 2 oyl 20 2
So
G| 106G +iaG
alp*w_zau,, 2 0vl,
And
0G| _10G| idG
ol 20ul, 20vl,

The important thing is that these two quantities are linearly independent; and if
we know them we can find the derivatives of the function w.r.t. the real and
imaginary part. If you prefer, then think of these as the definitions of the
gradients w.r.t. the function and its derivatives.

Example (related to the solution of linear problems that we talked about before;
there it was for real function). Say we have a function

E=(ag—b)(ag—>b)+cg'g
i.e,
E=(a'g"—b*)(ag —b)+cg’g

where c is real, g is complex (I change from ) and we want to set E at a
minimum. Then we could have written this in terms of u,v where g = u + iv,
i.e., we could’ve written:

E =(a*u—ia*v—b*)(au + iav — b) + cu® + cv?

And then differentiate w.r.t. u,v, and set the derivatives to zero ; but instead we
differentiate the green expression above w.r.t. g* and get

o—aE— * b) +
—ag*—a(ag ) +cg

i.e.,
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a*b

g:|a|2+c

(Exercise: get the same expression from the gray equation above, in terms of u,v;
see how more cumbersome it is!)

Note that in this case, when we want to get an equation for g, we differentiate
w.r.t. g*. If we were to differentiate w.r.t. g, we would get an equation for g* that
will be the complex conjugate of the equation for g, so everything will work fine.

The same applies of course when we diff. w.r.t. a Hermitian conjugate (complex
and transpose), but I'll leave it up to you.
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GROUP THEORY (Combination of A.]. Levine's notes with
Mathews and Walker, Chap.16)

Overview:
1. Definition of a group: closed, associative, identity, inverse.
Subgroups: invariant

Abelian groups

oW N

Examples: Continuous: Orthogonal, unitary, special unitary; finite groups
- Sn, cyclic

S3 example.
Cycles
The rearrangement theorem

Cayle's theorem: every finite group of order n isomorphic to subset of Su

© ©® N o w

Classes and Invariant subgroups
10. Conjugate subgroups (H'=gHg1) --- identical or isomorphic;

11.Invariant subgroups (any subgroup identical to all its conjugate
subgroups).

12. Left and right cossets, gH , Hp
13. Lagrange's theorem - order of subgroups divides the group order.
14. Factor groups - set of cosets.
15. Homorphism and isomorphism
16.Symmetries
17. Representations:
e Reducible and irreducible, multiplets

e Properties of irreducible representations: Schur's lemma,
orthogonality theorem

e Characters
18. Continuous groups and generators;
e Generators; Generators are Hermitian.
o Finite rotations
e Lee algebras

e Examples for rotations in QM
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Definition of a group:

A set of objects, G = {a, b, ... } and a muplipliciation rule, such that:

The group is closed under multiplication:

If a,b € G thena:-b=G

Multiplication is associative

(@a'b)-c=a-(b-c)

There exists an identity element, labeled "I", such that

a'I=I1-a=a foralla€eG

There exists an inverse a~! for each member of the group a, such that

ra=a-al=]

In the following we’ll often hide the -, i.e., abbreviate ab fora - b
A few other definitions:

e If G’ € Gand G’ ia closed under multiplication (see part a of the group
definition), then G' is a subgroup of G.

A more subtle definition:

e Ifforanyg € Gandg' € G’ we have that gg'g™? € G then we say that G' is an
invariant subgroup of G—see later.

Note the connection to a similarly transform of matrices or operators

e Ifab = baforalla,b € G, then G is Abelian or commutative.

Example: {—1, +1} under multiplication: write the group multiplication table:

-1|+1
-1|+1]-1
+1 (-1 | +1

Further Examples for groups:

The first few groups exemplified are groups of matrices, where the operation is
matrix multiplication:

e n*n orthogonal matrices: O(n)
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¢ n*n orthogonal matrices with det. +1: SO(n)
e n*n unitary matrices: U(n)
e n*n unitary matrices with det. 1: SU(n)
The 4 examples above were for continuous groups.
Other examples: finite groups.
e Sn: Group of permutations of n objects.

e Cyclic groups: The cyclic group, Cn, is defined as the group of cyclical
rotations of n objects. We'll exemplify these concepts on S3 and C3 now.

Comprehensive example: The permutation group of 3 objects "S3":

We will label a permutation of 3 groups as, e.g., (2,3,1) which means:
If we were to start with 3 spheres, (A,B,C), then:

(2,3,1) permutation of (A,B,C) would have given (B,C,A).

(i.e., into the first place we will move the 2rd ball, into the 2rd place we'll move
the 3rd ball, etc.).

Similarly, a permutation of 1 and 3 would be denoted as (3,1) (we could have
more properly denoted it as (3,2,1), but since the 2nd ball is left in place, we often
denote it for clarity as (3,1).)

The 3!=6 members of the group are:

e |- the identity member (nothing is changed)
e (3,2)-2and 3 are permuted
e (2,1)-1and 2 are permuted
e (3,1)-1and 3 are permuted

e (2,3,1) -see above, all 3 permuted, cyclically (see
figure)

e (3,1,2) - all 3 permuted in the opposite direction.

This is a group, as we can see, i.e., the multiplication of

two members is simply acting successively with each
(starting from the right). For example:

(3,2)*(3,1,2) = (3,1) Graphic rendering of the cyclic

permutation (2,3,1)
Proof: Label the balls A,B,C. We start with balls ordered as (A,B,C)
We first act with the right member. Acting with (3,1,2) results in (C,A,B)

Acting with (3,2) on this (i.e., on (C,A,B)) permutes the balls in the 2rd and 3rd
positions, so it gives (C,B,A), which is equivalent to what would (3,1) would have
given if acted on the original (A,B,C) order.

72



Similarly, we can write the whole 6*6 group multiplication table, tedious but
straightforward

Subgroups example:

Note that there are 4 natural subgroups for this group: permutations of 2 objects.
And cyclical permutations

First subgroup: (3,2) and the identity [=(1,2,3) form a subgroup (associated
with permuting just 2,3). This subgroup has the same multiplication table as
that of the numbers (-1,1), i.e.,

(3,2) | I
(3.2) |1 (3.2)
I (32) |1

Groups which have the same multiplication table are related ("isomorphic"), as
we'll show later.

Similarly, (3,1) (permuting 3 and 1) and I form a subgroup, and
{(2,1), I} also is a subgroup.

Cyclical permutations subgroup: Another subgroup is associated with switching
all objects cyclically, as if they're arranged in a loop; it is called Cs. In addition to
I, the cyclical subgroup contains:

e (2,3,1) (shifting all to the left, the leftmost one goes to the right)—see figure
previous page.

e (3,1,2) shifting all to the right (and the right most goes to the left); it is the
same as shifting twice to the left, i.e.,
(2,3,1)2 =(2,3,1)*(2,3,1) =(3,1,2)
(Proof: do it yourself, acting on our three original spheres, A,B,C).

So the cyclical permutation subgroup is
Cs={], (2,31) and (3,1,2)}.

You can prove that the multiplication table for the cyclical permutations is
equivalent to that of the three complex numbers, 1, exp (ZTH) , €Xp (— ZTR) . Later

we'll see one matrix equivalent to this group.

Also note: in our specific case, the subgroups are all Abelian (a*b=b*a for every
two members within each particular subgroup) but the overall group is not
Abelian, e.g.,
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(3,2)*(3,1,2) = (3,1) but
(3,1,2) * (1,3,2) = (2,1)

Bigger groups have of course also non-Abelian subgroups (e.g., the permutation
group of 4 objects has the permutations of the 1st three as a non-Abelian
subgroup).

Now we will get to a very useful concept:

Cycles.

For each element "a", let's act by "a" once, then again, then again, etc.; i.e., we
consider

a,a? a3 a% ..a"

At one point the element will return to 1, that will be the length of the cycle. For
example, for our S3 group, the order of (3,1) is 2 as (3,1)(3,1)=I.
In general:

All the elements of the cycle are different; that's easy to prove by contradiction.
Say we had two elements in a cycle that were equal,

ak=am
then, multiplying by (a~)* we get
1=amk
So the length of the cycle is smaller than m, a contradiction.

From this, it follows that the length of the cycle is smaller or equal to the number
of elements in the group (the "order" of the group).

One can prove an even stronger statement,

The length of the cycle has to be a divisor of the order of the group. For Ss, for
example, with 6 elements, the length of the cycle can be 1, 2,3 or 6. We'll prove
that “Lagrange’s theorem” later.
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The rearrangement theorem

In a finite group the action of an element on the set of all elements, rearranges
the set.

Easy to prove:
Denote by n the size of the finite group, G, with elements {g{, g2, ..., 8n}

Foranyp € Ganda,b €G, ifpa=pb — a=b (multiply by p~! on the left), so
ifa # b then pa # pb.

So consider pG = {pg4,pg2, -, PEn} »

Each pgj is distinct, as we have shown above and we have n of them, so the set

pG contains exactly the same number as Gand each of its elements is in ¢ (by
definition of group multiplication), so pG = G , Q.E.D.

Note also pg; # g; unless p=I, the identity element.

Try this with our favorite group, permutations of three objects, officially denoted
as Ss:

S3={], 2,1, G, 32), @31, 312}
E.g. (try this):
(23,1)S:={(23,1), 3,1), (32 (21), (312), 1}

so we're back to Sz (order of elements of group is unimportant, just what the
elements are!)
(Practice, if you're not sure, here's example, (231)(3,1) on (ABC)
=(231)on(CBA)
= (BAC)
= (3,1) on (ABC))

75



Cayley's Theorem: Every group G of order n is isomorphic to a
subgroup of Sy, the group of permutations on n objects.

Le., given € G, we can define a permutation associated with a ; this permutation,
labeled P,, will be defined as

gr 92 93 - Yn
Fo = (gal 9a, Ja, - gan)

Where g, = ag;
Example: our favorite group S3, permutations of 3 groups, has 6 elements into it.
So action by a group member is by itself a permutation of these 6 objects. We

can see it if we write what we got above, i.e., when we wrote S3 in a particular
order and acted on it by the element (2 3 1):

P B I, (2,1), (3,1, (32, (23,1, (3,1,2)
<231>‘((2,3,1), (3,1), (3,2) (2,1), (3,1,2), 1)

This is a permutation, since if we just label the 6 elements of S3 as we wrote them
as (1,2,3,4,5,6), i.e, element  is I, element 2 is (2,1), element 3 is (3,1), etc., then
P231 is equivalent to this permutation:

(2350

Or just, if we abbreviate, (53426 1).

Proof of Cayle's theorem:

We need to prove that this set of elements, Py, is a group, i.e., that there is a
multiplication such that multiplying two members of the set gives another
member; but that's fairly obvious; in words, the multiplication of Pa and Py will
be the permutation obtained by action of a*b, i.e.,

Pa'Pb= ab
For example, in our case
b _( I, 2,1), G1), BB (231, (3.1,2)>
@307\ (231), (31), B2 @n (312, I

So

Po3pPas
_ I, (2,1), (3,1), (3,2), (2,3,1), (3,1,2)
- ( (3,1,2), (3,2), (2,1) (2,1), I, (2,3,1) )

(proof: take e.g., the third element in other original group list, (3,1); P, 3; maps
itto (3,2), which is in turn mapped by the 2nd P, 5y to(2,1); 1 used color to
highlight this above.
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Similarly,

P(z 3 1)P(2 3 1)P(2 31) =
_ ( I, (2,1), 31, GB2), (2,3,1), (3,1,2))
B Il (2l1)l (3F1)' (3l2)l (2’311)1 (3!1’2)

i.e.,

Pi231)P231)P231) =1 = identity (null) permutaion!
Thus, in our case the cycle obtained by acting with P(; 3 1) had a length 3, i.e,,
after 3 iterations it went back to unity. Similarly, there are cycles with length 2.
We can prove (see later) that the length of each cycle is a divisor of the length of

the group, so for a group of length 6 (like S3) there cannot be cycles of length 4 or
5,as 4 or 5 don’t divide 6.
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Classes and Invariant Subgroups
Definition:
Conjugate elements: Two elements a,b in a group G are called conjugate
a~b
if there exists an element p in the group, such that
b =pap! conjugate elements
Classes: sets of elements that are conjugate to each other.
Note:
e Each element is conjugate to itself, a =Ial™!
e Elements are symmetrically conjugate, i.e.,
a~b — b~a;

Proof:b =pap ! - a=p~tb(p~H) !

e (Conjugation is a transitive property:
a~b, b~c — a~c.
Proof: there exists p, g such that :
b=pap™, c=gbg ' =gpap g™ = (gpalgp)”’

(note that we used (gp)~! = p~!g™1, as proved for matrices; proof:

=p g i(gp) =plgTlgp=p p=1
The transitive property implies that each element belongs only to one class, since
ifa~b anfa~c then it implies that b~c, so b and c have to in the same class; i.e.,

all the elements that a is conjugate to are in the same class, so a cannot belong to
two different classes.

Example:

Conjugate classes of S3: three such classes:

(2,3,1), (31,2

(1,2), (2,3), (1,3)

I

Definition: conjugate subgroups.

If H € G is a subgroup, then we define
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H' = {aha! (for all h € H and a particular a € G)}
We say that H, H' are conjugate subgroups.

Note: conjugate subgroups are either identical or isomorphic; the latter means
that we can find one to one match of the two subgroup, and the product of two
elements in one group is associated with a product of the associated elements in
the other

Put differently: if f = gh, and f, g, h are associated with f’,g’,h’ then f' = g'h.
Proof:

f'=afa™! =agha ! = aga~taha ! = g'n’

Definition: Invariant subgroup

If H € G isidentical to all its conjugate subgroups, then H is an invariant
subgroup.

Makes sense and could be proved: H is an invariant subgroup if it contains
elements of G in complete classes.

Example:
{1,(2,3,1),(3,1,2) } € S; isaninvariant subgrouo
{I,(2,1) } € S5 isNOT an invariant subgroup;
E.g, define a = (3,1) (and therefore a™! = a = (3,1)). Then,

G,1D(E,1DE1) =(312),

So multiplying the (3,1) permutation with a on the left and a~?! on the right
takes us to a different element (a conjugate element), i.e., to a conjugate
subgroup which is different than the initial subgroup.
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Cosets and Factor groups:

Def. of coset: Let
H = {hll hz, } cG

be a subgroup of G. Pick an element, p, of G,
pEGDPEH

Then pH = {ph4,ph,, ...} is aleft coset of G, and Hp = {h;p, ... } is a right coset of
G.

Claim: for each two elements of G, p and g, either pH = qH or they have no
element in common! This means we have a new way to break up groups.

Proof:

Ifph; = qh; - qp= hjhi'l €H, ie, q'p=hy for somek -
p=qh. - pH=qhH=qH

Example: left cosets in Sa:

H, = {1, (231) (312)}

First coset of Hi: Hy itself: {(231) (312) /}

Second coset of Hi: (31) (21) (32)

Another example: left coset of Hz:

HZ = {I' (2!1)}

First coset of Hz: Hz itself: {(2,1) /}

Second coset of Hz: (31) (312)
(obtained e.g., by multiplying p=(3,1) by H; )

Second coset of Hz: (3,2) (213)

Lagrange's Theorem:

The order of a finite group must be an integer multiple of the order of any of its
subgroups (as mentioned previously).

Proof: take a subgroup H of G
The left costs of H partition the group with each element appearing only once.

So the number n¢ of group elements in G must by kny , where k is the number of
cosets, i.e, ng = kny (and k integer), Q.E.D.
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Factor groups:

If H is an invariant subgroup of G, the set of cosets can be taken as a group, called
a "factor" or "quotient” group with the multiplication rule pH - qH = (pq)H.

This quotient group is labeled as G/H, the reason being that its length is ng/ny.

Proof/notes:

For an invariant subgroup, the left and right cosets are the same,
pHp™' =H - pH=Hp

Let's prove that the quotient set is really a group.

e First, closure under multiplication.
pHqH =all products of the form:ph;qh;.
But
phigh; = paq~"hiqh; = pqhy,
where
hy = qhiq~'h;

Since H is invariant, gh;q~! belongs ot the group, and therefore, as
H is a group, (qhiq‘l)hjthen also belongs to the group, so hy is a

member of the subgroup H.

So:
pHqH = pqH (for H invariant)
e The identity is clear:
p=1 »pH=IH=H
e Associativity clearly works, (pH - qH) - TH = pH - (qH - rH) = pqrH
e Thereis an inverse, i.e.
(pH)™' =p~'H

Proof: using pHqH = pqH for invarient groups, we get (taking q = p™1):
(p'H)(pH =p~'pH=IH =H

Since we grouped the ng; elements of G into sets (the cosets) of size ny),
which do not overlap, we have indeed ng/ny elements in the factor group,
G/H.
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Example: H = {], (3,12), (2,1,3)} is an invariant subgroup of Ss.

The cosets of H are H itself and another coset, labeled M, and defined as
M=(1,2)H = {(31) (21) (32)}.

The multiplication table of S3/H is

M |H
H|H |M
MM |H

Note that this table is the same as that of the cyclic group of two things, C2 ={],
(2,1)}, or identically to Sz, and therefore the two groups are isomorphic
(meaning essentially the same, we'll see later a precise definition)

So the factor group S;/H is isomorphic to C, and H and M correspond to even
and odd permutations.

In essence, the factor group corresponds to the original group where you "ignore’
the differences between elements in each coset.

Here we turned Ss into Cz by ignoring which
permutations it was and just keeping track of the

evenness or oddness of the permutation. 12
2] > %l
Homomorphism and Isomorphism 3‘
Homomorphism: A mapping between one group and |23
another that preservers multiplication. 23) > )
31

gi €G- g'€G andifg;g, = g3 theng;'g,’ = g5’

Example: mapping S3s — Cz (see figure)

Isomorphism: we alluded to that earlier. Itis a special (one-to-one mapping)
homorphism. If G and G' are isomorphic we say that:
G' is a faithful representation of G (and vice versa), and use the symbol G = G'.

An example is S3/H=C2 which is isomorphic to {1,-1}, i.e., {1,-1} are a faithful
representation of Ca.

Another example is C3; we already saw one faithful representation of it, 3
2mi 2mi

complex numbers, {1,e3,e 3 }. (seefigure):
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L

Obviously, another faithful representation of Cs is {1,R, ( ) R, ( 3”)} ;, e,

rotations in 2D by 120 and 240 degrees (see above).

These 2D rotations can be represented therefore by the following rotation

(39 (: -5

GO 2 = (a0

)

You can verify explicitly that indeed the 34 matrix is the square of the 2n (so we

matrices

can call it a®) and also a® = 1, as should be for the cyclic rotation group.
Symmetries:
As chemists we’re usually interested in groups for describing symmetries;

For example, an isosceles molecule of identical atoms, X3, will have an S3
symmetry - in addition to the cyclic rotations Cs it will also have three mirror
planes (light blue in the figure) where the molecule can be reflected, see figure
below.
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Once one atom is modified, only one inversion symmetry remains, belonging to
SZ c S3

That’s a general feature - starting from a symmetric molecule or object, by
changing the ingredient(s) we will usually reduce the symmetry.
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REPRESANATIONS: Reducible and irreducible

Multiplets
Very important for QM and the use of symmetry and matrices in it.

Example: take a Hamiltonian H (H now denotes the Hamiltonian, not a
subgroup). Say that H is invariant under a group G of symmetry transformations
denoted by the operator R, i.e.,

H = RHR™, where R € G

i.e., the transformed H equals the original H. (Example: translations; or rotations
for a Hamiltonian with spherical symmetry, etc.)

Note that the condition above means that
HR =RH - [R,H]=0

This implies that there is a set of degenerate energy eigenstates related by the
symmetry operation; i.e., given

Hly) = E[y),

then every new vector obtained by acting by R is also an eigenstate with the
same energy:

[Yr) = RIY)
H|yr) = HR|Y) = RH|Y) = RE[Y) = E|).
The full set of states {R ), forall R € G} is called a multiplet.

Representations

We will find matrix representation(s), {M(g;), M(gz), ..., M(g,)} in the space of
|) so that for each element of the group, g,, the matrix M(g,) represents the
action of g on that vector

9al¥)) =X M(go)ij 1)) (e, M(ga)ij = (Wilg®|¥;)
A representation fulfills

9a9p = gec = M(ga)M(gp) = M(g.).

If all the matrices are different (or at least linearly independent) the
representation is isomorphic to G, otherwise it is homomorphic.

Note that I used "a" as a superscript, not to confuse with the basis set. Also, note
that the choice of matrices and how they operate on a vector is ours — we can
make it more or less complicated. This is discussed now:
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Irreducible and reducible representations

There are special representations that are irreducible : if R can take any element
of the set of vectors V, = {|;)} to all other elements then it is an irreducible

representation;
On the other hand, there are examples of reducible representations.

INSERT: Matrix Rotation Upon Basis Change:

First, let’s recall what happens to the representation when we transform a basis.
We did that before, but it is good exercise to recall again. When we rotate a basis

xi= ) Uit
l

where U is unitary, then

Miy(@) = (ulaly) = D Un U iilglpn)
lj

i.e,
M'(g) = UM(g)U*
END OF INSERT.

Next, let's consider a particular reducible representation, labeled D(g). Being
reducible means that there is some subset | x;) where acting with the group on
an element of the vector does not take the result outside of a. In matrix form this
means that after rotation by the corresponding U (moving from the initial basis
set to the specific basis set), then

D''(g) 0 )
0 D"?(g)

Say for example there are 10 vectors in the basis, and D1(g) is a set of 3*3

UD(g)UT =D'(g) = ( (reducible matrices)

matrices while D?(g) is a set of 7*7 matrices; then this means that every group
member rotates the first 3 vectors among themselves, and the last seven among
themselves.

In that case, D'(g) and D?(g) are two indepdendent representations and we
write (dropping the primes, and remembering that this is true possibly only after
matrix rotation by a unitary matrix U):

D = D! @ D?
[t is clear that we can write any representation then as a sum of irreducible
representations, i.e., those that cannot be represented themselves as a further

sum of other representations. The irreducible representations are thus the
building blocks of any representation;
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For another example, a matrix representation (i.e., a set of "h" matrices, where h
is the group length—not the number of vectors!) that can be brought to the form

D(g) 0 0
D(g)=| 0 D (90 0
0 0 D?(9)
will be also written as
D =2D' @ D?

Example: Irreducible representations of S3 (from Mathews and Walker).

Table 16-1 The Irreducible Represen-
tations of the Group S,

g p DD D
m=1 1 2
m23 1 1 (0 9
[231] 1 1 %(:i/i \ﬁ)
[312] 1 1 %(\_/; “_11/3)
Bz 1 -1 %(\ﬁ' _\1/5)
213 | -1 %(*1/3 ‘_\1/3)
32 1 -1 (o' 9)

Properties of Irreducible representations (won't be proven)

(1) Every representation is equivalent to a unitary representation, i.e., one in
which each matrix is represented by a unitary matrix.

(2) A matrix which commutes with every matrix of an irreducible
representation is a multiple of the unit matrix, i.e.,

Ifforall g, AD(g) = D(g)A, and D irreducible — A is a multiple of the
unit matrix.

(3) Schur's Lemma: If DV (g), D@ (g) are two irreducible representations
and there's a matrix A such that for all group members g

pM(g)A = AD(g)

then either A = 0 (trivial case) or n; = n,, det(A)# 0, and the two
representations are equivalent to each other.

(4) Practically very important: Orthogonality theorem.
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Let a group G contain h elements, and consider two irreducible
representation, D® (g), DD (g).

D®W(g) is a matrix so we denote its elements as: Do(fg (g). Then

> (2530)) DR 0) = = BBy

g
Let’s think what this theorem means. Let's consider the a8 elment of the
i'th irreducible representation; "h" is the number of group elements, to we
can think ofD(l) (g) (for a particular aff and i) as a vector with A
elements.

The orthogonality theorem says that there this vector is orthogonal to any
other such vector from other irreducible representations, and is further
orthogonal to other vectors from a different location (y, §) in the same
representation.

Finally, when dotted with itself, the vector gives ni

(5) Each representation "i" is made of "h" matrices which are each n; * n; in
dimension. lLe., each representation has (n;)? independent vectors of
length h associatred with it (due to the orthgooanlity therem). As there
can be no more than "h" independent vectors of length h, we get

anz <h

Jj
[t turns out that we can prove that there is an equality sign, i.e.,

znjzzh

J
Example for the orthogonality theorem: Ss.

We can exemplify these properties using the table for the group Ss. Let's
consider a¢ff = 2,1 and i=3 (the 2*2 matrix representation). Then:

(o ERERENRE

V3
- 2,0)_7(0,—1,1,1,—1,0)

e When dotted with DS) (9) =(1,1,1,1,1,1) or with D(Z)(g)
(1,1,1,—-1, -1, —1)the answer is obviously zero.

e When dotted with Dz(z) (9=0Q,- l, - %, — %, - l, 1) the answer is zero;
similarly if we dot with D(3) (g9) = v3 5 (01,-1,1,-1,0) or D(3)(g) =
L=3=355 D

¢ When dotted with itself, we get (\/2—5)2 *x(0+1+1+14+0)=3= g = n%

Also,n; =n, =1Lny=2soxnf=1+1+4=6=h Q.E.D.

88



CHARACTERS

Matrix representations are not unique, since we can always do a similarity
transform by any unitary matrix U:

D(g)—»D'(g)=S (g)S*, Ss*=1

We therefore characterize the irreducible representations by characters, defined
as traces of the representation

xP(g) = Z &9

a

Example: S3. Take the matrices in the previous table, and calculate the trace of
each:

Table 16-2 Character Table for 5,

xﬂ? x'.ﬂl xl.-ﬂ

g

(23 1 1 2
{23[] I 1 =1
312] 1 1 1
!321] 1 —1 0
21 3] 1 I 0
f132] 1 —1 0

Note

(i) The character of the identity element - here [1,2,3] - is the dimensionality
of the representation, since the trace of a unit matrix is its
dimensionality.

(ii) You notice immediately that within the three classes of the groups, the
characters are equal.

Here are the three classes
e Ci=1(=(1,23)
e (2= Cyclical elements { (2,3,1), (3,1,2) }
e (3= Single permutations { (1,3,2), (3,2,1), (2,1,3) }

The general proof that the within each class the characters are equal is
straightforward:

If g, and g, are in the same subclass, then there's an "h" in the
group such that

g1 =hgh™*
So, in any representation (using Tr(ABC)=Tr(CAB)
20090 =Tr (DO(gy)) = Tr ( O(hgoh™)) =7 ( O(R)DD(g,)DO(h7)))
=7r (DD ("D (h)DD(g,))

=Tr (DO(')(DV(g,)) = Tr ((09(g,)) = xP(92)  Q.E.D.
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It is a matter of a few lines proof to get from the highlighted orthogonality
theorem to an analogous and more compact theorem for the characters:

> PO @r V) = hsy
k

where the sum is over the characters, and p; is the number of elements in each
character, and we write

2@ = xD(g), where g is any member of C;
(Hints for the proof: start from the orthogonality theorem, pick § = a,§ = y, and

then sum over «, y; the LHS has characters of matrices, and they will be identical
within the p,elements. The RHS gets an n; factor once we sum over both a,y)

The advantage of the present orthogonality theorem for characters is its

compactness; let's label the number of classes by "s" (for our group there are
s=3 classes); then the YV (C}) are a sort of orthogonal vector (with weights p).

Table 163 Character Table for §,

Claer ¥ i §i3
T | 1 2
[ | 1 -1
Oy I -1 L]

Therefore, when we have a reducible representation, we can know immediately
how it is composed out of the irreducible representations;

For example, say we write a general reducible representation as
D(g) = c;DWV(g) + ;DD (g) + -

We can then find the c;,... coefficients by noting that the equailtiy holds for the
traces, as foreach g

x(@) = c1xP(g) + c.xP(g) + -
i.e., for each class
x(C) = cix®(C) + cox P (C) + -+

So multiplying by the vector of characters for a particular irreducible
representation, y/2(C,), and summing (incluing px), gives the coefficient of that
representation:

Yt xP(C)x(Cy) = he; !

So given any representation, we just need to compute the trace of each element
of the representation (or more precisely, just one trace for each class), and we
can then find out, from the highlighted equation above, how this representation
is computed of the irreducible representations!

Mathews and Walker give examples - read them in 436-440, and also read the
physical applications part (pages 440-448)- very revealing!
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CONTINOUS GROUPS AND GENERATORS

E.g. rotations by an arbitrary angle

cos¢p sing

_sing cosqb) =Icos¢ + io,sing

R@) = (

where a reminder :

Also, since (0,)? = I (prove this!), then
R(¢) = e!%2® = | cos ¢ + io,sing

Proof:
el%2? =1+ io,p+ %(iazd))z +%(i02¢)3 + -
And using (0,)? =1, (03)% = 0, etc.
elo2¢ = 1-%(,1)2 + -+ oy (¢+%(i0’2¢)3 + ) = cos¢ + io,sing, Q.E.D.

From R(¢) = e'%2® we get that
R(¢1)R(¢2) = R(¢1 + ¢2)

Consider now infinitesimal rotations (¢ small), i.e., rotations which are very
close to the identity:

R(6¢p) =el9®%2 =14 i6po, = ( ! _54))

6p 1
General definition: generators

In general a definition: for any group G, where the elements are denoted as R(¢)
(whether they correspond to rotations or are something else), then a generator
of the group G will be defined as

s=—i R forReG
=—i— or
dpl,_,

Example: for the group of rotations in 2D, from the expression above we see that
the associated generator is

S = 0,
Theorem: every generator is traceless (i.e., its matrix representation is traceless).

Proof:
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R~1—ibpS)~exp(—iép S) =exp(Ad), A=—idpS
Now recall what we learned at the end of the Linear Algebra part:

we can relate the determinant of any matrix to the trace of its log:
M = exp(B) — det(M) = exp(Tr(B))

Using this and noting that R is an orthogonal matrix, we get, writing R=exp(A),
1=de (R) =exp(T (—id¢p S) = exp(—iSpTr(S)

So Tr(A)=0,i.e, Tr(5)=0, Q.E.D.

Another (simpler) theorem: every generator is Hermitian.

Proof:

R~ (1—-i8¢S)

R is orthogonal, and is therefore since R is real, it is unitary (norm conserving):
R*R=1
1=01-i6pS)" (1 —i6pS) =1 +i6pST)A — i S)
=1+i6¢p(ST—S5) +0((6p)?)

SoSt—-5=0, - S*=S, Q.E.D.
So to summarize: generators are traceless and Hermitian.
Finite rotations:

So far we alluded to exponentiation, by writing, small rotation angle §¢,

R(6)) ~ (1 — ibp S)~ exp(—isp S),

while this is true to the order we looked at (linear at §¢p the advantage of the
exponential form is that if we form a finite rotation is will still be true, i.e.,
writing a finite rotation as a sum of many small rotations,

¢ =06p++06p
we get
R(¢p) = R(6P)R(EP) ...R(6¢p) = exp(—idp S)exp(—id¢p S) ...exp(—id¢p S)
= exp(—i(6¢p +6p + - 69 S)
i.e,
R(¢) = e™'%S
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Q.ED.

Combining several rotations: Lee algebras.

Next, consider what happens when we apply several rotations successively.
Rotations are generally non-commutative (when we go past a 2D rotation in a
single plane);

Example (try it!): take a pencil pointing up along the z-axis; then rotate a little
around the z-axis (i.e., around itself), not changing its position; and rotate then a
little around the y-axis, so it will end along the x-z plane.

If you were to do these two rotations in the opposite order, you'll first to rotate
along the y-axis, bring the pencil to the x-z plane; and then you'll rotate around z,
thereby making it point a little along y., i.e., in a different place then in the first
series of rotations.

While rotations are non-commutative in a general group, we can still consider
groups of rotations (in a general space) that form a continuous group (which
could possibly be a subgroup of the original group). For this however to be true,
we need to be able to express every series of rotations as a new single rotation.

Let's see what this implies on the generators. Consider action by two small
rotations, one denoted by j and the other by k, each by a different small angle;
we'll denote the angles, for brevity, as ¢ and €, without the "deltas”, but
remember that they are both small. (Remember that we are not just talking
about rotations in 3D, but in general dimensions).

Now let's expand the quantities to 274 order in the angles;
R;(¢)Ry(€) = exp(—iS;) exp(—ieSy)
2 €2
= (1 — ipS; — %(sj)z) <1 — €Sk — 7(Sk)2)

2 2
=1—i¢S; — %(Sj)z —ieSy — 7(5,()2 — ¢€S;Sy, + terms of 3rd order

Now we want to be able to expand this as a new rotation. The new rotation
should obviously be related to the sum of the two individual rotations, although
with an extra amount, i.e., we write

R;j(¢)Ry(€) = exp(—ipS; — i S —iA)

where A is an operator we need to find. We will see that A is of second order, so
we only need to expand in terms linear in it (i.e., no need to consider terms like
A?, of 4th order, or terms like €A or e, of 3rd order.) Let's then expand this
definition:
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Ri()Ry(e) = exp(—i(;ij — i€  —iA)
(¢S; + €S + 1)’
2

=1—i¢pS; — i€ , —iA—
; : . LiaieN2 o 2 2
= 1— i}S; — i€S; — iA — E(qb (5)" + €2(5)? + PeS;Si + PeS,S))
+ 3rd order terms

Equating the blue-highlighted equations term by term, we see that

— €SSy = —id —%(qbe Sk + € S;)
i.e,
. 1 e
—id = —peSiS + 5 (p€S; Sk + PeSiS;) = - (SkS; — S;Sk)
i.e,
A= %i[sj,sk]

[t is clear therefore that in order for the overall exponent in the yellow-
highlighted equation above to be a rotation, i.e., to be expressed in terms of
generators, we need to have the commutators of the generators be expressed as a
sum of generators, i.e., we need to have:

[Sj'Sk] = ECJI? m

m

A group of operators fulfilling this requirement is called a Lee Algebra.

Note the properties that the C’s must have. First, the commutator is
antisymmetric in its indices, and therefore the coefficients need to be
antisymmetric:

[51,Sk] = =[Sk S]] — ik = —Cij

Also, in general the commutator of commutator fulfills the Jacobi identity (note
the cyclical order of the operators ABC, BCA, CAB)

[A,[B,c]]+[B,[C,Al] +[C,[A,B]] =0

(Proof: expand it, you'll get terms that cancel each other
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ABC — ACB + BCA—CBA+ BCA—BAC — CAB + ACB + CAB - CB
+BAC=0 Q.E.D.

Plugging in the Lie Algebra equations, we get
0 =[5, [5, Sil| + [85, 1S 531 + [Sie [5: 51]]

The first term is

sl, [S; sk] Z CRISt Sl = Z Cln

So the Jacobi equation then (2 egs. above us) becomes, when we rotate the (i,j,k)
indices:

0= Z(Clm e+ ChnCit + CimCl} )S,

We’ll assume that we took a minimal set of generators, i.e., a set that’s linearly
independent; so therefore for the combination to vanish each coefficient of “S;”
must vanish, i.e.,

Z(Clm jk + lekal + Ckmcm =0
These equations are often sufficient to construct the algebra, i.e., given a few C's

we can construct the rest from the Jacobi identities.

The reason we like to use generators: there are only a finite number of them in
each problem. E.g., for rotations in 2D, there is an infinite number of rotation
matrices R(¢) but just one generator.

We can carry over from the rotation matrices to the generators properties like
commutation with a Hamiltonian, H, i.e., if for all ¢

[R(#),H]=0 -
then take a small angle ¢
R =exp(—igpS) ~1—i¢p -

0=[I—-i¢S H]=—i¢p[S, H],

i.e,
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[S,H] = 0.
Le., the Hamiltonian commutes with the generator, so they share eigenvectors.
Example:
Look more specifically at the rotation group in 3D. What are the generators?
cosp sing 0)

R,(¢) = (—sin(;b cos¢p 0
0 0 1

1 0 0
R, (Y) = (0 cosy  sin 1/))
0 —siny cosy

cos8 0 sin6
Ry(9)=< 0 1 0 )

—sin8 0 cos@

0 —-i O
S, = —idljl(d)) = (i 0 0)
¢ ¢=0 0 0 O

00 0
so=(0 0 ~i)
0 i 0
0
S, = (0
i

You can verify, that these form a Lie-Algebra, e.g.,

00 0\/0 —i O 0 —i 0,0 0 0
[Sx,sz]=sxsz—szsx=<o 0 —i)(i 0 0>—<i 0 0)(0 0 —i
0 i 0/\0 0 O 0 0 0o/\0 i 0

00 0\/0 -1 0 0 -1 0\/0 0 0

=i2<0 0 —1)(1 0 o)—i2(1 0 o)(o 0 —1)

01 o/\o 0 o0 o 0 o/\o 1 o

0 0 O 0 0 1 0 0 1
=—1{0 0 0|]—-(C1|0 0 o)=(0 0 0=iS,
1 0 0 0 0 O -1 0 0

y_.
Cip=1

~ O

coco
o o |

e~y
\/

So:
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Example: rotation operators and generators in QM:

Rotating a wavefunction. If:

" =R(p)r

where R is a general rotation then we define (see figure):

Y'(r) = RY(r) = 9(@")

Note that in a sense the rotation of the wavefunction is in the opposite sense to
the rotation of the coordinates, just like what we learned in linear algebral!

Consider, for example, a rotation around the z-axis by a small angle §¢.

Then,

and

IR

cos6¢p sindg O)

1 &b 0
Rz(5¢)=<—sin6¢ cosép 0 (—6(1) 1 0) (up to order (8§¢)?)

0 0 1 0 0 1
So:
x' 1 8p 0\ /x x+68py
r = <y> =R, (6¢) T = (— 5 1 o) (y) = (y — 8¢ x>
z 0 0 1/ ‘z z
So:
V' (,y,2) = R, (80P (x,y,2) =p(x + 8 y,y — 8¢ x,2) =
] 2
— G,2) - 66 fx 5 - yH + 047
i.e,

R,(6¢)Y = (1 —i6¢pL,)y = exp(=ib6PpL,)
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Where
PR ( d 0 )
5= O dy ~ 0x
So the generator of the rotation operator, defined analogously to the definition
on matrices we had before, is defined to be

Generator = iM =
= 5% =

And, from the highlighted equation above, we get upon a finite rotation ¢ =
6p+ -+ 6¢:

R, ()Y = exp(=ibpL,) exp(=i6¢pL,) ... exp(—iépL,) ¥

Ly

i.e,
Rz(d))lp = eXp(_i¢Lz) l/)
i.e., when operating on functions,

R,(¢) = exp(—i¢L,)

END OF GROUP THEORY!
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V. Delta Functions, Continuous basis-sets, Fourier transforms.

Delta functions review:

A delta function associated with a point xo is a function that essentially is very
small at all points except xo, is infinite at xo, and its integral is 1

XxX=o00
f 6(x —xp)dx =1
xX=—00

- just like what well expect of the charge density of a classical point particle
(when you integrate the charge density over all space you get a constant number,
the charge; and away from the particle the charge density will be zero).

We write it as:
gxo(x) = 6(x — xp)

The delta function is really a limiting behavior of series of function; for example,
the simplest thing will be to imagine that space is divided (we’ll consider 1D

mainly) to segments of length “€”; then

1 €
§(x — xq) == if( lx — x0] < E)' 0 otherwise.

Pictorially:

S |

6(x —xp)

m | =

width : €
Xo

There are of course smoother options, él.g.n

1 €

§(x —xo) = ;(x —X9)% + €2

Where ‘e" is a small number, like dx above.
In general any function whose area is 1, u(x), we can turn into a delta function,

by rescaling

1 (x—xo

§(x —xp) = U ) as € gets smaller.

. . . . . 1 x2
Exercise: do this for a normalized Gaussian, i.e., N exp (— ;).

The fundamental equation for a delta-function is, that for any function f(x):
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[ rwse - xoax = £

We see that simply - the delta function should be zero at any point except o, so
the only value of x where we need f(x) is at x=xo0, SO we can approximate

f)E(x —x0) = f(x0)6(x — %)
And then pull f(x,) out of the integreal.

Interestingly, this highlighted expression allows us to extend the definition of the
delta function even to functions which do not vanish at x different from xo, but
are very quickly oscillating; primarily

sin (x — xo)
1)
T x

Note that this function has an integral 1, is going to a very large number 1/(1€)
at its max peak at x=x0, but does not vanish when x is not xo; instead it is highly
oscillatory at any point except x=x0. (Plotit to be convinced). Because it is
highly oscillatory except at x=x0, the yellow highlighted relation will still be
valid.

Some properties of delta functions:
e The delta function is symmetric
§(x —xg) = 6(xy — x)

e Convolution of delta functions
xX=oo
f S(x —x1)6(x — xg)dx = 6(x9 — x1)
X=—00

Follows from the previously highlighted expression, by setting f(x) = §(x — x,).

e Change of variables:

5(U(X) - uO) d( ) xO)
d(x)

Where x, is defined as the value of x where u(x,) = u,. If more than one
value of xo can be found that fulfills u(x,) = u,, then we need to sum over all
these values.

(Also, in multiple dimensions, we should replace |du/dx| by the Jacobian of
the transformation, where you learned about Jacobians in calculus.)

Proof: let's assume we deal with “usual” delta functions, (i.e., not of the form
sin(ax)/x), so we just need to prove the delta function vanishes everywhere
except at xo and to prove the integral of the LHS and RHS is the same;

But we know that the LHS will vanish unless u(x)=uo, i.e., unless x=xo.

Further, the integral of the LHS is
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J 8(u(x) —up) dx = [ 5w(x) — up)
_ dx

" ldu

dx dx
E| du = | @| S(u(x) —ug)du

dx
o(u—ug)du = |—
x=x0f 0 du

X=Xg
Which obviously equals the integral of the RHS of the last highlighted equation.

e Delta function as a derivative:
d
S(x —xy) = ae(x —Xp) = —d—xOH(xo - x)
Where we introduced the step function:
z>0

1
H(Z):{O z<0

This is clearly seen from the following figure, where we write the derivative as:

4 <9 (x—(x0+§))—9<x—(xo—§))>

6(x—x0):—56(x0—x)5 -
0

Only the region where the blue and red lines do not overlap does not vanish -
leading exactly to the “isolated-bin” picture of the delta function we had before.

o(x-(x0-3)

¢ Numerical usefulness:
Often we need to represent a “density of states”, i.e.

p(y) = Z sty —-)

J

i.e.,, a bunch of “bins”. For example, if we have a single-photon detector, y may

be a time variable, and y; is then the arrival time of each photon (see
picture):
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“«__n

Or if we have high-resolution spectra, the “y” may be specific frequencies.

Or if we have grades in a large class, we may ask what’s the density of grades,
and their distribution.

The density of state is important since it allows us to represent summations
of a function at specific points as integrals, which are often much easier:

> 100 = [ p0)rmay
j i,

Often, the density of states is obtained numerically best by first fitting another
function:

66 = 60
J

“_n,

G will be, for example, the number of students getting higher than a score “y”;

Then we will write, from the expressions before:

o) = 46O
ply dy
(proof: G is a sum of theta’s; the derivative of each gives a delta function, i.e.,
gives p).
G is a function with “steps”.

Then often the best way to represent
p smoothly is to first fit G to a smooth
function, and then differentiate it w.r.t.

V. Gly)

Interestingly, this gives a compact way y
to calculate the density of states in
QM, if we know the Hamiltonian:

p(E) = Tr(6(H — E))
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Proof: calculate the LHS in a basis set of the eigenvectors, so

Tr(8H - B)) = Z<¢m|a(ﬂ E>|¢m>—2<¢m|a(em I
Za(em E)<¢m|¢m>—26(em E), QED.

The highlighted expression may not sound very useful, but in practice there are
modern ways to calculate it for very large matrices where direct diagonalization
will be very expensive.
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Interlude: delta function as integral over exp(ipx)

We need a result:

f exp(ipx) dx = 2n6(p)

To prove this, recall the Gaussian integral:

2
G() = f exp(ipx) exp(—nx?) dx = \]gexp (_Z_n>

(Reminder on the proof of the Gaussian integral: we write

s=x—i£
= 27
So:
2
. p
ipx — 1 2=—nsz—W
ds = dx
So

2
f exp(ipx) exp(—nx?) dx = exp <— 229?) f exp(—ns?) ds

_m p
= nexp 47’}2

Note that the result of the Gaussian integral, is itself a Gaussian;

End of proof for Gaussian integral)

2
\/g exp (— f?) is a pointed function of p, i.e., it goes to zero if p # 0 asn — 0, so

in the limit of n — 0, it will be proportional to a delta-function; we just need to
determine its own integral, i.e.,

fG(P)dP fﬁeXp (—f—nzz) dp = \/Ef exp (—yjz) dy = Vr(2vn) = 2n

where
p

< h

Therefore, we can write, in the limit that 7 is tiny, that

G(p) =2n6(p) (n—0)
Q.ED.
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Delta functions and linear algebra

Delta functions allow us to extend linear algebra to a continuous space and to a
continuous basis. Those are not exactly the same thing, i.e., a continuous space
can be described by a discrete or continuous or a mixture basis, but on a
fundamental levels they originate from the same place.

Plan:

We will first need to move from continuous space to discrete space. There
we’ll show that “functions” in continuous space are associated with vectors in
discrete space, and show that Dirac deltas map to (Kronecker deltas)/spacing.

Then we’ll move back from discrete space to continuous space, so we can
handle continuous basis.

This supposedly round-about way will teach us about continuum functions much
deeper than if we were to arbitrarily introduce them.

Continuous > discrete space:

To understand continuous basis, let’s think of space (1D for now, nothing is
fundamentally different in 2D or 3D) as really being discrete but made of tiny
separation, dx, i.e., think of space as restricted to be between a minimum value
“a” to a maximum value “b”, and made of discrete steps,

x1=a

xi=a+({—1Dadx

xy=a+(N—-1)dx=b
where “N” will be the total number of points,

n=b"%
T dx
N could be 1000, or a million, or as much as you want, depending on how

discretized the space is (how small dx is).

A continuous function f(x) will be approximated by its values at the discrete grid
space, i.e., it will be represented by a vector

f= (f1:f2: "-fN)T

(we put a transpose, since it is easier to write a row vector, while we want our
final vector to be a column vector). Here,

fl = f(xl)l !f:] = f(x])' "'lfN = f(xN)

For example, every time you are plotting a function on the computer, you are
really do this - you are “pixelating” or discretizing your function and get a vector
of values.
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Now, let’s consider the eigenvalues and eigenfunction of the “x” operator, i.e., the
eigenvalues (and eigenfunctions) of the operator defined as:

xf (x;) = xf (%))

(I'use a bold face to designate that x is an operator, i.e., when it acts on a function
it maps it to a different function. Later we'll remove the bold-face)

These eigenvalues (“n,,") and associated eigenfunctions, Xn(xj), fulfill:
X Xn (%) = 10 Xn (%)
Obviously, the eigenstates of this operator are “Kronecker deltas”; i.e.,
Xin = Xn(x)) = 6jn

and the eigenstates are just the values of x on the grid

Mn = Xn
For example, the 5t eigenvector will be

X;s = (0,0,0,0,1,0,0,0,0,0,0,0,, ...,0)"

and

Ns = Xs.
Since this is a basis, we can use now “bras” and “kets”, e.g., we can define a “x”

ket, which will be an eigenstate of the x operator; for example, the ket associated
with the 5t point will fulfill:

x|xs) = x5]xs)
Or in general
x|x) = x|x)
SIDE NOTE:

Don’t get confused! The bold x is an operator, |x) is a vector, and the “x” on the
RHS outside the vector is a number, that lables the vector.

For example, say that dx=0.01, and that a and b range are, -1000 and 1000 to
pick some arbitrary numbers.

Then, the ket
|6.82)

Will be part of the basis (it will be the j=100684'th ket of this basis, if you
calculate). This ket ISNOT THE SAME AS

2|3.41)

The former is essentially a “delta function” associated with the point x=6.82, and
is a vector of length 1; the latter is a vector at length 2 associated with the point
x=3.41.

END OF SIDE NOTE

The orthogonality relation is
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(x]x") = Ornr
Where we use the Kronecker deltas.

Further, we have as usual for a basis:

1= [x)xl

(it is highlighted in blue, since we are going to modify it)

So that a general function (i.e., a general vector) can be written as

=) 19l =) FGlx)

where we used

(xIf)=f(x)

This relation is obvious is we think of specific value of x, for example the 5%
value, xs; then,

<x5|f) = (0,0,0,0,1,0,0, 0)(f1' fZl f3l f;ll f5' f6' "'fN)T = f5

Operators and delta functions in the discretized x basis

We learned before that operators become matrices when we considered
discretized basis. For example, take the operator x. Itis really a diagonal matrix
in our presentation (i.e. ,in the xj basis), so it will be

[xl 0]
0 e Xy

Other operators are similarly defined.

Relation between Kronecker deltas and Dirac Deltas

Finally we note that when we move from Continuum to discrete representations,
the Dirac delta function is transformed to a scaled Kronecker delta, i.e.,

6xxr
dx
To see this, note that the fundamental property of Dirac delta functions is

[ reo0e-ax = )

And indeed, when we use a discretized version of the integral, then

Oyt
Y FeN = dx = £

o(x—x") -

showing that these are the same things in a discretized space (since an integral is
a sum multiplied by dx).
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NOW BACK, DISCRETE - CONTINUUM

NOW WE WILL REDEFINE THE KETS in preparation to moving to a continuum
basis:

|x) » —|x)

Vdx

Then,

Oxxr
(xlx') = =2 = §(x — %)

The last relation is something we saw earlier, in the plot of the delta function; i.e.,
a Dirac delta function can be thought of as a Kronecker delta, divided by dx
(there it as €, here we call it dx.)

Then the “blue” orthogonality relation becomes in our language
(xlx') = 6(x —x")
and

1= le)(xl dx = f|x><x| dx

X

i.e.,, a sum over many values of x times dx is exactly the integral!

And therefore

1) = [ relods
Where we still have

xlf) = fx)
Simply put, the eigenfunctions of the “x” operator are now Dirac delta functions,
and they are orthogonal with a delta function normalization.

A side note: since we replaced the sum by an integral, we can also get rid of “a”
and “b”, i.e., assume that space (and the integrals) run from minus infinity to
infinity.

Everything we learned in linear algebra still maps here; for example, the overlap
of two functions can be written as (in the first equality we insert 1=[|x){x| dx):

lf) = f (gl )z P f g @F W dx

(Note the complex conjugate, (g|x) = (x|g)" = g"(x) )

Now we start seeing the power of the bra-ket notation. Look at the equation for an
overlap of two function from above. It tells us the we can think of an overlap as
nothing more than the sum (or integral) of overlaps of our functions with the

«_n

eigenstate of the “x” operator - i.e., there is nothing special about x, and we see
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that we could have obviously applied the eigenstates of any other linear
operator, as the book by Dirac explains.

Discrete and continuous basis sets
Discrete Basis Sets

The interesting thing is that even though we now have continuous space and
continuous basis, we could still have discrete basis sets.

As an example, we can use fit any function by eigenfunctions of the harmonic
oscillators, i.e., write

FG) =) fagn@

Where we use the eigenstates of the Harmonic oscillator

hgn (x) = €ndn (x)

and

1
h=K +5mw2x2

1
Enzhw(n+§>

K is the kinetic energy operator :
_ 1 d?

T 2mdx?

And m is the mass (don’t confuse with m used as an index below).

Of course, many other Hamiltonians have discrete-only eigenfunctions (any
Hamiltonian where the potential is not bounded from above, as you'll learn in
Quantum Mechanics). Note that these eigenstates are orthogonal, i.e.,

@mm=f%@m4mm=%m

Also note that we could have written the equation above in terms of formal bras
and kets:

)= fulgn)

Where as we learned

fa = (gnlf)

Finally, all these properties can be summarized by the equation we know:

1= lga)anl
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Note that the basis is discrete but infinite, i.e., the summation in the bold
equation above extends from n=0 to infinity. The basis function are orthogonal
as we learned, since h is Hermitian;, i.e.,

dZ

1 1
(Ylhlx) = fll)*(x)( T TE +2mw x ))((x)dx =

*

1 d> 1
([ (- gzt gmos®Jwoodx = telnivy

(Obviously, the same proof also applies when we use other potentials.)

Here, we used integration by parts to get that when you integrate over all space,
and your two functions decay at infinity, then

[ vz = - f & W0 [ 160y ()

( f V) o (x)dx)

The momentum basis

Before going on, let’s talk about another continuum basis set, in addition to |x);
the momentum basis, |p).

This basis fulfills, by definition,
poperatorlP) = plp)

where (using the convention A = 1):

. d
= —1—
poperator dx

[t is easy to see that the following will fulfill this equation:

) = ¢ f explip) |k

(well, to do it properly mathematically we have to be quite careful, but let’s not
worry too much).

« n

Think of this as summing many kets. “c” is a constant to be determined shortly

Since poperator is @ Hermitian operator, we know that the eigenstates are
orthogonal; we should look at the normalization only. We know that

(x|p) = cf Ooexp(ipx’) (x|x")dx" = j 00exp(ipx’) 6(x — x")dx" = cexp(ipx)
So
@'l = @10l = c'c [ exp(Gpr— ') d

= ICIZfeXp(i(p—p’)x) dx
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And from the integral we did earlier, [ exp(ipx) dx = 2n8(p), we get

(v'lp) = 2m|c]*6(p — p")
So the choice

Leads to orthonormal basis
('lpy =6 —p")
So to conclude

1=
Ip) = ﬁf_m exp(ipx) |x)dx

Side note: analogy between( x,p) and (p,-x).

To remind you: In general, whenever we expand an orthonormal basis [ in terms
of another orthonormal basis II, and then do the opposite (expand Il in terms of
I) the expansion coefficients are—they are the complex conjugate of each other.

The same is true for continuum orthonormal basis sets, so we can write;
1 to
) == | exp(-ipx) Ip)dp
V2T J_w

(Formal proof: as we proved the expansion coefficient of |p> in terms of |x> is
simply

1 ,
(xlp) = \/T—nexp(lpx)

We reversed the role of p and x, i.e., expand |x> in terms of a basis |p>, and the
expansion coefficients will be

1 .
(plx) = (x|p)* = Eexp(—lpx

So the relation between x and p is exactly the same as between p and -x!
This analogy can be carried even further. We can write

. d
“dp

Proof: in a sense we don’t need the proof, since we trust that p=-id/dx, and we
just reverse the role of x and p and reverse one of the signs.

Xoperator = !

We'll get back to the x,p relation next chapter, when we consider Fourier
transforms.

Now at last:
Mixed discrete-Continuum basis sets

It turns out the a general Hermitian operator, labeled “L”, could have either a
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e discrete spectrum (the eigenvalues are all separate - the harmonic
oscillator),

«

e acontinuum spectrum (all eigenvalues are continuous) - the “x’” operator is
such, its eigenvalues range from —oo to +oo0 continuously; same for the p
operator.

e Mixed-spectrum, i.e., regions with continuous eigenvalues and regions with
isolated eigenvalues, so we can write

1= Il + [ aalaa
n
So, e.g., any ket is expanded as

1) = D 12a)al) + [ a2 121y

And the discrete and continuum basis set members are orthonormal, as follow:
(4nl2) = 0,
(AnlAm) = Enm
Ay =861 —-21")
Two examples for mixed spectra:
e A particle in a box, but that box is has finite height e.g.,:

_ 0 lx|] > x,
V) = {—W |x] < x4

In that case there could be a finite number of discrete states (or zero if the
well depth is too shallow) and the rest are continuum states, with energies
between 0 and infinity.

e Electron in hydrogen - there are infinitely many discrete Columbic states (1s,
2s,2pX,2py,2pz,etc...), but in addition there are continuum states with E>0.

Finally,

you should know that there is something which is called “resonances”, which are
discrete eigenstates of the Hamiltonian which are not bound, and are “buried in
the continuum”; they are very interesting for predisocciation and other p process
where the particle is not bound formally but in practice spends a long time looking
like it is bound.

Also:

(1) One complication on continuum states- normalization - if we label them by
a different variable, we need to change the normalization; e.g., the
eigenstates of p are also eigenstates of the kinetic energy operator, with

2
eigenvalue E= zp_m; so we could write

|E) = blp)
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(we actually have another state with the same energy with -p, but let’s forget
about this for a second, and assume that p and p’ below are both positive). “c”
can be obtained from
pZ prz

b|*(p'|p) =(E'|EY=6(E —E')=6(———

[BI2(p' p) = (E'|E) = 6(E — E') (Zm 2m>
Since we assumed for now that p and p’ are both positive, the argument of the
delta function can only vanish if p=p’, so we use the rules on delta function to
get:

2 2
S(E—E)=6 (p p) |dE 5(p—p') =5 (plp")

Z
m

So

3 I"SI

Next: Fourier transforms.
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Fourier transforms:

Plan:

e Introduce Fourier transforms from different perspectives
e Properties of Fourier transforms: gradients

e Convolutions and Filter

e (Green’s Functions

e Correlation functions

e Parceval theorem

e Fast Fourier transforms

e Numerical derivatives and spectral methods

We won’t have time to deal with the cousins of Fourier transforms: Laplace
transforms, but you should be aware of them,

Fourier transforms - from different perspectives.
Let’s arrive at Fourier transform in somewhat different ways.
(i)Fourier Transforms from bras and kets.

Take a general “ket” |f). Expand it in terms of |[x> and also in terms of
momentum eigenvectors |p>. Let’s recall that (from the previous chapter)

If) = f FGOIx)dx = f f@)Ip)dp

+ 00

1
lp) = )

So: do a Hermitian conjugate, get:

exp(ipx) |x)dx

1 [t ,
(pl == f exp(=ipx) (xldx

Also
f(x) = (xIf)

So using the equations above, get

- 1 e ,

F®) = 01f) == exp(=ipx) el
So

Fo == [ exnipn fds
V2 o

And similarly, if we were to express (x| in terms of (p| we'll get:
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1 e -
f@) == | exp@f () dp

[Note that we put a “tilde” above f. The reason is that we want to make sure we
understand that f(x) refers to a particular representation (the “x”
representation), and f (p) refers to another representation. Put differently, make
sure to distinguish f(x=1.34) and f(p = 1.34); if we would have used the same
“f” you could have got confused.

END OF NOTE]
(ii) Fourier transforms directly from delta-functions

The 2nd approach is not to worry about bras and kets to just define f(p) from the
equation above (the one before the last), and to claim that f(x) fulfils the last
equation; this is easily proved as:

1 too -
= f exp(ipx) (p) dp

1 + 1 +o0
:mf exp(ipx) = | ew-ip) xax dp

1 +00 +00
=5 (f exp(ip(x — ’)dp>f(x’)dx’

% f :02”5@6— N f@)dx' = f(x) Q.E.D.

(iii) 34 approach: starting with Fourier summation

The last way is the traditional way to teach Fourier transforms, as a limit of
Fourier series. Thus, given a function f(x) which is assumed periodic, i.e.,

flx+1L)=f()

We'll defined the function as a Fourier sum, and then see what happens to the
formulae as L — oo.

Since now L is periodic, we write it in terms of sin’s and cos’s:

[ee)

R YRS JHCLN

n=0
. . 2T 21n . . . , 21N
Since sm(T x) and cos(T x) are linear combination of exp i—x and

. 2N .
exp(—l Tx)we can write

f(x)—T_ i (12 = 3 gugn)

— n=-—oo
where
2mn

b5 = (12
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Note that in the last highlighted equation n takes on positive and negative value
(e.g.., the cos and sin with, say, n=5, appear as linear combination of the

exponential terms with n=5 and n=-5. The — 7 is for normalization, see below.
(Exercise: work out g, in terms of a,,, b,,. Be careful with n=0.)

Let’s prove that these function are an orthonormal basis set, where the dot-
product is defined here as an integral over the period:

L L

2 12 2 —n'
Ol = [, 61000 0ax = [ exp (120 )

2

_L L
() o (225220
= (forn #n') iZn(nL— ) P

_(exp(ir(n— ")) —exp(=in(n— ")) _ 0
N i2m(n—n') L -
L

And the n=n’term is of course 1.

So we can write therefore:
L
2
n= @l = [ 9r0Or
2
i.e,
L
_1[? (_Znn)()d
gn—ﬁ_%exp i— x ) f(x)dx
Now let’s define the momentum as linearly proportional to the n index:

e

/[ /[
dp —dn =T (asdn=1)

So

And

: L 1 (3
fp) = j;gn = Ef_%eXp(—ipx)f(x)dx

So from the highlighted equation in the previous page, multiplying by 1 = ?

p
dp 1 2 V2T O -
fe =2 Z gnexp (i57x) = D @) exp(ip)dp
p=—
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i.e.., converting the sum*dp to an integral,

1 (.
(x) = —f exp(ipx)d
f Nor _oof (p) exp(ipx)dp
These blue-highlighted equations are exactly the Fourier transformation; the
only difference is that to get to a Fourier transform, we need to take the limit L—

oo so the integral over x extends to +-infintiy and the spacing dp becomes
infinitesimaly small, i.e., p becomes a contnous variable.

END OF FOURIER TRANSFORM DERIVATION
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Fourier transforms properties: derivatives and solving linear equations involving
derivatives.

The Fourier transform of a derivative is the same as acting on the original
Fourier transform by ip .

Proof: (assuming that f vanishes at infinity and doing intergration by parts

~ d
Fo) = e (ipn) Lar = -—— [ 2 fexp(-ipn)] fita

f+ooexp(—ipx) fdx

__p
Vo
i.e,
f®) = inf@®)
Notice that we can rewrite this symbolically as:
p=—iV

Where we introduced the gradient operator, which in 1-D is just the derivative,

d d

while in higher dimensions it will be V= ( ...). That’s the quantum

mechanical expression we all know - the reason for this was the realization that
particles are wavefunctions, so when you apply the “derivative operator” you're
just multiplying by momentum (well, it is slightly more complicated, but let’s not
get too much to QM).

This is very useful when we come to calculate numerically complicated actions
by an operator with derivatives.

For example, often we need the operator

L

i.e., we need to solve for an unknown function u(x) that fulfills
(V2 + wux) = f

Then to solve, we just need to convert this to Fourier space, and then we'll get:
(=p* + 1) ﬁ(p) =f(®),

i(p) =——f(p)

2 + U
So we need to Fourier-transform from f(x)> f(p), determine #(p) and then
Fourier transform back to u(x). Later we’ll describe how this is done
numerically, but suffice to say that Fourier transforms are very efficient
numerically, so this makes this approach important numerically.
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Convolutions:

Another important property is that convolutions in x space become products in p
space (and vice versa). l.e., a convolution of two function, w(x) and f(x), is
defined as

v(x) = fw(x —x")f(x")dx'

We claim:

#(p) = V2r w(p) f(p)

Proof:

7(p) = Lff exp(—ipx) w(lx — x") f(x")dx' dx =
V2w
1
= Eff exp(—ip(x' + y)w(y)f(x)dx"dy (wherey =x —x')

—VZn J%( [ ew-ipy) w(y)dy)v%( [ e-ipx) panax)

=+2m w(p) f(p) Q.E.D.

This gives a practical way to evaluate convolutions, since as mentioned and we’ll
see later it is very efficient numerically to do Fourier transforms (see the
discussion on FFT in a few pages)- so in practice, on the computer, often
convolutions are done by Fourier transforming each one of the convoluted
functions and then Fourier transforming the product back from x to p (or back
from w to t).

In the next section we’ll actually use a non-FFT approach to calculate
convolutions for a special class of functions, i.e., Lorentzians filters; later we’ll get
to general filters.

See the next two figures that show action of a filter to “filter and clean” spectra.

W) |f(P)I
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7(p)|
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Filters and convolutions:

Let’s say we have a physical device, e.g., a radio, that is tuned to extract specific
frequencies. An example is that we get a signal f(t) and build, through electrical
connections, a circuit made of capacitors, inductors, resistors, etc., that yields, an
output signal, g(t), that fulfills

d*g dg
Frole —aE—w02g+f(t)

(Note that we'll use a frequency variable which is w, not p, since our fundamental
variable is time and the notation for thr Fourier transform variable assorted with
tis w, not p; but everything applies also to using x instead of t, and then labeling
p instead of frequency).

For example, g could be obtained from electrical equivalent to a spring, and we
can change w, at will (use a “tuner”). Then we know that

—w?j(w) = —iawd(w) — w?d(w) + f(w)

i.e.,

g(w) =— f(w).

w — w? + ia
It is clear that g will be peaked near w~w,.

Further, we can even find out the explicit relation between g and f, i.e,,
9@ = [u(e - ) @ar

where from the yellow relations from above the Filter function, u, has as its
Fourier transform,

1 1
V21 w? — iaw — w}

This is called a Lorentzians filter; it falls off quite slowly with frequency.

i(w) =

Let’s calculate what will be u(t-t’), i.e., the Fourier transform of &i(w).

(Side note: One thing we know is that u(t-t") should vanish if t<t’ (the output
should only depend on past and present signals, no future ones); let’s see if that’s
borne out.)

We know that the denominator can be written as

1 1
Vem (0 —vi)(w —v.)
Where a simple calculation of where the denominator vanishes shows that the

poles (essentially values of w where the function explodes, i.e., in this case the
denominator vanishes) are at:

i(w) =

1104 _
Vi:?iwo
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Where

Therefore (presuming the square root is real, i.e., a is smaller than 2w, i.e.,
damping is not huge) the Fourier transform will be easy to calculate, using a half-
circle contour.

If t<0 the contour should be taken in the lower half (see picture with the poles
denoted by blue), since at the lower half exp(iwt) will decay rapidly if t<0 and
im(w) < 0.

So:
u(t) =0 fort <0
as is physically reasonable!

For t>0, take the upper half, as exp(iwt) decays then in the upper half of the
complex plane:

Then:

1jg exp(iwt)dw
2n J (w

1
u(t) (fort>0) = EI ti(w)exp(iwt) = — )0 —v)

2

B ZNiZ 4 ¢ exp(iwt) ool
= -~ ) residueso @ —v) (@ —v) at poles

There are two residues, associated with the two poles at v, and v_. For the pole
atv,, the residues is ther “other part”, i.e., the part whichisnot 1/(w — v, ) :
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at -
exp(iot) exp(iv,t) ©€XP (— 7) exp(iwgt)

(w—v.) (ve—v)) 20

residue at (w =v,) =

For the other residue, we’ll get the same result but with a minus sign (the

denominator a is above now - 1v = — E%) and the sign of i is reversed, so when
—-—V+ 0
adding we get
at L at L
exp (— 7) exp(iwgt) exp (— 7) exp(—iwgyt)
u(t) = —i — - —
20, 2w
i.e.,
at\ sin(@yt)
t) = _
w0 = e (-7) =5

So to conclude

g() = fu(t —tYf(E)dt' = f exp (_ alt - t’)) sin(@(t —t))

5 > f(&Hat’

0

Notice that the “convolution” or “filter” function oscillates at a frequency close to
the desired frequency, and is also damped as a function of time.
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Filters and Green’s Functions:
The discussion on filters is important in two contexts:

1) Actual filters used in things like radios. Note that in practice a combination of
several such filters will be used, leading to filters with “sharper” frequency
response, i.e., u(w) will be more sharply peaked around wo, and there will be
little amplitude for u(w) when w is far from wo; this can be done quite easily
by adding two or more filters, but we won’t get into that.

2) Without realizing it we started talking about Green’s functions. For a
general operator L, these are defined as:

LG(x,x) =60 —x")

where L operates on the x coordinate. This sounds very difficult, but let’s see
how it worked out in our example. Here, we replace x by t and

d? dg
_ - “9 2
L dtz +a dt + Wy
So
LG(t,t) =6(t—t")
becomes

d? dg
—t+a—+wy? |Gt t)=6(—t")

We notice that in this case G depends only on the difference, i.e., we can write

G(t,t") =u(t—t")

d? dg 5 , )
(E§+aa?+w0>uﬁ—t)—6ﬁ—t)

This is just the u that we had before!

The importance of G is that once we know it we can solve any equation of the
form

Ly =f
as (switching back to using x as our independent variable):

Y = f G x')f (") dx’

Proof: consider Ly = L [ G(x,x")f(x")dx’. Since L operates on x we can insert it
into the integral over x’, resulting in:
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Ly = JLG(x,x’)f(x’)dx’ = Jc?(x —x")f(x")dx" = f(x) Q.E.D.

Green’s functions are really important in Q.M., and you will learn about them in
Q.M. class and beyond.
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Correlation functions

Consider the correlation function of a signal, defined as:

C(r) = flp*(t)lp(t+r)dt

For example, 1 could mean the current going through a device, or the electric
field coming from a soruce (light, star, laser, or anything), or any other signal in
time.

If =0, then C(0) is positive quantiy. If 7 > 0 (what do we mean by >>0
depends on the problem) then 1/(t) will be independent of (t + t) so the value
of the correlation function will go to zero (at least if the average of 1 vanishes
over time, let’s not get into that). See figure for example:

o \A[\(\f\/\

JUVYS

T

In this picture, the oscillations frequency, which we’ll label T, depends on the
frequency of the signal (if it has a well-defined frequency), and here the damping
time will be T~4T; for coherent laser signals the damping time could be millions
of oscillation periods or more, while for broad-wavelength sources, such as the
sun, C will damp very fast.

Since the correlation function looks like a convolution, we will get a relation to
Fourier transform, using a similar methodology to earlier:

) 1 o
Clw) = E exp(iwt) Y* ()Y (t + t)dtdt

1
\/ﬁ f exp(io(y — ) Y*(®O)Y(y)dtdy (wherey =t+ 1)
1
= | ew-ionw @i [ et pody
= V21" () (w)
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i.e,

C(w) =V2r[p(w)|?

And using the formula we all memorized by now:

C(r) = C(w) exp(iwt) dw

=

We can write the correlation function in time as:

C(t) = fll/)(w)lzex (iwt) dw

The correlation function is also extremely important in all branches of chemistry
and physics, as it also relates to influence, i.e., if | make a change of something
(e.g., excite a dipole, apply electric field, inject an electron, rotate) at time t, how
long (how much time, 7) till the effects of this change dissipate.

Perceval’s theorem:

Set 7 = 0 in the last highlighted eq. and the one in the prev. page, to get
Parceval’s theorem:

[w@rao = [ wora

(notice that the same theorem is valid if we talk about p-x rather than w-t)

This theorem is obvious to us if we think of 1)(t) as a representation of an
abstract vector, i.e.,

Y(©) = (tlp)
Y(w) = (w]P)
Le.,, the LHS and the RHS of the highlighted eq. above are simply (y|y) !

Perceval’s theorem tells you that the power of the signal can be measured either
in frequency or in time. It also tells you that the components of signal at any
frequency contribute each a positive contribution to the power; for example, if
our signal has a lot of “noise” at frequencies other than the desired one, they will
all contribute to the signal, and in the ideal case should be filtered out.
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Fast Fourier transforms

Finally we come to the reason Fourier transform are so popular and important
these days - the fast Fourier transform algorithm; by its name, it is a method to
carry Fourier transforms very efficiently for large signals.

But first let’s discuss in detail:
@) Numerical Fourier transforms

Since we deal with numerical Fourier transforms, they have a finite number of
points; i.e., we really deal with Fourier sums; further, even in Fourier sums we
have integrals over time (and sums over frequency), while here we’ll have sums
over both times and frequencies. So we have a signal made of “N” points, which
for convenience will be labeled now from 0 to N-1 (and not from 1 to N)

fO' ""fN—l

where, similarly to earlier
fo = f(tmin)

fi= f(tmin + At)
fj = f (tmin + jAt)

fn-1= f(tmin + (N —1)At)
Here, At is not necessarily “small”.

We want to numerically obtain the Fourier transform at N frequencies, which we
defined, analogous to the usual Fourier summation, as:

sz Z exp(ia)ktj)fjdt

j=0,,N-1
where we’ll obtain them at
w, =k dw
Where
dw = i
L
Where
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L =NAt

Is the length of the signal (to be precise, it is the( length of the signal)+A4¢, since it
is associated with the periodicity; e.g.. if our signal has 32 points (from 0 to 31),
we are assuming implicitly that there is a 3314, 34th | etc. points, and the 33rd
point is equivalent to the 1st, so L is the distance in time between them, i.e., 324t)

Also, there are N independent values of k, since we can form N independent
combinations from summing over the N values offj; we’ll label these values

(this choice of k’s is only for the derivations’ convenience, the true value of k’s
really are shifted and are

i.e., k should really be viewed as having positive and negative values; but that’s a
manageable complication, and for the derivation’s’ sake we’ll remain with
k=0,...,N-1.

It is straightforward to see that we can assume that tmin=0 (the necessary
corrections to this assumption are numerically cheap); this will result then in
_ 2nly : _
wit; = N (assuming tyin = 0)
Further, we’ll remove the multiplication of the sum by At in the summation
above, resulting in:
2mkj

he Y el

j=0,.,N—1

)fj (we omit the multiplication by At)

A piece of good news is that even though we have a discrete summation, the
formula for the inverse FFT remains exactly the same (with a modified pre-

13 3, el
k=0,..,.N—1

Sampling theorem and number of time points: one may ask how many points are

factor):

2mkj
N

needed to get a “good signal”.

[t is easy to see that if our discrete signal is due to an underlying continuous
signal in time, with two closely spaced frequencies, e.g.,

f(t) = a; exp(iw,t) + a, exp(iw,t) + ot frequencies
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Then in order to “differentiate these frequencies, i.e., get a picture of a Fourier
transform with two separate picks, one at w1 and the other at w2, we need to
have

| > do(=—0)
()] w1 w_NAt

i.e. we need a minimum number of time points:

2T

N>———
At |wy — |

Further, we need to ensure that the time step is not too large so we don’t confuse
an oscillating signal with a non-oscillating one (see figure):

Figure: If the true signal (orange) is sampled
(red points) with At which is too large, we’ll
think that it isn’t oscillatory (purple)

This is equivalent to requiring that:

21

At > — —
range of contributing frequencies in signal

These two requirements (known as sampling theorem Nyquist criteria, and
uncertainty relation, depending on your field), can however be circumvented
with modern algorithms (one is Filter-Diagonalization, developed in my group).

Now to the ice on the pudding:
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Fast Fourier transforms:

Ostensibly a numerical Fourier transform can be an expensive evaluation, i.e.,
looks like it costs N2 operations

(i.e., for each j do a summation over N values of “k” -- - totaling N2 points.)

However, these is a saving feature: exp (i 27” kj ) = W" (where W = exp (i %n))

and it takes on only N different values (rather than N2 values):

2n 2m\*
Wo=1W =exp <_iﬁ>’ W? =exp <_iﬁ> e, WNL
) 2m N
since WN = exp (—lﬁ) =1=w°

This enables the FFT algorithm, discovered independently many times, which
costs only N logzN operations, rather than N2.

The trick is to realize that we can write the FFT of 2N points from two FFTs of N
points:

L.e., say that we have 2N points, and that we have:

e separately done the Fourier transform of the N even members f¢ =
(for f2r far o fan—2)

e and the N odd members, f° = (fi, f3, f5, ) fan—1)»

i.e.., that we have

F = z Wkify; k=0,..,N—1
j=0,..,.N—1

(fo)k = Z Wk.jf(2j+1) k= 0, ,N -1

j=0,..N—1

Then, to get the FFT of the full 2N vector f = (f3, f2, .- fon) we first define a
factor similar to W but for 2N:

2m
U=exp(—i—
e (~iy)
(soU? = W).

Then, write the Full FFT of the 2N points as:

fi = Z Ukif; k=0,..2N—1

j=0,...2N—1

And now divide the sum to even terms (2j) and odd (2j-1):
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— Z Uk-ijZj + Z Uk-(2j+1)fzj+1 k=0,..2N—-1
j=0,..N-1 j=0,..N-1

But in the first sum, U¥?/ = (U?)® = W and similarly in the 2nd sum

Uk @i+ = ywki so we get

fk = Z ijfzj +Uk Z ijf2j+1 k=0,...,2N—1
Jj=0,...N-1 j=0,..N-1

Now the first term looks just like (£€) and the last is (f°), so we get:
fie = (Fu + UF(FO)u

The only thing is that k is defined now from 0 to 2N-1, while we said that we did
a Fourier transform of the N points in the even and odd parts separately, so we
had it from 0,...,N-1 only;

But that’s OK since you can prove that both (£¢), and(f°), are peioridc with
period N, i.e., if we know N values we get automatically their next N values.

This algorithm can be applied recursively:
E.g.,
To get, say, the Fourier transform of N=64 points we need to

(1) Get TWO Fourier transform of N=32; and
Do the highlighted sum above — cost of N=64 complex multiplications
(and N additions, which are cheaper).

Now to do TWO Fourier transform with N=32 above we need

(i) FOUR Fourier transforms with N=16, and then do TWO different
summations as highlighted above, each for 32 points, i.e., 64 complex
multiplications.

So to do this we need:

(iii)  Eight Fourier transforms (F.T.) with N=§, and 64 complex multiplications,
ie.,

(iv) 16 F.T. with N=4, and another 64 complex operations, i.e.,

v) 32 F.T. with N=2, and another 64 complex operations,;

(vi)  and the 32 F.T. with N=2 cost themselves 64 operations. (it is easy to do a
FT with 2 points!)
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So overall we had 64+64+64+64+64+64 = 6*64 operations; obviously for any
N which is a power of 2 (N=2M) the costis N - M, i.e,, N log, N operations as

promised.

Example: for a 3D imaging, where the same cost applies (with N=total number of
points=N, - N,, - N,), itis quite feasible to have N=(1000)3 =10° points. Then,

using an FFT algorithm we need only
Nlog, N~ 10°-30 =3-10%°

i.e., 30 billion complex multiplications and additions, which will take about a
quarter-minute to half a minute on modern 3GHZ workstations; if we were to try
to do this without the FFT algorithm, it would have taken N2=10° - 10° = 108

operations, which will take, with the same computer, 50 years...

For reference on this chapter so far (as well as on almost all things numerical),

use the book : Numerical Recipes.
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NUMERICAL DERIVATIVES WITH SPECTRAL METHODS:

One final comment - the FFT enables, in addition to studying spectra and doing
convolution, to have a very accurate numerical derivative. l.e., given N values of a

function
f(xj) ,where x; = Xpmn +j dx,

the traditional way to get a derivative would have been to calculate an

approximation to the derivative from, say,

( ]) -~ f(xj+1) f(xj)

2 dx

or another similar formula (we use blue since this formula will be replaced).
However, with FFT we can imagine that the function is rigorously a sum of N

exponentials, i.e., imagine that
) =) explinen) fi
k

(we won’t worry about overall normalization constant), then we will

(i) Getthe f, by a numerical FFT;
(ii) Differentiate analytically the exponentials exp(ipyx) to get:

d ~
_f (x =xj) = Z e exp(ipkxj) fr

k

(iii) DO this highlighted summation by inverse Fourier transform.

For reference, see D. Kosloff and R. Kosloff, A Fourier Method Solution for the
Time Dependent Schrodinger equation as a Tool in Molecular Dynamics, J. Comp.
Phys., 52, 35-53 (1983) and Ronnie Kosloff, Time Dependent Methods in
Molecular Dynamics, J. Phys. Chem., 92, 2087-2100 (1988).

END OF Fourier Transforms

END OF COURSE!
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